Ф.А.Березин

ВВЕДЕНИЕ В АЛГЕБРУ И АНАЛИЗ С АНТИКОММУТИРУЮЩИМИ ПЕРЕМЕННЫМИ

В книге, составленной на основе рукописи Ф.А.Березина, изложены основные устоявшиеся разделы суперматематики: линейная алгебра и анализ, на суперпространствах, супералгебры Ли и супермногообразия.

Для математиков и физиков-теоретиков.

Пуассона, связанная с супералгебрами Ли

Список печатных работ Ф. А. Березина

Содержание

Предисловие	6
Введение. Математические основы суперсимметричных теорий поля	8
Глава 1. Алгебра Грассмана	30
§ 1. Общие сведения об ассоциативных алгебрах	30
§ 2. Алгебры Грассмана	35
\S 3. Алгебры $\Lambda(U)$	54
Глава 2. Анализ в алгебрах $\Lambda_{p,q}(U)$	72
§ 1. Производные	72
§ 2. Интеграл	73
Глава 3. Линейная алгебра в Z ₂ -градуированных пространствах	85
§ 1. Линейные операторы	85
\S 2. Алгебры и группы операторов в пространствах $K_{p,q}$ и $K_{p,q}(\Lambda)$	109
Глава 4. Супермногообразия в целом	121
Введение	121
§ 1. Пучки	121
§ 2. Кольцованные пространства	125
§ 3. Супермногообразия	132
§ 4. Конструкции супермногообразий	135
§ 5. Стратификация супермногообразия	141
§ 6. Ретракция и первое препятствие	144
§ 7. Высшие препятствия	150
§ 8. Примеры неретрагируемых супермногообразий	151
§ 9. Z ₊ -градуировка и условия простоты супермногообразия	153
Глава 5. Супералгебры Ли	156
§ 1. Общие сведения	156
§ 2. Примеры супералгебр Ли	165
§ 3. Присоединенное и коприсоединенное представления. Алгебра скобок	194

207

оглавление

	Cip.
Предисловие	6 8
Глава 1. Алгебра Грассмана	30
§ 1. Общие сведения об ассоциативных алгебрах	30
§ 2. Алгебры Грассмана	35
§ 3. Алгебры $\Lambda(U)$	54
Глава 2. Анализ в алгебрах $\Lambda_{p,q}(U)$	72
§ 1. Производные	72
§ 2. Интеграл	73
3 = · · · · · · · · · · · · · · · · · ·	, ,
Глава 3. Линейная алгебра в Z_2 -градуированных пространствах	85
	85
 Линейные операторы	
$K^{p,\;q}(\hat{\Lambda})$	109
Глава 4. Супермногообразия в целом	121
Введение	121
	121
§ 1. Пучки	125
§ 2. Кольцованные пространства	132
§ 3. Супермногообразня	135
§ 5. Стратификация супермногообразия	141
§ 6. Ретракция и первое препятствие	144
§ 6. Ретракция и первое препятствие	150
§ 8. Примеры неретрагируемых супермногообразий	151
\S 9. Z_+ -градуировка и условня простоты супермногообразия	153
Francis Communication No.	150
Глава 5. Супералгебры Ли	156
§ 1. Общие сведения	156
§ 2. Примеры супералгебр Ли	165
§ 3. Присоединенное и коприсоединенное представления. Алгебра	10/
скобок Пуассона, связанная с супералгебрами Ли	194 207

предисловие

Феликс Александрович Березин трагически погиб 13 июля 1980 года во время водного путешествия.

В последние годы своей жизни он интенсивно работал над различными математическими проблемами, связанными с идеей суперсимметрии. Формальное исчисление в грассмановой алгебре, которое было развито Ф. А. Березиным в его первой книге «Метод вторичного квантования», привело его к убеждению, что существует нетривиальный аналог анализа, в котором на равных правах с обычными переменными выступают антикоммутирующие переменные. Эту идею он настойчиво пропагандировал и тщательно подбирал подтверждающие примеры и конструкции. Важнейшие из них — интеграл Березина по антикоммутирующим переменным и так называемый «березинан» — аналог якобнана при замене антикоммутирующих переменных.

К середине 70-х годов пионерские идеи Ф. А. Березина стали распространяться и понятия суперпространства, супермногообразия, супергруппы и супералгебры Ли были приняты на вооружение физиками. Появилась надежда, что на языке суперанализа может быть построена единая теория поля.

Ф. А. Березин начал работать над книгой по суперанализу. Эта работа продолжалась несколько лет и осталась незаконченной. Из рукописей и статей Ф. А. Березина, дополненных его друзьями и коллегами, составлена эта книга.

Вошедший в книгу материал в силу сложившихся обстоятельств носит разнородный характер. Часть глав автор успел написать «начисто» и опробовать их на семинарах по математической физике и по теории представлений в МГУ. Другие главы остались в черновиках. Некоторые важные разделы (например, теоретико-полевые приложения) остались ненаписанными.

Опишем более подробно содержание книги. В качестве введения использован текст статьи Ф. А. Березина в журнале «Ядерная физика», которая является записью его обзорного доклада, сделанного в мае 1978 г. на конференции по калибровочной теории поля в Москве.

Первые три главы книги были подготовлены автором для печати и подверглись лишь небольшой правке. В них даются первоначальные сведения об алгебрах Грассмана, дифференцировании и интегрировании функций от антикоммутирующих переменных, развивается аппарат линейной алгебры в Z_2 -градуированных пространствах. Весь этот материал изложен подробно, с расчетом на читателя, который впервые знакомится с предметом.

Далее должна была по замыслу автора излагаться глобальная теория супермногообразий, теория супералгебр и супергрупп Ли и их представлений.

Вторая часть книги должна была быть посвящена прило-

жениям.

Из всего этого материала в готовом виде в рукописях Ф. А. Березина была обнаружена лишь глава 6, посвященная супералгебрам Ли, и черновая версия главы 4, посвященной супермногообразиям. Кроме того, несколько лет тому назад Ф. А. Березин изложил часть будущей книги в виде серии из 5 препринтов ИТЭФ.

Для настоящего издания глава 4 была заново написана В. П. Паламодовым. Содержание ее выходит за рамки, намеченные Ф. А. Березиным, и содержит новые результаты. В частности, строится пример неретрагируемого комплексного супермногообразия размерности (4, 2). Хотя требования к математической подготовке читателя в этой главе несколько выше, чем в предыдущих, надеюсь, что весь изложенный здесь материал понятен и интересен для физиков-теоретиков.

Пятая глава настоящей книги соответствует шестой главе из рукописи Ф. А. Березина. Авторский текст подвергся лишь

небольшой редакционной обработке.

А. А. Кириллов

МАТЕМАТИЧЕСКИЕ ОСНОВЫ СУПЕРСИММЕТРИЧНЫХ ТЕОРИЙ ПОЛЯ

1. Истоки

По-видимому, первой работой по суперматематике следует считать работу Мартина 1959 г. [1]. В этой работе построена алгебра скобок Пуассона для функций от антикоммутирующих переменных

$$[f,g] = \sum \left(f(x) - \frac{\overleftarrow{\partial}}{\partial x_i} \right) \omega_{ik} \left(\frac{\overrightarrow{\partial}}{\partial x_k} g(x) \right). \tag{1.1}$$

Здесь x_i , i=1, ..., n, — антикоммутирующие переменные, т. е. образующие некоторой грассмановой алгебры \mathfrak{G}_n :

$$x_i x_j + x_j x_i = 0, \quad i, j = 1, ..., n,$$
 (1.2)

 $f(x), g(x) = \emptyset$. Элементы f, g разлагаются в ряды по образующим x_i , например

$$f(x) = \sum_{k \geqslant i_1, \dots, i_k} \sum_{i_1, \dots, i_k} x_{i_1} \dots x_{i_k}.$$
 (1.3)

Сумма по k в (1.3) содержит конечное число слагаемых, так как $x_i{}^2=0$ в силу (1.2), $\overleftarrow{\partial}/\partial x_i$, $\overrightarrow{\partial}/\partial x_k$ в (1.1) означают соответ-

ственно правую и левую производные, $\|\omega_{ik}\|$, в отличие от обычного случая, симметричная матрица: $\omega_{ik} = \omega_{ki}$. (В работе Мартина ω_{ik} — числа, а не элементы алгебры \mathfrak{G} . Возможно построение алгебры скобок Пуассона и в случае, когда $\omega_{ik} = \mathfrak{G}_n$. В этом случае на ω_{ik} накладываются дополнительные условия. См. ниже.)

Работа Мартина возникла в связи с дискуссией, начатой Швингером в [2], о классическом пределе для фермионов. Следует отметить, что Швингер в [2] был достаточно близок к введению антикоммутирующих переменных. Он отмечал, что для классического описания фермионов следует пользоваться величинами, удовлетворяющими условиям (1.2) при $i\neq j$. Случай i=j он не рассматривал вообще: ясно, что для классического случая непригодно равенство $x_i^2=h$, где h— планковская постоянная, с другой стороны, для того чтобы написать

 $x^2=0$, следовало, по-видимому, преодолеть большой психологический барьер. Чтение литературы, посвященной дискуссии 50-х гг. о классическом пределе для фермионов, позволяет судить о том, насколько высок был этот барьер. Решающий шаг был сделан Мартином в [1]. Работа [1] — первая известная в настоящее время работа, которую можно с полным правом отнести к суперматематике 1.

Другим истоком был метод вторичного квантования. В 1961 г. было обнаружено поразительное совпадение основных формул операторного исчисления в фермиевском и бозевском вариантах метода вторичного квантования [3]. Разница заключалась лишь в определении интеграла: для бозевского случая — это обычный интеграл, для фермиевского случая это интеграл по антикоммутирующим переменным, в сущности, некоторый линейный функционал на грассмановой алгебре 2. Впоследствии интеграл по антикоммутирующим переменным был тщательно изучен. Оказалось, что он обладает рядом свойств, поразительно напоминающих свойства обычного интеграла [6, 7]. Это обстоятельство наводило на мысль о возможности такого обобщения всех основных понятий анализа, при котором образующие грассмановой алгебры стали бы играть роль, равноправную с вещественными или комплексными переменными. Основными вехами на этом пути являются работы [8, 9]. Параллельно с чисто математической деятельностью на рубеже 60-70-х гг. появились ставшие теперь знаменитыми пионерские работы Гольфанда — Лихтмана и Волкова — Акулова - Сороки, проложившие суперматематике дорогу в квантовую теорию поля [6-8]. После работы Весса и Зумино [2] интерес к суперматематике стал повсеместным. Первый обзор на эту тему был выполнен Корвиным, Нееманом, Стернбергом [13]. В настоящее время наиболее полным математическим изложением суперматематики является работа Костанта [15]3.

2. Супермногообразия

Основные определения. Многообразия являются одними из основных объектов современной математики. Аналогичную роль играют супермногообразия в суперматематике.

Напомню, что многообразием *М* называется топологическое пространство, каждая точка которого имеет окрестность, допускающую взаимно-однозначное и взаимно-непрерывное отоб-

³ Предшествующие работы в ней широко используются, но не упоминатся.

¹ К сожалению, она мне стала известна лишь в 1976 г., поэтому ссылки на нее отсутствуют в более ранних моих работах на эту тему.

² Полученные в то время результаты были доложены на Всесоюзном математическом съезде 1961 г. [4], но подробно опубликованы лишь в 1965 г. [5].

ражение на шар в евклидовом пространстве \mathbb{R}^n фиксированной размерности n. Число n называется размерностью M, n== dim M; окрестности, упомянутые в определении, называются координатными, так как с помощью отображения на шар на них можно перенести евклидовы координаты, имеющиеся в шаре. Получаемые таким путем координаты называются локальными.

Пусть U, V — две координатные окрестности, x^i, y^i — локальные координаты соответственно в U и V. На пересечении $U \cap V$ одни из них являются функциями других, например

$$y^{i} = f^{i}(x^{1}, ..., x^{n}).$$
 (2.1)

В случае, если функции f^i k раз дифференцируемы, многообразие называется k раз дифференцируемым, при $k=\infty$ — бесконечно дифференцируемым.

Супермногообразие является обобщением бесконечно дифференцируемого многообразия. В дальнейшем слово «многообразие» означает бесконечно дифференцируемое многообразие.

Пусть $U \subset M$ — открытое множество. Обозначим A(U) коммутативную алгебру, состоящую из бесконечно дифференцируемых функций на U с обычными операциями сложения и умножения. В дальнейшем слово «функция» всегда означает бесконечно дифференцируемую функцию. В случае. если U — координатная окрестность, $A(\bar{U})$ можно алгеброй с n образующими, которыми служат координаты в U. В случае, если U. V — два открытых множества и $U \subset V$,

обозначим через $\mathring{\rho}_U^V: A(V) \to A(U)$ оператор, сопоставляющий каждой функции $f \in A(V)$ ее ограничение на U. Очевидно, что

 ρ_U° является гомоморфизмом алгебр:

$$\mathring{\rho}_U^V(f+g) = \mathring{\rho}_U^V f + \mathring{\rho}_U^V g, \ \mathring{\rho}_U^V (fg) = (\mathring{\rho}_U^V f) (\mathring{\rho}_U^V g).$$

Набор алгебр $A\left(U
ight)$ и гомоморфизмов $\overset{\circ}{
ho}^{V}_{U}$ является примером объекта, называемого в современной математике пучком; это так называемый структурный пучок многообразия М, его стандартное обозначение $\mathcal{O}(M)$. Функции $f \in A(U)$ в терминологии теории пучков называются сечениями над U, в частности функции, определенные на всем М, - глобальными сечениями.

С каждой точкой х∈М связан гомоморфизм ох A(M) в алгебру чисел K-вещественных, если A(M) состоит из вещественнозначных функций, и комплексных, если A(M) состоит из комплекснозначных функций:

$$\rho_x f = f(x). \tag{2.2}$$

Гомоморфизм ρ_x непрерывен: если $f(x) = \lim f_n(x)$, то $\rho_x f =$

 $=\lim \rho_x f_n$. Далее, если $f \in A(M)$ и $Z \subset K$ — открытое множество в алгебре чисел, то множество точек U(Z, f), удовлетворяющих условию

 $\rho_x f \in \mathbb{Z}, \tag{2.3}$

является открытым множеством в M, причем каждое открытое множество в M представимо в виде объединения $U=\bigcup\limits_{\alpha}U\left(Z_{\alpha},f_{\alpha}\right)$ множеств вида (2.3) в конечном или беско-

нечном числе. Семейство открытых множеств с этим свойством называется базой открытых множеств. Оказывается, что, обратно, каждый непрерывный гомоморфизм алгебры A(M) в алгебру чисел K имеет вид (2.2). Это обстоятельство позволяет восстановить многообразие M по алгебре A(M): зная A(M), мы знаем также множество гомоморфизмов A(M) в K, т. е. восстанавливаем M как множество точек, с помощью подмножеств U(Z, f) мы восстанавливаем M как топологическое пространство.

Перейдем к определению супермногообразия. Пусть M_0 — некоторое многообразие, $\dim M_0 = p$. Каждому открытому подмножеству $U \subset M_0$ сопоставим некоторую алгебру $\mathfrak{A}(U)$. В случае, если U, V — открытые множества и $V \subset U$, предположим, что существует гомоморфизм $\rho_V^U : \mathfrak{A}(U) \to \mathfrak{A}(V)$, удовлетворяющий условиям:

- 1) $\rho_U^U = 1$ тождественный изоморфизм;
- 2) если $W \subset V \subset U$, то $\rho_{W}^{U} = \rho_{W}^{V} \rho_{V}^{U}$;
- 3) если $U=\bigcup U_{\alpha},\; f_1,f_2 \in \mathfrak{A}\;(U)$ и $\rho_{U_{\alpha}}^Uf_1=\rho_{U_{\alpha}}^Uf_2$ при всех α , то $f_1=f_2;$
- 4) если $U=\bigcup U_{\alpha}, f_{\alpha} \in \mathfrak{A}(U_{\alpha})$, причем $\rho_{U_{\alpha}\cap U_{\beta}}^{U_{\alpha}} f_{\alpha} = \rho_{U_{\alpha}\cap U_{\beta}}^{U_{\beta}} f_{\beta}$, то существует такой элемент $f \in \mathfrak{A}(U)$, что $f_{\alpha} = \rho_{U_{\alpha}}^{U} f$.

Система алгебр $\mathfrak{A}(U)$ и гомоморфизмов ρ_V^U с этими свойствами называется пучком алгебр.

Пусть сверх того для случая, когда U — координатная окрестность, алгебра $\mathfrak{A}(U)$ совпадает с алгеброй функций на U со значениями в грассмановой алгебре \mathfrak{G}_q . Эту алгебру мы будем обозначать также через $\mathfrak{A}_{pq}(U)$.

Отметим, что элементы алгебры $\mathfrak{A}_{pq}(U)$ могут быть записаны в виде

$$f = f(x, \xi) = \sum_{k>0} \sum_{i_1, \dots, i_k} f_{i_1, \dots, i_k}(x_1, \dots, x_p) \, \xi_{i_1} \dots \, \xi_{i_k}, \qquad (2.4)$$

где x_i — координаты в U и ξ_i — образующие в \mathfrak{G}_q . Многообразие M_0 вместе с пучком алгебр $\mathfrak{A}(U)$, который

обладает указанным свойством, называется супермногообразием ¹.

Это определение введено в [9]. Многообразие M_0 называется базой супермногообразия M. Размерностью супермногообразия называется пара чисел, dim M=(p,q), где $p=\dim M_0$, q— число образующих алгебры \mathfrak{G}_q , лежащей в основе конструкции. Ниже будет дано определение образующих алгебр $\mathfrak{A}_{pq}(U)$. Мы увидим, что p и q— числа соответственно четных и нечетных образующих этих алгебр.

Элементы алгебр $\mathfrak{A}(U)$ называются сечениями над U, элементы алгебры $\mathfrak{A}(M_0)$ — глобальными сечениями. Алгебры $\mathfrak{A}(U)$ в теории супермногообразий играют ту же роль, что алгебры функций A(U) в теории обычных многообразий, хотя, в отличие от обычного случая, они могут и не состоять из функций (если U — не координатная окрестность). В частности, как и в случае обычных многообразий, супермногообразие восстанавливается по алгебре $\mathfrak{A}(M)$, т. е. восстанавливаются все алгебры $\mathfrak{A}(U)$ и все гомоморфизмы ρ_V^U с точностью до естественной эквивалентности. Эта конструкция является развитием описанной выше конструкции, восстанавливающей обычное многообразие M по алгебре A(M), однако она существенно сложнее, и я не буду ее здесь касаться (см. [16]).

Координатные преобразования. Пусть $\varphi(x_1, ..., x_n)$ — некоторая функция n вещественных переменных и \mathfrak{G}_m — грассманова алгебра с m образующими. Рассмотрим четные элементы алгебры \mathfrak{G}_m :

$$y_i = a_i + t_i, t_i = \sum_{k>0} \sum_{l_1, \ldots, l_{2k}} t_{l_1, \ldots, l_{2k}} \xi_{l_1} \ldots \xi_{l_{2k}}, i = 1, \ldots, n,$$

где ξ_i — образующие \mathfrak{G}_m , a_i — числа. Очевидно, что элементы \mathfrak{t}_i нильпонентны: $\mathfrak{t}_i{}^m=0$. Используя это обстоятельство, определим $\phi(y_1, ..., y_n)$ $\in \mathfrak{G}_m$ с помощью разложения в ряд Тейлора

$$\varphi(y) = \varphi(a_1 + t_1, \dots, a_n + t_n) = \\
= \sum_{k_1 \dots k_n!} \frac{t_1^{k_1} \dots t_n^{k_n}}{b_1 \dots b_n!} \frac{\partial^k}{\partial a_1^{k_1} \dots \partial a_n^{k_n}} \varphi(a_1, \dots, a_n) \tag{2.5}$$

(ряд конечен ввиду нильпотентности t_i). $\varphi(y)$ является функцией от n аргументов, которыми являются четные элементы \mathfrak{G}_m , со значениями в \mathfrak{G}_m . Ее естественно называть грассмановским аналитическим продолжением исходной функции вещественных переменных $\varphi(x)$.

Пусть $x_1, ..., x_p, \xi_1, ..., \xi_q$ — произвольные, соответственно четные и нечетные, элементы алгебры $\mathfrak{A}_{pq}(U)$, обладающие тем свойством, что с их помощью любой элемент $\mathfrak{A}_{pq}(U)$ мо-

¹ Это определение шире, используемого в гл. 4, где существенна Z₂-градуировка. Связь между этими определениями может быть понятна из теоремы. 1.2. — Прим. ред.

жет быть записан в виде (2.4). (При этом $f_{i_1,\dots,i_k}(x)$ следует понимать в смысле грассмановского аналитического продолжения (2.5).) В этом случае элементы x_i , ξ_i называются по определению образующими алгебры $\mathfrak{A}_{pq}(U)$ (соответственно четными и нечетными). В частности, координаты в U и образующие в \mathfrak{G}_q служат образующими в $\mathfrak{A}_{pq}(U)$.

Пусть U, V, $U \cap V$ — координатные окрестности, x_i , ξ_i —

образующие в $\mathfrak{A}_{pq}(U)$, y_i , \mathfrak{q}_i — образующие в $\mathfrak{A}_{pq}(V)$ и \widetilde{x}_i , $\widetilde{\xi}_i$, \widetilde{y}_i , $\widetilde{\eta}_i$ — ограничения элементов x_i , ξ_i , y_i , \mathfrak{q}_i на $U \cap V : x_i = \rho_{U \cap V}^U x_i$ и т. д. Оказывается, что как элементы \widetilde{x}_i , ξ_i , так и \widetilde{y}_i , $\widetilde{\mathfrak{q}}_i$ служат образующими в $\mathfrak{A}_{pq}(U \cap V)$. Поэтому одни из них с необходимостью выражаются через другие, например

$$\widetilde{y}_{i} = f_{i}(\widetilde{x}, \widetilde{\xi}), \widetilde{\eta}_{j} = \psi_{\mathbf{i}}(\widetilde{x}, \widetilde{\xi}), \tag{2.6}$$

 $f_i(\tilde{x}, \xi), \psi_i(\tilde{x}, \tilde{\xi})$ имеют вид, аналогичный (2.4). Формулы (2.6) являются супераналогом координатных преобразований (2.1).

При широких предположениях удается доказать (см. [16]), что во всех алгебрах $\mathfrak{A}_{pq}(U)$ можно согласованным образом выбрать образующие так, чтобы формулы (2.6) максимально упростились:

$$\tilde{y}_i = f_i(\tilde{x}), \ \widetilde{\eta}_i = \sum \psi_{ik}(\tilde{x}) \tilde{\xi}_k.$$
 (2.7)

Задание супермногообразия уравнениями. Одним из самых удобных способов описания обычных многообразий является задание их с помощью уравнений в пространстве большого числа измерений:

$$f_1(x_1, ..., x_N) = 0, ..., f_L(x_1, ..., x_N) = 0.$$
 (2.8)

В случае, если ранг матрицы частных производных $\|\partial f_i/\partial x_k\|$ во всех точках множества, выделяемого уравнениями (2.8), один и тот же, из классической теоремы о неявных функциях следует, что это множество является многообразием.

Обратно, хорошо известно, что при широких предположе-

ниях 1 многообразие может быть задано уравнениями.

Аналогично обстоит дело с супермногообразиями. Пусть $f_i(x, \xi)$, $\varphi_j(x, \xi)$ — соответственно четные и нечетные элементы алгебры $\mathfrak{A}_{PQ}(\mathbb{R}^P)$, i=1,...,p', j=1,...,q'. Пусть далее во всех точках множества M_0 , выделяемого уравнениями в \mathbb{R}^P ,

$$f_i(x, 0) = 0. (2.9)$$

Ранги матриц

$$R_{1} = \left\| \frac{\partial f_{i}(x,0)}{\partial x_{i}} \right\|, \quad R_{2} = \left\| \frac{\overrightarrow{\partial}}{\partial \xi_{i}} \varphi_{i}(x,\xi) \right\|_{\xi=0},$$

¹ Например, в случае компактности.

одни и те же, rang $R_1 = m$, rang $R_2 = n$. В таком случае уравнения

$$f_i(x, \xi) = 0, \quad \varphi_i(x, \xi) = 0$$
 (2.10)

определяют супермногообразие M с базой M_0 , dim $M \Rightarrow (P-m, Q-n)$.

Следует пояснить, каким образом уравнения (2.10) определяют супермногообразие.

В суперматематике существует теорема о неявных функциях, аналогичная классической. Согласно этой теореме из условий гапа $R_1 = m$, гапа $R_2 = n$ следует, что каждая точка $x_0 \in M_0$ обладает окрестностью, в которой уравнения (2.10) могут быть разрешены:

$$x_i = g_i(y, \eta), \quad \xi_j = \psi_j(y, \eta),$$

 $y = (y_1, ..., y_p), \quad \eta = (\eta_1, ..., \eta_q),$
 $p = P - m, \quad q = Q - n,$ (2.11)

где y_i , η_i — образующие алгебры $\mathfrak{A}_{pq}(W)$, $W \in \mathbb{R}^p$ — некоторая область, которая естественно отождествляется с областью в многообразии M_0 . Формулы (2.11) определяют гомоморфизм ρ_W алгебры $\mathfrak{A}_{pq}(\mathbb{R}^p)$ в $\mathfrak{A}_{pq}(W)$: если $f \in \mathfrak{A}_{pq}(\mathbb{R}^p)$ имеет вид (2.4); то

$$(\rho_W f)(y, \eta) = \sum f_{i_1, \dots, i_k}(g_1, \dots, g_p) \psi_{i_1} \dots \psi_{i_k},$$
 (2.12)

 g_i , ψ_i — те же, что в (2.11).

Пусть $V \subset W$, $f \in \mathfrak{A}_{pq}(W)$, f — прообраз f при гомоморфизме (2.12) и $g = \rho_V f$. Можно проследить, что элемент g зависит только от f, а не от выбора его прообраза \tilde{f} . Таким образом,

возникает отображение $ho_V^W: \mathfrak{A}_{pq}\left(W\right) o \mathfrak{A}_{pq}\left(V\right), \ g =
ho_V^W f.$ Оказывается, что ho_V^W является гомоморфизмом алгебр и что гомоморфизмы ho_V^W удовлетворяют всем аксиомам пучка.

Так же как в случае обычных многообразий, при широких предположениях каждое супермногообразие может быть зада-

но уравнениями.

Очевидно, что задание супермногообразия уравнениями, как и аналогичное задание обычного многообразия, неоднозначно. Оказывается, что этой неоднозначностью можно воспользоваться, чтобы придать уравнениям супермногообразия простейший вид

$$f_i(x) = 0, \sum_{i'} \psi_{ij'}(x) \, \xi_{i'} = 0.$$
 (2.13)

В случае, если супермногообразие задано уравнениями (2.10), алгебра его глобальных сечений является факторалгеброй $\mathfrak{A}_{PQ}(\mathbf{R}^p)$ по идеалу, порожденному левыми частями уравнений (2.10).

Супермногообразие M с базой M_0 естественно назвать тривиальным, если алгебра его глобальных сечений изоморфна алгебре функции на M со значениями в грассмановой алгебре \mathfrak{G}_q . В этом случае его уравнения приводятся к виду (2.13) с $\mathfrak{p}_{ii'}$, не зависящими от точки x. Разумеется, дополнительные структуры могут сделать тривиальное супермногообразие весьма интересным объектом для изучения. В частности, супергруппы всегда являются тривиальными супермногообразиями. Вот простейший пример нетривиального супермногообразия:

$$x_1^2 + x_2^2 + x_3^2 = 1$$
, $x_1\xi_1 + x_2\xi_2 + x_3\xi_3 = 0$.

Топология супермногообразий. В теории пучков существует понятие эквивалентности. Применяя его к супермногообразиям, получаем общее определение эквивалентности для супермногообразий. Я не буду воспроизводить это определение, которое можно найти в любом современном учебнике алтебраической геометрии (см., например, [17]). Достаточная с практической точки зрения квинтэссенция этого определения состоит в том, что два супермногообразия эквивалентны, если уравнение одного из них может быть приведено к тому же виду, что уравнение второго с помощью замены переменных вида (2.6). Классификация супермногообразий с точностью до их эквивалентности является супераналогом топологической классификации обычных многообразий, соответствующие инварианты следует называть супертопологическими инвариантами.

Обратим внимание на то, что, как уже отмечалось, каждое супермногообразие может быть задано уравнениями вида (2.13). Заметим, что если преобразование (2.6) переводит уравнения вида (2.13) в уравнения того же вида, то это преобразование имеет специальный вид

$$x_i = g_i(y), \ \xi_j = \sum_{i'} \varphi_{jj'}(y) \, \eta_{j'}.$$
 (2.14)

Теперь мы в состоянии дать геометрическое определение эквивалентности супермногообразий. Пусть M — некоторое супермногообразие. Зададим его с помощью системы уравнений вида (2.13). Рассмотрим те же уравнения, но переменным x_i и ξ_i придадим новый смысл: вместо четных и нечетных элементов грассмановой алгебры пусть те и другие будут вещественными числами. В результате получатся уравнения, определяющие обычное многообразие M. Это многообразие имеет специальную структуру, легко усматриваемую из (2.13): оно состоит из коллекций q-мерных плоскостей (P+Q)-мерного пространства, каждая из которых помечена точкой x многообразия M_0 (которое определяется первой группой уравнений (2.13) в пространстве \mathbf{R}^p). Легко видеть, что M_0 совпадает с базисным многообразием супермногообразия M. Многообразия такой структуры называются линейными расслоениями, M_0 — базой

расслоения, плоскость, помеченная точкой $x \in M_0$, — слоем над x.

Два линейных расслоения эквивалентны, если существует взаимно-однозначное отображение одного на другое, переводящее слой в слой. Очевидно, что такое преобразование в координатах имеет вид (2.14), где, однако, x_i , ξ_i — вещественные числа.

Таким образом, мы приходим к выводу:

1) с каждым супермногообразием M размерности (p, q) и базой M_0 однозначно связано линейное расслоение с той же базой и слоем размерности q;

2) два супермногообразия эквивалентны в смысле теории супермногообразий в том и только в том случае, если эквивалентны в обычном смысле соответствующие им линейные расслоения.

В топологии хорошо известны инварианты линейных расслоений — это так называемые характеристические классы Понтрягина и Черна. Тем самым эти характеристические классы являются одновременно супертопологическими инвариантами. Они, однако, известны в настоящее время лишь в классической, а не в суперматематической форме. С другой стороны, супертопологическим инвариантом являются суперкогомологии, определение которых см. в следующем разделе. Они, однако, в настоящее время не вычислены ни для одного нетривиального случая, и их содержательность поэтому не ясна.

Грассмановы аналитические многообразия. Пусть M — супермногообразие, заданное уравнениями (2.10), и \mathfrak{G}_N — грассманова алгебра с N образующими. Число N никак не связано с M. Рассмотрим в \mathfrak{G}_N четные и нечетные элементы общего вида

$$x_{i} = \sum_{k \geqslant 0} \sum u_{i;i_{1},...,i_{2k}} \zeta_{i_{1}} ... \zeta_{i_{2k}},$$

$$\xi_{j} = \sum_{k \geqslant 0} \sum v_{j;j_{1},...,j_{2k+1}} \zeta_{j_{2}} ... \zeta_{j_{2k+1}},$$
(2.15)

где ξ_j — образующие \mathfrak{G}_N . Подставив x_i , ξ_j вида (2.15) в уравнения (2.10), мы получим уравнения относительно коэффициентов $u_{i,i_1,\ldots,i_{2k}}$, $v_{j;j_1,\ldots,j_{2k+1}}$, которые определяют обычное многообразие M_N . Получаемые таким путем многообразия мы будем называть ассоциированными с супермногообразием M. В частности, при N=0 получается базисное многообразие M_0 . Очевидно, что

 $\dim M_N \to \infty$ при $N \to \infty$.

Многообразия M_N обладают важным свойством, которое естественно назвать грассмановой аналитической структурой. Это свойство состоит в том, что:

1) M_N можно покрыть системой координатных окрестностей с локальными координатами $\{U_{i;t_1,\ldots,t_{2k}}^{(\alpha)},V_{i;t_1,\ldots,t_{2k+1}}^{(\alpha)}\}$,

$$i_1 < i_2 < ... < i_{2k}, \quad j_1 < j_2 < ... < j_{2k+1}, \quad k = 0, 1, 2,$$

Это обстоятельство позволяет сопоставить каждой точке $u \in U_a$ набор из p четных и q нечетных элементов алгебры \mathfrak{G}_N :

$$x_{i}^{(\alpha)} = \sum_{k \geq 0} \sum u_{i;l_{1},...,l_{2k}}^{(k)} \sigma_{l_{1}} ... \sigma_{l_{2k}},$$

$$\xi_{j}^{(\alpha)} = \sum_{k \geq 0} \sum v_{j;l_{1},...,l_{2k+1}}^{(\alpha)} \sigma_{l_{1}} ... \sigma_{l_{2k+1}},$$
(2.16)

где $\{u_{i;l_1}^{(\alpha)},\ldots,v_{j;j_1}^{(\alpha)},\ldots\}$ — локальные кординаты точки u и σ_i — образующие \mathfrak{G}_N . Элементы $x_i^{(\alpha)},\,\xi_j^{(\alpha)}$ мы в дальнейшем называем грассмановыми локальными координатами точки u:

2) каждая точка пересечения $U_{\alpha} \cap U_{\beta}$ имеет два набора грассмановых локальных координат $x_i^{(\alpha)}$, $\xi_j^{(\alpha)}$ и $x_i^{(\beta)}$, $\xi_j^{(\beta)}$. Они связаны соотношением

$$x_i^{(\alpha)} = f_i(x^{(\beta)}, \ \xi^{(\beta)}), \ \xi_i^{(\alpha)} = \psi_i(x^{(\beta)}, \ \xi^{(\beta)}),$$
 (2.17)

где $f_i(x, \xi)$, $\psi_i(x, \xi) \in \mathfrak{A}_{\rho\sigma}(U_{\alpha} \cap U_{\beta})$.

Соотношения (2.17) являются конденсированной формой обычных координатных преобразований: если подставить в левую часть (2.17) $x_i^{(\alpha)}$, $\xi_j^{(\alpha)}$ из (2.16), а в правую часть — аналогичные выражения для $x_i^{(\beta)}$, $\xi_j^{(\beta)}$ через σ_i , затем разложить обе части (2.17) по σ_i и приравнять соответствующие коэффициенты, получится обычное координатное преобразование в координатах

$$\begin{split} &\{u_{i;\,i_1,\,\ldots,\,i_{2k}}^{(\alpha)},\,v_{j;\,j_1,\,\ldots,\,j_{2k+1}}^{\alpha}\},\\ &\{u_{i;\,i_1,\,\ldots,\,i_{2k}}^{\beta},\,v_{j;\,j_1,\,\ldots,\,j_{2k+1}}^{\beta}\}. \end{split}$$

Таким образом, имеется существенная аналогия между многообразиями M_N и комплексными многообразиями. В связи с этим многообразия M_N в дальнейшем иногда называются грассмановыми аналитическими (г. а.) многообразиями. На них могут быть определены грассмановы аналитические (г. а.) функции, во многом аналогичные обычным аналитическим функциям. Г. а. функции играют важную роль в теории представлений супергрупп. Подробно останавливаться на этом понятии мы, однако, не будем (см. [16]).

В заключение следует отметить, что г. а. многообразия могут быть определены без привлечения задания супермногообразия с помощью уравнений. Однако в этом случае конструкция оказывается более сложной.

Содержание этого раздела подробно изложено в [16].

3. Дополнительные структуры на супермногообразиях

Интегрирование. Напомню определение интеграла по англиоммутирующим переменным. Пусть ξ_i , $d\xi_i$ — образующие грассмановой алгебры \mathfrak{G}_{2g} . Положим

$$\int d\xi_i = 0, \quad \int \xi_i d\xi_i = 1. \tag{3.1}$$

Кратный интеграл понимается как повторный. Пусть $U \subset \mathbb{R}^p$ — некоторая область, x_i — координаты в U. Для $f(x, \xi) \in \mathfrak{A}_{pq'}(U)$ определен интеграл

$$J_{pq}(f) = \int f(x, \, \xi) \, dx d\xi, \qquad (3.2)$$

$$dx = dx_1...dx_p$$
, $d\xi = d\xi_q...d\xi_1$.

При этом дифференциалы dx_i следует считать антикоммутирующими между собой, но коммутирующими с x_i .

Для дальнейшего важно уметь определять интеграл не только в случае, когда x_i — координаты в U, но и в случае, когда x_i — произвольные четные образующие алгебры $\mathfrak{A}_{pq}(U)$. Пусть $x_i = x_i(y, \xi)$ — четные образующие $\mathfrak{A}_{pq}(U)$, y_i — координаты в U, f = 0 в окрестности границы U. В этом случае

$$J_{pq}(f) = \int f(x, \xi) dx d\xi = \int f(x(y, \xi), \xi) \det \left\| \frac{\partial x_i}{\partial y_k} \right\| dy d\xi. \quad (3.3)$$

Возможно также интегрирование по части переменных, при этом переменные, не участвующие в интегрировании, рассматриваются как параметры.

Интеграл обладает близкими к обычным свойствам, относящимися к интегрированию по частям, и к замене переменных. Прежде чем их сформулировать, определим важное понятие супердетерминанта. Пусть $K = \begin{pmatrix} A & B \\ C & D \end{pmatrix}$ — квадратная матрица,

диагональные блоки которой A и D — квадраты и состоят из четных элементов грассмановой алгебры \mathfrak{G}_N , блоки B и C прямоугольны и состоят из нечетных элементов \mathfrak{G}_N . Множество матриц этого вида, для которых матрицы A и D обратимы и имеют порядки соответственно m и n, принято обозначать GL(m, n|N). GL(m, n|N) является группой: если $K \in \mathcal{G}L(m, n|N)$, то K^{-1} существует и $K^{-1} \in \mathcal{G}L(m, n|N)$, если $K_1, K_2 \in \mathcal{G}L(m, n|N)$, то также $K_1K_2 \in \mathcal{G}L(m, n|N)$. Супердетерминантом называется функция на GL(m, n|N) со значениями в \mathfrak{G}_N , определяемая равенством

s det
$$K = \det(A - BD^{-1}C) \det D^{-1}$$
. (3.4)

Подобно обычному детерминанту супердетерминант мультипли-кативен:

$$s \det(K_1K_2) = s \det K_1 \cdot s \det K_2.$$
 (3.5)

Это его важнейшее свойство, оно доказано в [18].

Вернемся к интегралу. Пусть функции f, g равны 0 в окрестности границы области U, тогда

$$\int f \frac{\partial g}{\partial x_i} dx \, d\xi = -\int \frac{\partial f}{\partial x_i} \, g dx d\xi, \qquad (3.6)$$

$$\int f\left(\frac{\overrightarrow{\partial}}{\partial \xi_i}g\right) dx \, d\xi = \int \left(f\frac{\overleftarrow{\partial}}{\partial \xi_i}\right) g dx d\xi, \qquad (3.7)$$

$$\int f(x(y,\eta),\xi(y,\eta)) \Delta(x,\xi/y,\eta) \, dy d\eta = \int f(x,\xi) \, dx d\xi. \tag{3.8}$$

Функция $\Delta(x, \xi/y, \eta)$, участвующая в (3.8), является супердетерминантом матрицы частных производных:

$$\Delta(x, \xi/y, \eta) = \operatorname{s} \det R, \quad R = \begin{pmatrix} A B \\ C D \end{pmatrix},$$

$$a_{ik} = \frac{\partial x_i}{\partial y_k}, \quad b_{ik} = \left(x_i \frac{\overleftarrow{\partial}}{\partial \eta_k}\right),$$

$$c_{ik} = \frac{\partial \xi_i}{\partial y_k}, \quad d_{ik} = \left(\xi_i \frac{\overleftarrow{\partial}}{\partial \eta_k}\right).$$
(3.9)

Существенно отметить, что формула (3.8) остается в силе, если замена переменных зависит от параметров: $x=x(y,a,\eta,\zeta)$, $\xi==\xi(y,a,\eta,\zeta)$, где $y_i,a_{i'},\eta_j,\zeta_{j'}$ — совокупность соответственно четных и нечетных образующих алгебры $\mathfrak{A}_{p+p',q+q'}$ ($U\times U'$), $1\leqslant i\leqslant p$, $1\leqslant i'\leqslant p'$, $1\leqslant j'\leqslant q'$, $\dim U=p$, $\dim U'=p'$.

В случае, если $f, g \neq 0$ в окрестности границы U, в формулах (3.6), (3.8) возникают граничные члены, очевидные в случае (3.6) и довольно сложные в случае (3.8). Формулы (3.7)—(3.9) установлены в [5, 6, 7].

Перейдем к интегрированию на супермногообразиях. Пусть M — супермногообразие с базой M_0 , $\dim M = (p,q)$, $U \subset M_0$ — координатная окрестность. Предположим, что каждому набору Σ образующих x_i , ξ_j алгебры $\mathfrak{A}_{pq}(U)$ сопоставлен элемент $\rho_{U,\Sigma}(x,\xi)$ этой алгебры, причем при замене образующих $\rho_{U,\Sigma}(x,\xi)$ изменяется согласно правилу

$$\rho_{U,\Sigma}(y,\eta) = \rho_{U,\Sigma}(x(y,\eta), \xi(y,\eta)) \Delta(x, \xi/y, \eta),$$

$$\Delta(x, \xi/y, \eta) = \operatorname{sdet}\begin{pmatrix} A B \\ C D \end{pmatrix},$$

$$a_{ik} + \frac{\partial x_i}{\partial y_k}, \quad b_{ik} = x_i \frac{\overleftarrow{\partial}}{\partial \eta_k}, \quad c_{ik} = \frac{i \partial \xi_i}{\partial y_k},$$

$$d_{ik} = \xi_i \frac{\overleftarrow{\partial}}{\partial \eta_k},$$
(3.11)

где Σ — система образующих x_i , ξ_i ; Σ' — система образующих y_i , η_i . В этом случае величина ρ называется локальной плотностью в области U. Согласно формуле замены переменных

$$\int \rho_{U,\Sigma}(x,\xi) \, dx \, d\xi = \int \rho_{U,\Sigma'}(y,\eta) \, dy \, d\eta. \tag{3.12}$$

Пусть в каждой координатной окрестности $U \subset M_0$ задана плотность $\rho_{U,z}$, причем на пересечении окрестностей U_1 и U_2 плотности $\rho_{U_1,\,\widetilde{\Sigma}_1}$ и $\rho_{U_2,\widetilde{\Sigma}_2}$ связаны формулами, аналогичными (3.10)

$$\rho_{U_1 \cap U_2, \widetilde{\Sigma}_1}(\widetilde{x}, \widetilde{\xi}) = \rho_{U_1 \cap U_2, \widetilde{\Sigma}_2}(\widetilde{x}(\widetilde{y}, \widetilde{\eta}), \widetilde{\xi}(\widetilde{y}, \widetilde{\eta})) \Delta(\widetilde{x}, \widetilde{\xi}/\widetilde{y}, \widetilde{\eta}), \quad (3.13)$$

где \tilde{x}_i — ограничение образующей $x_i \in \mathfrak{A}_{pq}(U_1)$ на $U_1 \cap U_2$, $\tilde{\xi}_i$, \tilde{y}_i , $\tilde{\eta}_i$ имеют аналогичный смысл, $\tilde{\Sigma}_1$, $\tilde{\Sigma}_2$ — системы образующих \tilde{x}_i , $\tilde{\xi}_i$ и \tilde{y}_i , $\tilde{\eta}_i$ соответственно в $\mathfrak{A}_{pq}(U_1 \cap U_2)$.

В таком случае набор локальных плотностей $\rho_{U,x}$ называется глобальной плотностью, $\rho_{U,x}$ называется ограничением глобальной плотности на U. Определим интеграл глобальной плотности ρ по супермногообразию. Пусть U_{α} — координатные окрестности, покрывающие M_0 и допускающие разбиение единицы:

$$1 = \sum s_{\alpha}(x), s_{\alpha}(x) \geqslant 0, s_{\alpha}(x) = 0 \text{ при } x \not\equiv U_{\alpha}.$$

Положим

$$\int \rho = \sum \int s_{\alpha}(x) \rho_{U_{\alpha}, \Sigma_{\alpha}}(x, \xi) dx d\xi.$$
 (3.14)

Оказывается, что определенный таким образом интеграл не зависит ни от выбора покрытия $\{U_a\}$, ни от выбора систем образующих в $\mathfrak{A}_{pq}(U_a)$. Для глобального сечения $f \in \mathfrak{A}(M_0)$ и плотности ρ определено произведение $f \rho = \overline{\rho}$, также являющееся плотностью $\rho_{U,z} = f_U \rho_{U,z}$, где f_U , $\rho_{U,z}$ — ограничения f и ρ на U. Таким образом, фиксируя плотность ρ , можно определить интеграл по этой плотности от любого глобального сечения

$$\int f \rho = \sum \int s_{\alpha}(x) f_{\alpha}(x, \xi) \rho_{U_{\alpha}, \Sigma_{\alpha}}(x, \xi) dx d\xi.$$
 (3.15)

Дифференциальная геометрия. Ввиду того что супермногообразие не состоит из точек, понятие касательного пространства для него не является столь же естественным, как для обычного многообразия. Тем не менее понятие тензорного поля переносится полностью.

Определение является формальным, подобно определению плотности. Пусть a^i — полный набор образующих алгебры $\mathfrak{A}_{pq}(U)$; при $1 \leqslant i \leqslant p$ a^i являются четными образующими, при $p+1 \leqslant i \leqslant p+q$ a^i являются нечетными образующими, b^i — другой аналогичный набор образующих.

Локальным тензорным полем $g_{U, \Sigma; j_1, \ldots, j_\ell}^{l_1, \ldots, l_k}$ называется совокупность элементов алгебры $\mathfrak{A}_{pq}(U)$, следующим образом зависящая от системы Σ образующих:

$$g_{U,\Sigma;i_{1},...,i_{l}}^{i_{1},...,i_{k}}(a) = \left(b^{i_{l}^{\prime}} \frac{\overleftarrow{\partial}}{\partial a^{i_{l}}}\right) ... \left(b^{i_{1}^{\prime}} \frac{\overleftarrow{\partial}}{\partial a^{j_{1}}}\right) g_{U,\Sigma';i_{1}^{\prime},...,i_{k}^{\prime}}^{i_{1},...,i_{k}^{\prime}}(b) \times \left(\frac{\overrightarrow{\partial}}{\partial b^{i_{k}^{\prime}}} a^{i_{k}}\right) ... \left(\frac{\overrightarrow{\partial}}{\partial b^{i_{1}^{\prime}}} a^{i_{1}}\right).$$
(3.16)

Здесь и далее в случае, когда четные и нечетные образующие алгебр $\mathfrak{A}_{pq}(U)$ обозначаются таким образом, что разница между ними состоит лишь в индексе, мы будем применять тензорные обозначения, подразумевающие суммирование по повторяющимся индексам. В отличие от обычного случая в (3.16) существен порядок следования производных.

Набор локальных тензорных полей называется глобальным тензорным полем, если соотношение, аналогичное (3.16), справедливо в пересечении окрестностей:

$$g_{U \cap V, \widetilde{\Sigma}_{U}; i_{1}, \dots, i_{l}}^{i_{1}, \dots, i_{l}}(\widetilde{a}) = \left(\widetilde{b}^{i_{1}} \frac{\overleftarrow{\partial}}{\partial \widetilde{a}^{i_{l}}}\right) \left(\widetilde{b}^{i_{1}} \frac{\overleftarrow{\partial}}{\partial \widetilde{a}^{j_{1}}}\right) g_{U \cap V, \widetilde{\Sigma}_{V}; j_{1}, \dots, j_{l}}^{i_{1}, \dots, i_{k}}(b) \times \left(\frac{\overrightarrow{\partial}}{\partial \widetilde{b}^{i_{k}}} \widetilde{a}_{i_{k}}\right) \dots \left(\frac{\overrightarrow{\partial}}{\partial \widetilde{b}^{i_{1}}} \widetilde{a}_{i_{1}}\right),$$

где $\widetilde{\Sigma}_U$, $\widetilde{\Sigma}_V$ — системы образующих в $\mathfrak{A}_{pq}(U\cap V)$, получающиеся из систем Σ_U , Σ_V образующих в $\mathfrak{A}_{pq}(U)$ и $\mathfrak{A}_{pq}(V)$ в результате ограничения

$$\widetilde{a}^{l} = \rho_{U \cap V}^{U} \ a^{l} \in \widetilde{\Sigma}_{U}, \ \widetilde{b}^{l} = \rho_{U \cap V}^{V} \ b^{l} \in \widetilde{\Sigma}_{V},$$
$$a^{l} \in \Sigma_{U}, \ b^{l} \in \Sigma_{V}.$$

В случае если отсутствие индексов U, Σ не может вызвать путаницы, они в дальнейшем опускаются.

В обычной геометрии особую роль играют полностью антисимметричные тензорные поля с нижними индексами. Им естественным образом сопоставляются формальные выражения, называемые внешними формами

$$\omega = \sum \omega_{i_1,\ldots,i_k} da^{i_k} \wedge \ldots \wedge da^{i_1},$$

где / означает, что дифференциалы считаются антикоммутирующими. В суперслучае естественно рассматривать аналогичные образования:

$$\omega = \sum \omega_{i_1, \dots, i_k; |j_1, \dots, j_l|}(x, \xi) dx^{i_1} \dots dx^{i_k} d\xi^{j_1} \dots d\xi^{j_l}.$$
 (3.17)

Коэффициенты $\omega_{l_1,\ldots,l_{k'};l_1,\ldots,l_{l'}}$ антисимметричны по первой группе индексов и симметричны по второй. Относительно дифференциалов $d\xi_j$, dx_i и образующих x_i , ξ_j предполагаются выполненными следующие соотношения коммутации:

$$dx_{i}dx_{k} + dx_{k}dx_{i} = 0, d\xi_{i}d\xi_{k} - d\xi_{k}d\xi_{i} = 0, dx_{i}d\xi_{k} - d\xi_{k}dx_{i} = 0,$$

$$dx_{i}\xi_{k} + \xi_{k}dx_{i} = 0, dx_{i}x_{k} - xd_{k}x_{i} = 0,$$

$$d_{i}\xi x_{k} - x_{k}d\xi_{i} = 0, d\xi_{i}\xi_{k} - \xi_{k}d\xi_{i} - 0.$$

Дифференциальные формы (3.17) образуют алгебру с p+q коммутирующими $x_1, ..., x_p, d\xi_1, ..., d\xi_q$ и p+q антикоммутирующими образующими $\xi_1, ..., \xi_q, dx_1, ..., dx_p$. В пространстве дифференциальных форм действует оператор

$$d = \sum dx_i \frac{\partial}{\partial x_i} + \sum d\xi_i \frac{\partial}{\partial \xi_i}$$

(производные действуют на коэффициенты $\psi_{i_4,\dots,i_k}|_{i_4,\dots,i_l}$). Как и в обычном случае, доказывается, что $d^2=0$ и что из равенства $d\omega=0$ следует, что локально $\omega=d\omega_1$. Форму назовем четной, если в выражении (3.17) после разложения коэффицентов ω_{i_1,\dots,i_l} по ξ_i присутствуют только четные по совокупности ξ_i , dx_i слагаемые, и нечетной — если только нечетные. Как те, так и другие назовем однородными. Дифференциал d связан с произведением однородных форм обычным соотношением $d(\omega_1\cdot\omega_2)=d\omega_1\cdot_2\omega+(-1)^{\delta(\omega_1)}\omega_1d\omega_2$, $\delta(\omega)=0$ для четных форм и $\delta(\omega)=1$ — для нечетных.

Как и в обычном случае, с помощью форм (3.17) и дифференциала *d* можно строить теорию когомологий, причем алгебры когомологий являются топологическими инвариантами супермногообразия. В настоящее время, однако, они не вычислены ни для одного нетривиального примера. Поэтому содержатель-

ность этого инварианта не ясна.

Помимо сходства существует также и принципиальное различие между обычной теорией дифференциальных форм и теорией суперформ вида (3.17). В обычном случае внешние формы можно не только дифференцировать, но и интегрировать, причем дифференциал и интеграл связаны известной формулой Стокса. В суперслучае — ничего подобного! Дифференциальные формы вообще нельзя интегрировать. Для целей интегрирования здесь служат интегральные формы, главной из них является плотность, остальные указаны в работах [19, 20]. Для них существует частичный аналог формулы Стокса.

Возможно построение аналога римановой геометрии. В ее основе лежит тензорное поле g_{ik} , причем $g_{ik} = g_{ki}$ при i < p или k < p, $g_{ik} = -g_{ki}$ при i, k > p. Другими словами, в выраже-

нии для элемента длины

$$ds^2 = g_{ik}da^i da^k \tag{3.18}$$

следует считать дифференциалы нечетных элементов антикоммутирующими между собой, но коммутирующими с дифферен-

пиалами четных, которые ведут себя обычным образом.

Аналогично тензорным полям могут быть с помощью указания закона преобразования определены коэффициенты связности, с их помощью — тензоры кривизны и кручения. Существует формула, аналогичная обычной, позволяющая построить связность без кручения при наличии римановой метрики. Эти вопросы изложены в работах [21, 22].

Не менее важной, чем риманова, является симплектическая или гамильтонова геометрия. Она связана с замкнутой внеш-

ней формой

$$\omega = \omega_{ik} da^i \wedge da^k, \ d\omega = 0,$$

$$\omega_{ik} = (-1)^{(\delta(i)+1)(\delta(k)+1)} \omega_{ki}, \ \delta(\omega_{ik}) = \delta(i) + \delta(k).$$
(3.19)

Здесь и далее δ означает функцию четности: $\delta(f) = 0$ для четных элементов $\mathfrak{A}_{pq}(U)$ и $\delta(f)=1$ — для нечетных. Кроме того, для краткости мы полагаем $\delta(i) = \delta(a^i)$.

Рассмотрим матрицу $\|\omega^{ik}\|$, где $\omega^{ik} = (-1)^{\delta(i)+\delta(k)}\widetilde{\omega}^{ik}$ и $\|\widetilde{\omega}^{ik}\|$ матрица, обратная к оік. С помощью матрицы оік можно построить алгебру скобок Пуассона, аналогичную обычной:

$$[f, g] = \left(f \frac{\overrightarrow{\partial}}{\partial a^i}\right) \omega^{ik} \left(\frac{\overrightarrow{\partial}}{\partial a^k} g\right). \tag{3.20}$$

Элементами этой алгебры служат глобальные сечения супермногообразия.

В суперслучае алгебра скобок Пуассона (3.20) является не обычной алгеброй Ли, но супералгеброй. Можно показать, что формула (3.20) определяет супералгебру Ли всегда, когда ω^{ik} удовлетворяет условиям:

$$(-1)^{\delta(l)\delta(k)} \omega^{lj} \left(\frac{\overrightarrow{\partial}}{\partial a^{l}} \omega^{lk} \right) + (-1)^{\delta(k)\delta(l)} \omega^{kj} \left(\frac{\overrightarrow{\partial}}{\partial a^{l}} \omega^{li} \right) +$$

$$+ (-1)^{\delta(l)\delta(l)} \omega^{lj} \left(\frac{\overrightarrow{\partial}}{\partial a^{l}} \omega^{kl} \right) = 0,$$

$$\delta(\omega^{lk}) = \delta(l) + \delta(k), \quad \omega^{lk} = (-1)^{\delta(l)\delta(k)+1} \omega^{kl}.$$

$$(3.21)$$

(Эти условия автоматически выполнены, если $\|(-1)^{\delta(t)+\delta(k)}\omega^{tk}\|=$ $=\|\omega_{ik}\|^{-1}$, ω_{ik} удовлетворяет условиям (3.19).) На основе формулы (3.20) может быть построен аналог классической механики, квантование которой содержит как бозоны, так и фермионы. В настоящее время возникающие здесь вопросы изучены с той же полнотой, что и аналогичные вопросы в обычном случае. См. [23-26].

С римановой и гамильтоновой структурами супермногообразия связана плотность согласно формулам, естественным образом обобщающим обычную: соответственно

$$\rho = (s \det \|g_{ik}\|)^{1/2}, \ \rho = (s \det \|\omega_{ik}\|)^{1/2}.$$

В заключение этого раздела я хочу обратить внимание на одно существенное различие между обычной и супердифференциальной геометрией. В то время как в обычном случае плотность является полностью антисимметричным тензорным полем, в суперслучае, как видно из (3.10), она вообще не является тензорным полем! Появление величин, которые, подобно плотности, преобразуются не по тензорным законам, связано с особенностями представлений супергруппы GL(p, q), которая является супераналогом GL(n):GL(p, q), в отличие от GL(n) обладает не только тензорными линейными представлениями. Появление нетензорных величин является наиболее захватывающей особенностью супердифференциальной геометрии.

Супергруппы и супералгебры Ли. Супергруппу можно определить как супермногообразие G, для которого все ассоциированные с ним многообразия G_N являются группами Ли в обычном смысле, причем групповая операция в локальных грассмановых координатах задается грассмановскими ана-

литическими функциями

$$g(x_1, \xi_1)g(x_2, \xi_2) = g(x, \xi),$$

$$x = \int (x_1, \xi_1; x_2, \xi_2), \quad \xi = \psi(x_1, \xi_1; x_2, \xi_2).$$

Алгебру Ли группы G_N обозначим g_N . Грассмановская аналитичность групповой операции приводит к тому, что алгебра Ли g_N обладает специальной структурой. Чтобы описать ее, введем некоторые понятия, существенные также в дальнейшем. Линейное пространство называется градуированным, если оно представлено в виде прямой суммы двух подпространств: $L = L_0 \oplus L_1$. Одно из этих подпространств L_0 , в дальнейшем называется четным, другое, L_1 , — нечетным. Элементы L_0 и L_1 называются соответственно четными и нечетными элементами L. Элемент L называется однородным, если он либо четен, либо нечетен. Для однородных $x \in L$ определена функция $\delta(x)$ (четность): $\delta(x) = 0$ при $x \in L_0$, $\delta(x) = 1$ при $x \in L_1$.

Пусть $L=L_0\bigoplus L_1$ — градуированное линейное пространство, e_i , ε_i — базисы соответственно в L_0 и L_1 , \mathfrak{G}_N — грассманова алгебра с N образующими. Рассмотрим линейное пространство L_N , состоящее из линейных комбинаций e_i , ε_i с

грассмановыми коэффициентами:

$$x = \sum a_i e_i + \sum \alpha_j \varepsilon_j,$$

 $^{^1}$ Т. е. преобразуется согласно представлению группы $GL(p,\ q|N)$, матричные элементы которого зависят от элементов матрицы $K \!\!\! \in \!\!\! GL(p,\ q|N)$ неполиномиальным образом.

где a_i , a_i — соответственно четные и нечетные элементы \mathfrak{G}_N . Пространство L_N называется грассмановской оболочкой про-

cтранства L.

Дополнительная структура алгебры \mathfrak{g}_N , о которой говорилось выше, состоит в том, что \mathfrak{g}_N является грассмановой оболочкой некоторого градуированного линейного пространства $\mathfrak{g} = \mathfrak{g}_0 \oplus \mathfrak{g}_1$. Из того обстоятельства, что грассмановы оболочки \mathfrak{g}_N пространства \mathfrak{g} при всех N являются алгебрами Ли, следует, что пространство \mathfrak{g} само является алгеброй, причем для однородных x, y операция умножения [x, y] в \mathfrak{g} обладает свойствами:

$$[x, y] = -(-1)^{\delta(x)\delta(y)}[y, x],$$

$$(-1)^{\delta(x)\delta(z)}[x, [y, z]] + (-1)^{\delta(z)\delta(y)}[z, [x, y]] +$$

$$+ (-1)^{\delta(y)\delta(x)}[y, [z, x]] = 0.$$
(3.23)

Алгебра со свойствами (3.23) называется супералгеброй Ли или, по другой терминологии, — Z_2 -градуированной алгеб-

рой Ли.

Обратно, легко видеть, что если в является супералгеброй Ли, то все ее грассмановы оболочки в являются обычными алгебрами Ли. Отметим, что четное подпространство в супералгебры является алгеброй Ли в обычном омысле. Для супералгебр Ли, как и для обычных алгебр Ли, может быть определено понятие простоты. Простые супералгебры Ли классифицированы. Предварительные результаты в этом направлении содержатся в работах [27—30]. Полное описание простых конечномерных супералгебр получено в [31]. Классифицированы также супералгебры Ли с редуктивной четной частью (без предположения общей простоты) [32], а также описан больщой класс бесконечномерных простых супералгебр [33].

Подробная теория супералгебр и супергрупп Ли, рассчитанная на применение к теории представлений, развита в

[34-38].

В этих работах, в частности, найден критерий существования инвариантного интеграла на супергруппе, вычислена в общем виде плотность инвариантного интеграла в случае существования, а также построена теория оператора Лапласа — Казимира. При этом обнаружились любопытные особенности, не имеющие аналогов в случае обычных групп Ли. Например, для супергрупп U(p, q), имеющих в качестве G_0 компактную группу $U(p) \times U(q)$, оказалось, что $\int dg = 0$, т. е. «суперобъем» U(p, q) равен нулю! По-видимому, аналогично обстоит дело всегда, когда G_0 — компактная группа, и поэтому можно говорить о полном суперобъеме.

Теория операторов Лапласа — Казимира оказалась существенно более сложной, чем в обычном случае. Это связано главным образом с тем, что для супералгебр Ли несправедлива так

называемая теорема К. Шевалле, устанавливающая взаимнооднозначное соответствие между инвариантами относительно группы Вейля на картановской подалгебре и инвариантами относительно присоединенного представления на всей супералгебре.

4. Представления супералгебр и супералгебр Ли

Основные определения. Пусть $L = L_0 \oplus L_1$ — градуированное линейное пространство и $\mathfrak{g} = \mathfrak{g}_0 \oplus \mathfrak{g}_1$ — супералгебра Ли. Представлением \mathfrak{g} в L называется реализация алгебры \mathfrak{g} операторами T_x в L, подчиненная условию: если $x \in \mathfrak{g}_0$, то $T_x L_0 \subset L_0$, $T_x L_1 \subset L_1$, если $x \in \mathfrak{g}_1$, то $T_x L_0 \subset L_1$, $T_x L_1 \subset L_0$. Другими словами, четные элементы сохраняют четность в L, нечетные — меняют.

Пусть \mathfrak{g}_N , L_N — грассмановы оболочки супералгебры Ли \mathfrak{g} и пространства L соответственно. Исходя из представления \mathfrak{g} в L легко построить представление \mathfrak{g}_N в L_N . Пусть e_i , e_j — базис в \mathfrak{g} , причем e_i $\in \mathfrak{g}_0$, e_j $\in \mathfrak{g}_1$, $x = \sum a_i e_i + \sum a_j e_j \in \mathfrak{g}_N$. Положим

$$T_x = \sum a_i T_{e_i} + \sum \alpha_i T_{\varepsilon_i}. \tag{4.1}$$

Очевидно, что операторы T_x образуют представление алгебры Ли \mathfrak{g}_N в L_N . Экспоненцируя, мы получаем представление группы G_N в L_N :

$$T_g = \exp T_x. \tag{4.2}$$

Полученное представление при $N = \infty$ можно считать представлением супергруппы G.

Отметим некоторые результаты теории представлений супералгебр Ли. Картановская теория старшего веса переносится на суперслучай почти без изменений. Матрица A(g) оператора T_g в базисе $\{e_i, \ \varepsilon_i\}$, $e_i \in L_0$, $\varepsilon_i \in L_1$ имеет клеточный вид:

$$\begin{split} A(g) &= \begin{pmatrix} A_{11}(g) & A_{12}(g) \\ A_{21}(g) & A_{22}(g) \end{pmatrix}, \\ A(g) e_i &= \sum (A_{11}(g))_{ik} e_k + \sum (A_{12}(g))_{il} \epsilon_l, \\ A(g) e_l &= \sum (A_{21}(g))_{ik} e_k + \sum (A_{22}(g))_{is} \epsilon_s. \end{split}$$

Элементы матриц $A_{11}(g)$, $A_{22}(g)$ являются четными элементами грассмановой алгебры \mathfrak{G}_N , элементы матриц $A_{12}(g)$, $A_{21}(g)$ — нечетными.

Характеры и операторы Лапласа — Казимира. Характером представления называется его суперслед, являющийся функцией на G_N со значениями в G_N :

$$\chi(g) = \operatorname{str} T_g = \operatorname{tr} A_{11}(g) - \operatorname{tr} A_{22}(g).$$
 (4.3)

Следует обратить внимание на знак «минус» в правой части (4.3), отличающий этим формулу от обычной. В случае неприводимости $\chi(g)$ определяет представление с точностью до эк-

вивалентности, в общем случае — нет, что очевидным образом связано со знаком «минус» в правой части (4.3). Отметим связанную с этим любопытную особенность супергруппы U(p, q). Для нее, как и для обычных групп Ли, можно определить левое регулярное представление

$$(T_{g_0}f)(g) = f(g_0^{-1}g).$$

Пусть $\chi(g) = \text{str } T_g$ ($\chi(g)$ существует как обобщенная функция). Оказывается, что $\chi(g) = 0!$ (В обычном случае для ком-

пактных групп $\chi(g) = \delta(g)\mu(G)$.)

Каждому неприводимому представлению T_g супергруппы Ли соответствует, как и в обычном случае, набор собственных чисел операторов Лапласа — Қазимира Δ_k . Матричные элементы оператора T_g служат собственными функциями операторов Δ_k . В частности, характер удовлетворяет уравнениям

$$\Delta_k \chi = \lambda_k \chi. \tag{4.4}$$

Представление называется невырожденным, если уравнения (4.4) обладают единственным решением с точностью до постоянного множителя, и вырожденным — в противном случае. Это определение является общим для обычных групп Ли конечномерные представления всегда невырождены, вырожденные встречаются только среди бесконечномерных представлений. Для супергрупп Ли среди конечномерных представлений встречаются вырожденные. Это обстоятельство делает теорию конечномерных представлений супергрупп Ли более похожей на теорию бесконечномерных представлений супергрупп Ли более похожей на теорию бесконечномерных представлений обычных групп Ли, чем на теорию их конечномерных представлений.

Характеры невырожденных представлений супергрупп $\mathit{Л}$ и при широких предположениях найдены в [34—38], результат, касающийся супергрупп серии U(p, q), анонсирован в [39], там же дан набросок общего метода, использованного в [34—38]. В этих работах указана также реализация невырожденных представлений как представлений, индуцированных некото-

рым представлением группы G_0 .

В [40] найдены характеры невырожденных представлений другим методом. Вырожденные представления в настоящее время интенсивно изучаются. С ними связано описание нетензорных геометрических объектов на супермногообразиях, о которых говорилось выше. С наибольшей подробностью в настоящее время изучены представления супергрупп U(p, q) и C(m, n). Первая из них является супераналогом полной унитарной группы, вторая состоит из обобщенных канонических преобразований, перемешивающих фермии бозе-операторы рождения и уничтожения.

Первые систематические результаты, касающиеся представлений супералгебр Ли, получены в работе [41], где описаны все представления супералгебры gl (1, 2) — ближайшего супераналога обычной алгебры матриц второго порядка, и в работе [30], где определено обобщение на суперслучай понятия унитарного представления. В [42, 43] детально изучаются представления алгебр серии gl (p, q) при малых p, q.

5. Заключение

В настоящее время, когда суперматематика в основных чертах уже построена и освоена, следует еще раз задаться вопросом о том, какую роль она призвана сыграть в физике.

Сейчас суперсимметрии являются по существу вспомогательным аппаратом для получения тождеств Уорда в сложных полевых теориях. Однако если отнестись к ним более серьезно, то они, как мне кажется, содержат намек на существование фундаментальной симметрии между координатами и полями 1 . В самом деле, преобразования типа (2.6), характерные для суперсимметричных теорий поля, в особенности для супергравитации, в значительной степени лишают координаты их привычного смысла: вместо координат x_i в этих формулах участвуют четные образующие алгебр $\mathfrak{A}_{pq}(U)$, которые имеют вид

$$x_i = a_i + \sum f_{i; i_1, \dots, i_{2k}}(a) \xi_{i_1} \dots \xi_{i_{2k}},$$
 (5.1)

где a_i — координаты в U, ξ_i — образующие грассмановой алгебры \mathfrak{G}_q . Образующие ξ_i принципиально не наблюдаемы, так как в силу нильпотентности могут принимать лишь единственное численное значение $\xi_i = 0$.

Таким образом, величины, преобразующиеся по формулам (2.6), — это странные гибриды наблюдаемых величин (координат) и ненаблюдаемых. Эта странность сразу же исчезает, если считать § классическими аналогами фермиевских операторов: после квантования правая часть (5.1) превращается в оператор, который при разумных условиях самосопряжен. Однако в этом случае формулы (5.1) и (2.6) показывают, что координаты и поля являются объектами общей природы.

В подтверждение высказанной точки зрения я хочу обратить внимание на существование симметрии между координатами и полями в обычной классической максвелловской электродинамике (никакой суперсимметрии!). В самом деле, потенциал $A = \sum A_{\mu} dx_{\mu}$ определен с точностью до полного дифференциала. Положим $\Phi = \sum A_{\mu} x_{\mu}$. Имеем

$$0 \sim d\Phi = \sum dA_{\mu} \cdot x_{\mu} + \sum A_{\mu} dx_{\mu}. \tag{5.2}$$

Правая часть (5.2) очевидным образом симметрична относительно замены $A_{\mu} \leftrightarrow x_{\mu}$.

¹ Эта идея по существу содержится уже в [7].

литература

- 1. Martin I. L.- Proc. Soc., 1959, A251, 536.
- 2. Schwinger J.- Phill. Mag., 1953, 44, 1171.
- 3. Березин Ф. А.— ДАН СССР, 1961, 137, № 2, 311. 4. Березин Ф. А., Минлос Р. А., Фаддеев Л. Д.— Труды IV Всесоюзного математического съезда 1961 г., т. II, с. 532.
- 5. Березин Ф. А. Метод вторичного квантования. М.: Наука, 1965.
- 6. Гольфанд Ю. А., Лихтман Е. П. Проблемы теоретической физики М.: Наука, 1972, с. 37.
- 7. Volkov D. V., Akulov V. P.- Phys. Lett., 1973, B46, 109.
- 8. Волков Д. В., Сорока В. А. Письма ЖЭТФ, 1973, 18, 529.
- 9. Березин Ф. А.— Математические заметки, 1967, 1, 3.
- 10. Пахомов В. Ф.— Математические заметки, 1974, 16, 1.
- 11. Березин Ф. А., Кац Г. И.— Математический сборник, 1970, 82 (124), 343,
- 12. Wess G., Zumino B.— Nucl Phys., 1974, B70, 39.
 13. Corwin L., Neeman Y., Sternberg S.— Reviews of Modern Physics, 1975, **47**, 573.
- 14. Березин Ф. А., Лейтес Д. А.— ДАН СССР, 1975, 22, № 3, 505.
- 15. Kostant B.—Lecture Notes in Mathematics, 1977, 570, 177.
- 16. Лейтес Д. А.— УМН, 1975, т. ХХХ, 3, 156.
- 17. Mansouri F .- Journ. of Math. Phys., 1977, 18, 1, 52.
- 18. Berezin F. A., Marinov H. S. Annalso of Physics, 1977, 104, N 2, 336.
- 19. Casalbuoni R.- Nuovo Cimento, 33A, N 3, 389.
- 20. Casalbuoni R.- Nuovo Cimento, 33A, N 1, 115.
- 21. Barducci A., Casalbuoni R., Lusanna L.—Nuovo Cimento, 35A, N 3, 377. 22. Бернштейн И. Н., Лейтес Д. А.— Функциональный анализ, 1977, 11, № 1,
 - 55.
- 23. Бернштейн И. Н., Лейтес Д. А.— Функциональный анализ, 1977, 11, № 3, 70.
- 24. Pais A., Rittenberg V.— Journal of Math. Phys., 1975, 10, 206.
- 25. Scheunert M., Nahm W., Rittenberg V.-Journ. of Math. Phys., 1976, 17, N 9, 1626.
- 26. Scheunert M., Nahm W., Rittenberg V.- Journ. of Math. Phys., 1976, 17, N 9, 1640.
- 27. Scheunert M., Nahm W., Rittenberg V.-Journ. of Math. Phys., 1977, 18, N 1, 146.
- 28. Kac V. G. Advances in Mathematics, 1977, 26, 8. 29. Березин Ф. А., Ретах В. С.— Вестник МГУ, 1978, № 5, 63.
- 30. Лейтес Д. А.— ДАН СССР, 1977, 236, № 4, 804.
- 31. Berezin F. A.—Preprint JTEP—66, 1977. 32. Berezin F. A.— Preprint JTEP—78, 1977.
- Berezin F. A.—Preprint JTEP—77, 1977.
 Berezin F. A.—Preprint JTEP—75, 1977.
 Berezin F. A.—Preprint JTEP—76, 1977.
- 36. Pais A., Rittenberg V.- Preprint Rockefeller University Report, Number COO-2232B-74.
- 37. Березин Ф. А.- Функциональный анализ и его применения, 1976, 10, № 3.
- 38. Kac V. G.— Communications in algebra, 1977, 5, 889.
- 39. Hermann R.—Preprint HUTP-77/A012, HUTP-77/A003, HUTP-77/A014.
- 40. Bednar M., Sachl V .- Preprint FZU-78-1. 41. Bednar M., Sachl V.- Preprint FZU-16/77.
- 42. Березин Ф. А.— Супермногообразия. Препринт ИТЭФ, 1979.
- 43. Шафаревич И. Р. Основы алгебранческой геометрии. М.: Наука, 1972.

Глава 1. АЛГЕБРА ГРАССМАНА

§ 1. ОБЩИЕ СВЕДЕНИЯ ОБ АССОЦИАТИВНЫХ АЛГЕБРАХ

Алгебра называется конечномерной или бесконечномерной, если как линейное пространство она соответственно конечномерна или бесконечномерна.

Алгебра называется ассоциативной, если для любых трех ее

элементов a, b, c верно, что a(bc) = (ab)c.

Пусть \mathfrak{A} — некоторая алгебра, \mathfrak{K} — множество чисел, на которые допускается умножение элементов \mathfrak{A} . В таком случае \mathfrak{A} называется алгеброй над \mathfrak{K} . В дальнейшем в этой книге \mathfrak{K} всегда является множеством вещественных или комплексных чисел: $\mathfrak{K} = \mathfrak{R}$ или $\mathfrak{K} = \mathfrak{C}$. В зависимости от того, $\mathfrak{K} = \mathfrak{R}$ или $\mathfrak{K} = \mathfrak{C}$, алгебра \mathfrak{A} называется вещественной или комплексной.

Примеры алгебр.

- 1) Множество R вещественных чисел с обычными операциями сложения и умножения является очевидным образом вещественной алгеброй. Аналогично множество C комплексных чисел является комплексной алгеброй.
- 2) Пусть \mathfrak{A} , M произвольные множества. Через \mathfrak{A}^M обозначается совокупность всех отображений M в \mathfrak{A} , τ . е. совокупность всех функций на M со значениями в \mathfrak{A} . В случае, если \mathfrak{A} является алгеброй над \mathfrak{K} , \mathfrak{A}^M также является алгеброй над \mathfrak{K} с естественными операциями сложения, умножения и умножения на числа: при f(x), $g(x) \in \mathfrak{A}^M$, $x \in M$, $\alpha \in \mathfrak{K}$

$$(f+g)(x) = f(x) + g(x), (f, g)(x) = f(x)g(x), (af)(x) = af(x).$$

Очевидно, что если алгебра ${\mathfrak A}$ ассоциативна или коммутативна, то тем же свойством обладает алгебра ${\mathfrak A}^M$.

3) Пусть $U \subset \mathbb{R}^p$ — область p-мерного вещественного пространства \mathbb{R}^p , K — алгебра чисел: $K = \mathbb{R}$ или $K = \mathbb{C}$. Рассмотрим подалгебру алгебры K^U , состоящую из бесконечно дифференци-

руемых функций. Эту алгебру будем обозначать $\mathcal{A}(U)$. Она в дальнейшем играет очень важную роль.

4) Всевозможные многочлены на U образуют подалгебру

алгебры $\mathscr{A}(U)$, которую мы обозначим через $\mathscr{P}(U)$.

5. Рассмотрим \mathbb{R}^p как линейное пространство и обозначим через $L(p|\mathbb{R})$ множество всевозможных линейных операторов \mathbb{R}^p . $L(p|\mathbb{R})$ является алгеброй по отношению к обычным операциям умножения и линейного комбинирования операторов. Эта алгебра очевидным образом вещественна.

Аналогичным образом определяемая алгебра $L(p|\mathbf{C})$ всех линейных операторов в комплексном пространстве \mathbf{C}^p комплексна. Алгебры примеров 1), 3), 4) ассоциативны и коммутативны, алгебры примера 5) ассоциативны, коммутативны при p=1 и некоммутативны при p>1.

Если в алгебре и имеется элемент с обычными свойствами единицы

$$e \cdot a = a \cdot e = a$$
 для любого $a \in \mathfrak{A}$,

то такая алгебра называется алгеброй с единицей, элемент e называется единицей алгебры. Алгебры в примерах 1), 3), 4), 5) являются алгебрами с единицами. Алгебра \mathfrak{A}^M (пример 2)) обладает единицей, если этим свойством обладает алгебра \mathfrak{A} : единицей \mathfrak{A}^M служит функция $e(x) \equiv e$, где e— единица \mathfrak{A} .

Однако существуют также важные для приложений алгебры без единицы. В частности, алгебры Ли никогда не содержат единицу. (Алгебры Ли не ассоциативны. Существуют, разумеется, и ассоциативные алгебры без единицы, например алгебры треугольных матриц с нулевой диагональю.)

2. Образующие. Пусть $\mathfrak A$ — алгебра и $\Sigma \subset \mathfrak A$ — некоторое множество ее элементов. Обозначим через $\mathfrak A(\Sigma)$ совокупность всевозможных многочленов от элементов $\Sigma: f \in \mathfrak A(\Sigma)$, если

$$f = \sum_{k \geqslant 0} \sum_{i_1,\dots,i_k} f_{i_1,\dots,i_k} a_{i_1} \dots a_{i_k}, \ a_i \in \Sigma, \ f_{i_1,\dots i_k} \in \mathbb{K} \quad (1.1.1)$$

(сумма конечная). Очевидно, что $\mathfrak{A}(\Sigma)$ является подалгеброй \mathfrak{A} , она называется подалгеброй, порожденной множеством Σ . Ясно, что $\mathfrak{A}(\Sigma)$ содержится в любой подалгебре, содержащей Σ .

В случае, если $\mathfrak{A}(\Sigma) = \mathfrak{A}$, множество Σ называется системой

образующих алгебры 21 или порождающим множеством.

В дальнейшем нам предстоит рассматривать алгебры, для которых определено понятие сходимости последовательности элементов. Такие алгебры называются алгебрами со сходимостью. Для алгебр со сходимостью помимо обычного понятия системы образующих существует важное понятие топологической системы образующих.

Множество $\Sigma \subset \mathfrak{A}$ называется топологической системой образующих алгебры \mathfrak{A} , если \mathfrak{A} является замыканием $\mathfrak{A}(\Sigma)$, т. е.

если любой элемент $f \in \mathfrak{A}$ является пределом последовательности элементов $\mathfrak{A}(\Sigma)$.

В случае, если надо будет подчеркнуть разницу, систему образующих в смысле ранее приведенного определения мы будем иногда называть алгебраической.

В конечномерную алгебру можно ввести сходимость обычным покоординатным образом 1. Таким образом, конечномерную алгебру всегда можно рассматривать как алгебру со сходимостью.

Отметим важное свойство топологических образующих конечномерной алгебры.

Пусть $\hat{\mathbf{A}}$ — конечномерная алгебра с покоординатной сходимостью, $\Sigma \subset \mathbf{A}$ — система ее топологических образующих. В Σ содержится конечное подмножество, являющееся системой алгебраических образующих \mathbf{A} .

В самом деле, пусть $\Sigma \subset \mathfrak{A}$ — система топологических образующих алгебры \mathfrak{A} и $f_1,...,f_N$ — базис \mathfrak{A} , как линейного пространства. Согласно определению $f_\alpha = \lim_{n \to \infty} f_{\alpha,n}$, где $f_{\alpha,n} \in \mathfrak{A}(\Sigma)$ имеет вид (1.1.1). Разложим $f_{\alpha,n}$ по базису f_α :

$$f_{\alpha,n} = \sum c_{\alpha,\beta}(n) f_{\beta}. \tag{1.1.2}$$

Предельное соотношение $f_{\alpha} = \lim_{\substack{n \to \infty \\ n \to \infty}} f_{\alpha,n}$ означает, что $\lim_{\substack{n \to \infty \\ n \to \infty}} c_{\alpha,\beta}(n) = \delta_{\alpha\beta}$. Следовательно, $\det \|c_{\alpha\beta}(n_0)\| \neq 0$ при доста-

точно большом n_0 . В свою очередь, это означает, что элементы f_{α,n_0} , подобно элементам f_{α} , образуют базис в \mathfrak{A} , как в линейном пространстве. Запишем элемент f_{α,n_0} в виде (1.1.1) и отметим элементы $a_i^{(\alpha)} \in \Sigma$, через которые он выражается. Их число конечно при любом α . Объединение $a_i^{(\alpha)}$ при всех i и α обозначим Σ_i . Множество $\Sigma_i \subset \Sigma$ конечно и очевидным образом служит системой алгебраических образующих в \mathfrak{A} ; каждый элемент $f \in \mathfrak{A}$ является линейной комбинацией f_{α,n_0} и тем самым полиномом от $a_i^{(\alpha)}$.

Из доказанного утверждения очевидным образом следует, что для конечномерной алгебры каждая алгебраическая система образующих содержит конечную подсистему, являющуюся также алгебраической системой образующих, и что каждая топологическая система образующих является одновременно алгебраической.

Пусть L — некоторое конечномерное линейное пространство, e_i — базис в L. Последовательность $f_n = \Sigma a_i(n)e_i$ называется сходящейся покоординатно к $f = \Sigma a_i e_i$, если $a_i = \lim_{n \to \infty} a_i(n)$ при всех i. Несмотря на то что в определении сходимости фигурирует базис e_i , она фактически от выбора базиса не зависит: если $e_i = c_{ik}e_k$, e_k — другой базис, то

 $f_n = \sum b_i(n) \, \widetilde{e}_i, \quad f = \sum b_i \widetilde{e}_i, \quad b_i(n) = \sum a_k(n) \, c_{ki}, \quad b_i = \sum a_k c_{ki} \, \text{ in } b_i = \lim_{n \to \infty} b_i(n).$

В общем случае эти выводы, разумеется, несправедливы. Приведем пример, иллюстрирующий разницу между тогологическими и алгебраическими образующими для бесконечномерной алгебры.

Рассмотрим алгебру $\mathcal{A}(U)$ бесконечно дифференцируемых функций, введенную в примере 3). Определим в ней сходимость: $f_n \rightarrow f$, если на любом компакте $V \subset U$ f_n сходится к f равномерно и все частные производные f_n также равномерно сходятся к соответствующим частным производным f. В смысле этой сходимости множество многочленов $\mathcal{P}(U)$ плотно в $\mathcal{A}(U)$. $\mathcal{P}(U)$ является алгеброй с p алгебраическими образующими, в качестве которых можно рассмотреть декартовы координаты x_i в области U. Тем самым x_i служат топологическими образующими в $\mathcal{A}(U)$. Можно показать, что в $\mathcal{A}(U)$ не существует конечной системы алгебраических образующих.

3. Идеалы, факторалгебры, гомоморфизмы. Подалгебры $\mathfrak{N} \subset \mathfrak{A}$ называется левым идеалом, если, каковы бы ни были $a \in \mathfrak{A}$, $x \in \mathfrak{R}$, с необходимостью $ax \in \mathfrak{R}$. Если при тех же условиях $xa \in \mathfrak{R}$, то \mathfrak{R} называется правым идеалом. Идеал называется двусторонним, если он одновременно левый и правый.

Пусть $\mathfrak{N} \subset \mathfrak{A}$ — подпространство \mathfrak{A} как линейного пространства. Сопоставим каждому $a \in \mathfrak{A}$ множество элементов

$$n_a = \{a + x; x \in \Re\}. \tag{1.1.3}$$

В (1.1.3) предполагается, что a фиксировано, а x пробегает идеал \Re .

Множество (1.1.3) называется классом смежности и по и Очевидно, что два класса смежности либо не имеют общих элементов, либо совпадают и что каждый элемент и принадлежит некоторому классу смежности. Множество классов смежности и по и называется факторпространством и по и обозначается и/и.

Пусть
$$u=a+x \in n_a$$
, $v=b+y \in n_b$, α , $\beta \in K$. Очевидно, что $\alpha u+\beta v=\alpha a+\beta b+\alpha x+\beta y \in n_{\alpha a+\beta b}$.

Другими словами, каких бы представителей классов смежности n_a и n_b мы ни взяли, их линейная комбинация принадлежит классу $n_{\alpha a+\beta b}$.

Поэтому в множестве классов смежности можно ввести опе-

рацию линейного комбинирования согласно формуле

$$\alpha n_a + \beta n_b = n_{\alpha a + \beta b}. \tag{1.1.4}$$

Операция (1.1.4) превращает У/Я в линейное пространство.

Пусть теперь \Re — двусторонний идеал \Re , u=a+x, v=b+y—представители классов u_a и u_b соответственно. Рассмотрим их произведение

$$uv = ab + ay + xb + xy \in n_{ab}$$

так как ay+xb+xy \in \Re . Другими словами, произведение представителей классов смежности n_a и n_b всегда принадлежит классу смежности n_{ab} , какие бы представители ни рассматривались. Это обстоятельство позволяет ввести в множество классов смежности умножение согласно формуле

$$n_a n_b = n_{ab}. \tag{1.1.5}$$

Легко проверяются свойства дистрибутивности

$$n_c(\alpha n_a + \beta n_b) = \alpha n_c n_a + \beta n_c n_b$$
$$(\alpha n_a + \beta n_b) n_c = \alpha n_a n_c + \beta n_b n_c.$$

Таким образом, факторпространство алгебры $\mathfrak A$ по двустороннему идеалу является алгеброй. Эта алгебра называется факторалгеброй $\mathfrak A$ по $\mathfrak A$.

Пусть \mathfrak{A} и \mathfrak{B} — алгебры. Отображение $f: \mathfrak{A} \to \mathfrak{B}$ называется гомоморфизмом, если выполнены следующие условия:

$$f(aa+\beta b) = af(a) + \beta f(b), \ \alpha, \ \beta \in \mathbb{K}, \ a, \ b \in \mathfrak{A}$$
$$f(ab) = f(a)f(b).$$

Гомоморфизм f называется изоморфизмом алгебр $\mathfrak A$ и $\mathfrak B$, если отображение f взаимно-однозначно. При $\mathfrak A=\mathfrak B$ изоморфизм $f:\mathfrak A\to\mathfrak A$ называется автоморфизмом $\mathfrak A$. Множество $\mathfrak R\subset\mathfrak A$, состоящее из всех элементов, переходящих при гомоморфизме f в 0, называется ядром гомоморфизма f, обозначается Kerf. Множество элементов алгебры $\mathfrak B$, служащих образами элементов алгебры $\mathfrak A$, $\mathfrak T$, е. представимых в виде f(a), $a=\mathfrak A$, называется образом гомоморфизма f, обозначается Imf.

Легко видеть, что $\mathfrak{R}=\mathrm{Ker}\,f$ является двусторонним идеалом алгебры \mathfrak{A} , $\mathrm{Im}\,f$ — подалгеброй \mathfrak{B} , причем алгебра $\mathrm{Im}\,f$ изоморфна факторалгебре $\mathfrak{A}/\mathfrak{R}$. Изоморфизм устанавливается следующим образом: обозначим через n_a множество элементов \mathfrak{A} , имеющих общий с a образ при гомоморфизме f:f(b)=f(a) при $b\in n_a$. Множество n_a является классом смежности \mathfrak{A} по \mathfrak{R} . Отображение

 $g: \operatorname{Im} f \to \mathfrak{A}/\mathfrak{R}$

$$g(b) = n_a$$
 при $b = f(a)$

корректно определено (т. е. g(b) не зависит от выбора прообраза b при гомоморфизме f) и является изоморфизмом алгебр

Ĩm f и ��/��.

Пусть \mathfrak{N} — левый идеал алгебры \mathfrak{A} . Множество $\Sigma \subset \mathfrak{R}$ называется системой образующих \mathfrak{R} , или порождающим множеством, если каждый элемент \mathfrak{R} представим в виде полинома от элементов Σ с коэффициентами из \mathfrak{A} , стоящими слева от произведений элементов Σ :

$$x = \sum a_i \xi_i, \quad \xi_i \in \sum, a_i \in \mathfrak{A}.$$

Такой полином будем называть левым. Если \Re — правый идеал, то множество Σ называется системой образующих, если каждый

элемент $x \in \Re$ является правым полиномом от элементов Σ . (Правый полином определяется аналогично левому.)

Подчеркнем разницу в определении образующих алгебры и ее идеала; в случае алгебры рассматриваются полиномы с численными коэффициентами, в случае идеала — коэффициенты полинома являются элементами алгебры и.

Если 🛚 — алгебра со сходимостью, то появляется возмож-

ность определить топологические образующие ее идеалов.

Пусть № — левый идеал алгебры со сходимостью. Множество ∑ — Я называется системой топологических образующих Я, если совокупность левых полиномов от элементов ∑ с коэффициентами из Я плотна в Я. Аналогично определяются топологические образующие правого идеала.

В дальнейшем нам, как правило, будут встречаться лишь двусторонние идеалы. Поэтому слово «двусторонний» мы будем для простоты опускать и под словом «идеал» понимать двусторонний идеал.

4. Модули. Пусть \mathfrak{A} — некоторая алгебра и L — коммутативная группа с групповой операцией, которую мы будем записывать с помощью знака +.

Группа L называется левым модулем над \mathfrak{A} , если для ее элементов определено умножение слева на элементы \mathfrak{A} с обычным свойством дистрибутивности и ассоциативности:

$$a(f+g) = af+ag$$
, $a(bf) = (ab)f$; $f, g \in L$, $a, b \in \mathfrak{A}$.

Если для элементов L определено умножение справа, обладающее аналогичным свойством, то L называется правым модулем, если определены умножения и слева и справа, причем a(fb) = (af) b, то L называется двусторонним модулем.

В дальнейшем нам встречается главным образом двусторонние модули над коммутативными алгебрами, и слово «модуль» без прилагательных употребляется для обозначения двустороннего модуля с дополнительным свойством af = fa.

§ 2. АЛГЕБРЫ ГРАССМАНА

1.Определение и простейшие свойства грассмановых алгебр. Ассоциативная алгебра с единицей называется грассмановой (сокращенно г. а.), если в ней существует система образующих, состоящая из элементов ξ_i , со свойствами

1)

$$\xi_i \xi_h + \xi_h \xi_i = 0$$
, в частности, $\xi_i^2 = 0$. (1.2.1)

2) Любое другое соотношение между ξ_i является следствием (1.2.1) ¹.

¹ Т. е. принадлежит идеалу тензорной алгебры с образующими ξ_i , по-рожденному левыми частями (1.2.1). — Прим ред.

Образующие ξ_i с этими свойствами будем называть каноническими. Грассманову алгебру будем обозначать буквой Λ . В случае, если нам будет важно указать систему канонических образующих в г. а., мы будем пользоваться обозначением $\Lambda(\xi_1,...,\xi_q)$. В случае, если важно лишь их число — обозначением Λ_g . Из (1.2.1) следует, что любой элемент $\Lambda(\xi_1,...,\xi_q)$ является линейной комбинацией одночленов $\xi_{l_1} \dots \xi_{l_k}, i_1 < i_2 < \dots < i_k$ и единичного элемента. То обстоятельство, что все соотношения между ξ_1 следуют из (1.2.1), означает линейную независимость этих одночленов ξ_1 . Следовательно, они в совокупности с единичным элементом образуют базис в ξ_1 0 как в линейном пространстве. Так как их число равно числу непустых подмножеств множества из ξ_1 1 элементов, то dim ξ_1 2. Отсюда следует, что любая система канонических образующих ξ_1 2 состоит из ξ_1 3 элементов.

Для единицы в Λ мы не будем вводить специального обозначения, считая, что она совпадает с единицей в алгебре чисел K. Таким образом, каждый элемент $\Lambda(\xi_1, ..., \xi_q)$ записывается в виде

$$f = f(\xi) = \sum_{k \geqslant 0} \sum_{i_1, \dots, i_k} f_{i_1, \dots, i_k} \, \xi_{i_1} \dots \, \xi_{i_k}. \tag{1.2.2}$$

Слагаемое, отвечающее k=0, пропорционально единице. Запись $f=f(\xi)$ призвана подчеркнуть, что элемент f выражен в ьиде полинома от образующих ξ_i . В дальнейшем мы увидим, что полиномы $f(\xi)$ обладают многими формальными свойствами обычных функций. Поэтому мы будем их иногда называть функциями от антикоммутирующих переменных. Запись элементов $\Lambda(\xi_1,...,\xi_q)$ в виде (1.2.2), вообще говоря, не однозначна. Однако она становится однозначной, если наложить на коэффициенты $f_{i_1,...,i_k}$ дополнительные условия. Например, можно потребовать, чтобы $f_{i_1,...,i_k}=0$, если не выполнено соотношение $i_1 < i_2 < < ... < i_h$, или чтобы $f_{i_1,...,i_k}$ были кососимметричны по индексам $i_1,...,i_k$ (т. е. меняли знак при перестановке любых двух индексов). Второе условие более удобно, и в дальнейшем, если элемент f записан в виде (1.2.2) и противное не оговорено, всегда считается, что коэффициенты $f_{i_1,...,i_k}$ кососимметричны.

Пусть ξ_i — канонические образующие алгебры Λ_q и $f \in \Lambda_q$, выраженный через ξ_i , согласно формуле (1.2.2) с кососимметричными коэффициентами f_{i_1,\dots,i_k} .

Предположим, что $f_{i_1,...,i_k} = 0$ при k < n, а при k = n существует отличный от нуля коэффициент. Назовем число n степенью элемента f и введем для него обозначение $n = \deg f$.

¹ Это требование — один из вариантов точной формулировки условия 2). Его непротиворечивость нуждается в доказательстве. См. например, Ван дер Варден «Алгебра», гл. 13, § 93. — Прим. ред.

В случае, если в записи (1.2.2) отличны от нуля только коэффициенты с k=n, элемент f будем называть однородным степени n в смысле deg. Очевидно, что свойство элемента f быть однородным в смысле deg зависит от выбора системы обра-

зующих.

На первый взгляд кажется, что и $\deg f$ также зависит от выбора системы образующих, однако, это не так. В самом деле, пусть ξ_i , η_i — две системы канонических образующих. Обозначим временно степени элемента f по отношению к ним соответственно: $\deg_i f$ и $\deg_i f$. Заметим, что если элемент f нильпотентен, т. е. $f^m = 0$ для некоторого m, то $\deg_i f > 1$ и $\deg_i f > 1$. В частности, $\deg_i \xi_i > 1$. Запишем элемент f в виде (1.2.2) с помощью образующих ξ_i и в аналогичном виде выразим ξ_i через η_i . Подставляя $\xi_i = \xi_i(\eta)$ в (1.2.2), находим выражение f через η_i . Из того, что $\deg_i \xi_i > 1$, очевидно, следует, что $\deg_i f > \deg_i f$. Меняя ролями системы ξ_i и η_i , находим, что $\deg_i f = \deg_i f$.

Обозначим через $\Lambda^{(k)}$ подпространство Λ , состоящее из элементов, удовлетворяющих условию deg $f \gg k$. Очевидно, что

$$\Lambda = \Lambda^{(0)} \supseteq \Lambda^{(1)} \supseteq \Lambda^{(2)} \supseteq \dots$$

и что при $f \in \Lambda^{(k)}$, $g \in \Lambda^{(l)}$, $fg \in \Lambda^{(k+l)}$. Таким образом, $\Lambda^{(k)}$ является идеалом Λ .

Пусть $f \in \Lambda(\xi_1, ..., \xi_q)$ имеет вид (1.2.2), причем в стоящей в правой части сумме отличны от нуля лишь слагаемые с четными k. В этом случае элемент f называется четным по отношению к системе канонических образующих ξ_i . В случае, если в сумме (1.2.2) отличны от нуля только слагаемые с нечетными k, элемент f называется нечетным по отношению к системе канонических образующих ξ_i .

Как четные, так и нечетные элементы называются однородными в смысле четности.

Пусть $\{\xi_i\}$ — некоторая система канонических образующих г. а. Л. Как четные, так и нечетные по отношению к $\{\xi_i\}$ элементы образуют линейные подпространства, которые мы обозначим соответственно ${}^{0}\Lambda(\xi_1,...,\xi_q)$ и ${}^{1}\Lambda(\xi_1,...,\xi_q)$. Ниже мы увилим, что пространство ${}^{0}\Lambda(\xi_1,...,\xi_q)$ в действительности не зависит от системы канонических образующих ξ_i . Поэтому для него будет употребляться сокращенное обозначение ${}^{0}\Lambda$. В случаях, исключающих недоразумение, мы будем пользоваться также сокращенным обозначением ${}^{4}\Lambda$.

Легко видеть, что ${}^{0}\Lambda$ является не только подпространством,

но и подалгеброй.

Для однородных в смысле четности элементов вводится ϕ ункция $\alpha(f)$, называемая четностью ¹:

$$\alpha(f) = \begin{cases} 0 \text{ для четных элементов,} \\ 1 \text{ для нечетных элементов.} \end{cases}$$
 (1.2.3)

¹ а является первой буквой греческого слова артью — четный.

Встречающиеся в дальнейшем суммы вида $\alpha(f) + \alpha(g)$ понимаются по mod 2.

Очевидно, что элементы, однородные в смысле deg, являют ся однородными также в смысле четности и для однородных в любом смысле элементов справедлива формула

$$\alpha(fg) = \alpha(f) + \alpha(g). \tag{1.2.4}$$

Отметим также важное соотношение коммутации для однородных элементов

$$fg = (-1)^{\alpha(f)\alpha(g)}gf. \tag{1.2.5}$$

Выясним, в какой степени понятие четности связано с выбором системы канонических образующих.

Пусть $\{\xi_i\}$ — некоторая система канонических образующих г. а. Л. Из (1.2.5) следует, что $f \in {}^0\Lambda(\xi_i,...,\xi_q)$ тогда и только тогда, когда fa=af для любого $a\in \Lambda$. Тем самым свойство элемента быть четным не зависит от выбора система канонических образующих 4 . Иначе обстоит дело с пространством нечетных элементов, как показывает следующий пример.

Пусть $\mu(\xi)$ — фиксированный нечетный по отношению к ξ_i элемент. Положим

$$\eta_i = \xi_i (1 + \mu(\xi)).$$
 (1.2.6)

Легко видеть, что элементы η_i удовлетворяют соотношениям (1.2.1). Кроме того, они являются образующими. Чтобы убедиться в этом, следует выразить ξ_i через η_i . Заметим прежде всего, что $\eta_i\eta_j=\xi_i\xi_j$. Отсюда следует, что если $f(\xi)$ — произвольный нечетный элемент и $f(\eta)$ — элемент, получаемый заменой в выражении (1.2.2) для f образующих ξ_i элементами η_i , то $f(\eta)=f(\xi)$ (1+ $\mu(\xi)$). В частности, это относится к элементу $\mu:\mu(\eta)=\mu(\xi)$ (1+ $\mu(\xi)$) = $\mu(\xi)$, так как в силу нечетности $\mu^2(\xi)=0$. Поэтому

$$\xi_i = \eta_i (1 + \mu(\eta))^{-1} = \eta_i (1 - \mu(\eta)).$$

Итак, η_i являются каноническими образующими. Как мы видели, ${}^1\Lambda(\eta_i,...,\eta_q)$ состоит из элементов вида

$$f(\xi) (1+\mu(\xi)), f = \Lambda(\xi_1, ..., \xi_q).$$
 (1.2.7)

Таким образом, при $\mu\neq 0$ пространства ${}^4\Lambda\left(\xi_1,...,\xi_q\right)$ и ${}^4\Lambda\left(\eta_1,...,\eta_q\right)$ не совпадают 2 . Ниже мы увидим (см. следствие 1.1 из теоремы 1.2), что пространство нечетных элементов по отношению к любой системе канонических образующих состоит из элементов вида (1.2.7) при некотором μ .

В заключение этого пункта отметим, что пространство ¹ А нечетных элементов по отношению к произвольной системе канонических образующих ξ_i обладает следующими свойствами:

² Точнее, могут не совпадать. — Прим. ред.

¹ Это верно лишь при четном q. При нечетном q элемент $\xi_1\xi_2...\xi_q$ является нечетным, но перестановочен с любым $a \in \Lambda$.— Прим. ред.

1) если f, $g \in \Lambda$, то $fg = -gf \in \Lambda$,

2) если $f \in \Lambda$, $g \in \Lambda$, то $f g \in \Lambda$.

3) А как линейное пространство является прямой суммой пространств ${}^{0}\Lambda$ и ${}^{1}\Lambda$.

(Первые два свойства следуют из (1.2.5), третье — непо-

средственно из определения.)

Ниже, в п. 4, будет показано, что любое подпространство. обладающее этими свойствами, является пространством нечетных элементов по отношению к некоторой системе канонических образующих.

2. Системы образующих грассмановой ал-

гебры.

Теорема 1.1. 1) Любая система образующих грассмановой алгебры Λ_q содержит подсистему, состоящую из q элементов и также являющуюся системой образующих. В частности, не существует систем образующих с числом элементов q' < q.

2) Пусть ξ_i , η_i — нильпотентные элементы Λ_q , i, j=1, 2, ..., q, причем элементы Е; служат системой образующих. Для того чтобы элементы η_i обладали тем же свойством, необходимо и

достаточно, чтобы их выражение через ξ_i имело вид

$$\eta_i = \sum a_{ij} \xi_j + \sigma_i$$
, deg $\sigma_i > 1$, det $||a_{ik}|| \neq 0$. (1.2.8)

 \square оказательство. Пусть вначале ξ_i — канонические образующие. Пусть, далее, $\Sigma \subset \Lambda_q$ — некоторая система образующих.

Как было показано в п. 1, из конечномерности алгебры Λ_q следует, что Σ содержит конечное подмножество элементов f_i ,

i=1, 2, ..., N, также являющееся системой образующих.

Воспользуемся формулой (1.2.2) и представим каждый элемент f_i в виде $f_i = f_{i,0} + g_i$, где $f_{i,0}$ — число и $\deg g_i \gg 1$. Очечто совокупность элементов g_i также слувидно. жит системой образующих: $\xi_i = P_i(f_1, ..., f_N) = P_i(f_{1,0} + g_1, ...$..., $f_{N,0}+g_N)=Q_i(g_1,...,g_N)$, где Q_i — некоторый полином. Отделяя в каждом полиноме Q_i линейные члены от членов более высокого порядка, находим:

$$\xi_i = \sum_k c_{ik} g_k + \alpha_i, \quad \deg \alpha_i > 1.$$
 (1.2.9)

Выразим теперь g_h через ξ_i и отделим члены 1-го порядка:

$$g_h = \sum b_{hs} \xi_s + \beta_h, \operatorname{deg} \beta_h > 1.$$
 (1.2.10)

Подставляя (1.2.10) в (1.2.9), мы должны получить тождество Следовательно, $\Sigma c_{ik}b_{ks} = \delta_{is}$. Отсюда вытекает, что rang $\|b_{ks}\| \gg q$ и, следовательно, $N \gg q$.

Предположим для простоты, что первые д строк матрицы | | b_{ks} | линейно независимы. Покажем, что в этом случае элементы $g_1, ..., g_q$ в совокупности в единицей служат системой образующих. Положим

$$\zeta_i = \sum_s b_{is} \, \xi_s, \quad i = 1, 2, \ldots, q.$$

Ввиду обратимости матрицы $\|b_{is}\|_{i,s=i}$ элементы ζ_i , подобно ξ_i , служат каноническими образующими. Выражая ξ_i через ζ_i , находим из (1.2.10), что

$$g_h = \zeta_h + \gamma_h(\zeta), \text{ deg } \gamma_h > 1. \tag{1.2.11}$$

Покажем теперь, что ζ_i могут быть выражены в виде полиномов от g_k . Предварительно определим $\gamma_k(a)$ от произвольного набора $a=(a_1,...,a_q)$ элементов Λ_q . Пусть

$$\gamma_k(\zeta) = \sum_{l} \sum_{i_1 < i_2 < \dots < l_l} \gamma_{i_1,\dots,i_k} \zeta_{l_1} \dots \zeta_{i_l}$$

Положим

$$\gamma_k(a) = \sum_{i} \sum_{i_1 < i_2 < \ldots < i_\ell} \gamma_{i_1,\ldots,i_k} a_{i_1} \ldots a_{i_\ell}$$

Рассмотрим соотношения (1.2.11) как уравнения относительно ζ_k и воспользуемся методом последовательных приближений. Положим

$$\zeta_k^{(0)} = 0, \ \zeta_k^{(n)} = g_k - \gamma_k (\zeta^{(n-1)}),$$

$$\alpha_k^{(n)} = \zeta_k^{(n)} - \zeta_k^{(n-1)}.$$
(1.2.12)

Покажем с помощью индукции, что deg $\alpha_{\kappa}^{(n)} \gg n$. Начало индукции при n=1 очевидно. Далее

$$\alpha_k^{(n)} = \gamma_k(\zeta^{(n-2)}) - \gamma_k(\zeta^{(n-1)}) = \gamma_k(\zeta^{(n-2)}) - \gamma_k(\zeta^{(n-2)} + \alpha^{(n-1)}).$$

Ввиду того что deg $\gamma_h \gg 2$, отсюда следует, что

 $\zeta_k^{(n_0)}=\zeta_k$. Пусть $\alpha_k=\zeta_k-\zeta_k^{(n_0)}$. Тогда

$$\deg lpha_k^{(n)}\geqslant \min_i \deg \zeta_i^{(n-2)}+\min_i \deg lpha_i^{(n-1)}.$$
 Из (1.2.12) следует, что $\deg \zeta_i^{(s)}=1$ при $s\geqslant 1$. Поэтому, учитывая

предположение индукции, находим, что $\deg \alpha_k^{(n)} > n$. Ввиду нильпотентности g_k отсюда следует существование такого n_0 , что $\alpha_k^{(n)} = 0$ при $n > n_0$. Другими словами, последовательность $\zeta_k^{(n)}$ стабилизируется: $\zeta_k^{(n)} = \zeta_k^{(n+1)}$ при $n > n_0$. Таким образом, $\zeta_k^{(n)}$ является решением системы уравнений (1.2.11). Очевидно, что $\zeta_k^{(n_0)}$ полиномиально выражаются через g_k . Покажем, что

$$\alpha_k = \gamma_k(\zeta^{(n_0)}) - \gamma_k(\zeta) = \gamma_k(\zeta - \alpha) - \gamma_k(\zeta).$$

Отсюда, повторяя прежнее рассуждение, находим, что если $\alpha_k \neq 0$, то $\deg \alpha_k \geqslant 1 + \min_i \deg \alpha_i$, что невозможно. Следо-

вательно, $\alpha_k = 0$ и тем самым элементы g_k служат системой об-

разующих в Λ_q . Первое утверждение доказано.

Отметим, что одновременно мы получили следующее важное свойство систем образующих. Пусть ξ_i — канонические образующие и Σ — некоторая произвольная система образующих. Система Σ содержит подсистему $\{\eta_i\}$, состоящую из q элементов, которые связаны с ξ_i соотношениями вида (1.2.8). Отсюда второе утверждение теоремы следует очевидным образом.

Рассмотрим теперь более подробно канонические системы об-

разующих.

Теорема 1.2. Пусть $\{\xi_i\}$ — система канонических образующих г. а. Справедливы следующие утверждения.

1) Набор нечетных по отношению к ξ_i элементов $\eta_i \in \Lambda(\xi_1, ..., \xi_q)$, i=1, 2, ..., q, в том и только в том случае служит системой канонических образующих Λ_q , если η_i связаны с ξ_i согласно формуле

$$\eta_i = \sum \psi_{ik} \, \xi_k + \alpha_i, \, \det \| \psi_{ik} \| \neq 0, \, \deg \alpha_i \geqslant 3.$$
 (1.2.13)

2) Произвольный набор элементов η_i , i=1, 2, ..., q, в том и только в том случае служит системой канонических образующих Λ_q , если η_i следующим образом связаны с ξ_i :

$$\eta_i = \zeta_i (1 + \mu),$$
(1.2.14)

где $\{\zeta_i\}$ — система нечетных по отношению к ξ_i канонических образующих Λ_q и μ — нечетный по отношению к ξ_i элемент.

Доказательство. Первое утверждение очевидным образом следует из теоремы 1.1. Перейдем ко второму утверждению *.

Элементы вида (1.2.14) очевидно являются системой канонических образующих. Обратно, пусть $\{\eta_i\}$ — некоторая система канонических образующих. Запишем их в виде $\eta_i = \zeta_i + \theta_i$, где $\zeta_i = {}^{1}\Lambda_q$, $\theta_i = {}^{0}\Lambda_q$, причем deg $\theta_i > 1$. Согласно теореме 1.1 элементы ζ_i составляют систему нечетных образующих по отношению к системе $\{\xi_i\}$. Ввиду нечетности эти образующие являются каноническими, следовательно для любых i и j

$$\eta_i \eta_j + \eta_j \eta_i = 2(\zeta_i \theta_j + \zeta_j \theta_i) = 0. \tag{1.2.15}$$

При i=j отсюда следует, что $\theta_i = \zeta_i \mu_i$ с некоторым $\mu_i \in {}^1\Lambda_q$.

Лемма. Существует элемент $\mu \in {}^{1}\Lambda_{q}$ такой, что для любого i $\mu = \mu_{i} + \zeta_{i}\lambda_{i}$ с некоторым $\lambda_{i} \in \Lambda_{q}$.

Так как $\theta_i = \zeta_i \mu$, отсюда вытекает (1.2.14). Поэтому остается проверить лемму. Применим индукцию по $q \gg 2$. Из (1.2.15) мы

^{*} Приведенное ниже доказательство заменяет неполные рассуждения автора. — Прим. ред.

находим, что $\zeta_i \zeta_j (\mu_i - \mu_i) = 0$, следовательно для любых $i \neq j$ мы имеем

$$\mu_i - \mu_j = \zeta_i \lambda + \zeta_j \varkappa \tag{1.2.16}$$

(1.2.17)

с некоторыми λ , $\kappa \in \Lambda_q$. В частности, имеем что $\mu_1 - \zeta_1 \lambda = \mu_2 + \zeta_2 \kappa$. Это доказывает лемму при q=2.

Пусть q > 2. В силу индуктивного предположения существует элемент μ' такой, что $\mu' = \mu_i + \zeta_i \lambda_i'$ при i = 1, ..., q - 1. Из (1.2.16)

элемент
$$\mu$$
 такой, что $\mu = \mu_i + \zeta_i \lambda_i$ при $i = 1, ..., q - 1$. Из (1.2.16) вытекает, что $\mu' - \mu_q = \zeta_i \lambda_i + \zeta_q \varkappa_i$, откуда при любых $i, j < q$

$$\zeta_i \lambda_i - \zeta_i \lambda_j = \zeta_q (\varkappa_i - \varkappa_i). \tag{1.2.17}$$

Пусть λ_i элемент Λ_{q-1} , полученный из λ_i отбрасыванием членов, содержащих ζ_q . Из (1.2.17) вытекает, что $\zeta_i \widetilde{\lambda}_i = \zeta_j \widetilde{\lambda}_j$ при i, j < q. Отсюда следует, что $\zeta_i \widetilde{\lambda}_i = \lambda_0 \zeta_i \cdot ... \cdot \zeta_{\sigma-i}$, где λ_0 — константа, не зависящая от *i*. Поэтому $\mu' - \mu_{\sigma} = \lambda_0 \zeta_1 \cdot ... \cdot \zeta_{\sigma-1} - \zeta_{\sigma} \varkappa$, т. е.

$$\mu'$$
— $\lambda_0 \zeta_1 \cdot \ldots \cdot \zeta_{q-1} = \mu_q$ — $\zeta_q \kappa$.

Обозначив этот элемент через и, мы завершим доказательство леммы и теоремы.

Следствие 1.1. Пусть $\{\xi_i\}$ — некоторая система канонических образующих г. а. Λ , $\mu \in {}^{1}\Lambda(\xi_{1},...,\xi_{q})$. Рассмотрим пространство ^{1,µ} А, состоящее из элементов вида

$$f(1+\mu), f \in \Lambda(\xi_1, ..., \xi_\mu).$$

Пространство 1,4 совпадает с пространством нечетных элементов по отношению к некоторой системе канонических образующих. Обратно, пространство нечетных элементов по отношению к любой системе канонических образующих может быть получено из ${}^{1}\Lambda(\xi_{1},...,\xi_{q})$ указанным образом.

Оба утверждения являются очевидными следствиями (1,2.14).

3. Автоморфизм четности. Пусть ${}^{0}\Lambda$, ${}^{1}\Lambda$ — пространства четных и нечетных элементов г. а. Л по отношению к некоторой системе канонических образующих.

Определим в Л линейное преобразование А, положив для однородных элементов

$$\mathbf{A}f = (-1)^{\alpha(f)}f.$$
 (1.2.18)

Из (1.2.5) следует, что А является автоморфизмом Л. Автоморфизм А обладает следующими очевидными свойствами:

i) $A^2 = 1$, где 1 — тождественный изоморфизм,

іі) Af = f тогда и только тогда, когда $f ∈ 0\Lambda$.

Произвольный автоморфизм, обладающий этими свойствами. будем называть автоморфизмом четности. Докажем следующее важное утверждение.

Теорема 1.3. Пространство собственных векторов автоморфизма четности с собственным значением, равным -1, совпадает с пространством нечетных элементов по отношению к некоторой канонической системе образующих.

 \mathcal{L} оказательство. Пусть $\{\xi_i\}$ — некоторая каноническая сис-

тема образующих, $\eta_i = A\xi_i$. Согласно (1.2.13), (1.2.14)

$$\eta_i = \xi_i (1 + \mu), \ \xi_i = \sum a_{ik} \xi_k + \sigma_i, \ \deg \sigma_i \geqslant 3,$$
 (1.2.19)

где μ , σ_i — нечетные по отношению к ξ_i элементы.

Рассмотрим элемент $\psi_i = \frac{1}{2} (\xi_i + \eta_i)$. Заметим, что $\mathbf{A}\psi_i = -\psi_i$ ввиду того, что $\mathbf{A}^2 = 1$. Согласно свойству іі) отсюда следует, что $\psi_i = {}^0\Lambda$.

С другой стороны, согласно (1.2.19)

$$\psi_i = \frac{1}{2} \left(\xi_i + \sum a_{ik} \, \xi_k \right) + \frac{1}{2} \, \rho_i, \, \deg \rho_i \geqslant 2.$$

Так как ${}^{0}\Lambda$ состоит из четных по отношению к ξ_{i} элементов, отсюда следует, что $a_{ik} = -\delta_{ik}$ и что $\rho_{i} {\in}^{0}\Lambda_{q}$. Но $\rho_{i} = \Sigma a_{ik}\xi_{k}\mu + \sigma_{i}\mu + \sigma_{i}$. Элемент σ_{i} нечетен по отношению к ξ_{i} , в то время как все остальные слагаемые являются четными. Следовательно, $\sigma_{i} = 0$,

$$\eta_i = -\xi_i (1 + \mu).$$
(1.2.20)

Положим теперь

$$\varphi_i = \frac{1}{2} \left(\xi_i - \eta_i \right) = \xi_i \left(1 + \frac{\mu}{2} \right).$$

Согласно теореме 1.2 элементы φ_i составляют систему канони-

ческих образующих. Очевидно, кроме того, что $\mathbf{A} \mathbf{\phi}_i = -\mathbf{\phi}_i$.

Обозначим пространство собственных векторов автоморфизма Λ с собственным значением $\lambda_1 = -1$ через Λ^- . Из включения $\phi_i = \Lambda^-$ следует, что ${}^1\Lambda(\phi_1,...,\phi_q) \subset \Lambda^-$. С другой стороны, оба этих пространства ${}^1\Lambda(\phi_1,...,\phi_q)$ и Λ^- дополняют ${}^0\Lambda$ до Λ . Следовательно, ${}^1\Lambda(\phi_1,...,\phi_q) = \Lambda^-$.

Следствие 1.2. Пространство ¹А, обладающее свойствами 1)—3), перечисленными в конце п. 1, совпадает с пространством всех нечетных элементов по отношению к некоторой системе

канонических образующих.

В самом деле, определим оператор A: Af = f при $f \in {}^{0}\Lambda$, Af = -f при $f \in {}^{1}\Lambda$. Из свойств 1)—3) следует, что A является автоморфизмом четности.

4. Автоморфизм грассмановой алгебры. Теорема 1.2 позволяет описать все автоморфизмы г. а. В самом деле, пусть T — некоторый автоморфизм г. а. Л. Очевидно, чго T переводит каноническую систему образующих в каноническую систему образующих. Обратно, если заданы две системы канонических образующих $\{\xi_i\}$ и $\{\eta_i\}$ г. а. Λ , то по ним может быть построен автоморфизм T, такой, что $T\xi_i = \eta_i$, причем автоморфизм T этим свойством однозначно определен. Таким образом, формулы (1.2.13), (1.2.14), описывающие пары систем канони-

ческих образующих, одновременно описывают также все автоморфизмы грассмановой алгебры.

Автоморфизмы г. а. Λ образуют группу, которую мы обозначим $\operatorname{Aut}(\Lambda)$. Фиксируем автоморфизм четности Λ . Через $^{A,1}\Lambda$ обозначим подпространство Λ , состоящее из собственных векторов оператора Λ с собственным значением $\lambda=-1$. Напомним, что согласно теореме 1.3 пространство $^{A,1}\Lambda$ состоит из нечетных элементов по отношению к некоторой системе канонических образующих. Через $\operatorname{Aut}_{\Lambda}^{0}(\Lambda)$ обозначим подгруппу $\operatorname{Aut}(\Lambda)$, оставляющую пространство $^{A,1}\Lambda$ инвариантным. Пусть $\xi_{i} \in ^{A,1}\Lambda$ — канонические образующие Λ . Через $\operatorname{Aut}_{\Lambda}^{1}(\Lambda)$ обозначим подгруппу $\operatorname{Aut}(\Lambda)$, состоящую из автоморфизмов вида

$$T \, \xi_i = \xi_i \, (1 + \mu \, (\xi)), \ \mu \, (\xi) \subseteq {}^{A, i} \Lambda.$$
 (1.2.21)

Отметим некоторые свойства этих групп.

1) Из (1.2.14) следует, что каждый автоморфизм $T \in \text{Aut}(\Lambda)$ представим в виде произведения $T = T_1 T_2$, $T_1 \in \text{Aut}^1_A(\Lambda)$, $T_2 \in \text{Aut}^0_A(\Lambda)$. Легко видеть, что это представление однозначно.

2) На четные элементы автоморфизм (1.2.21) действует тождественно; это следует из тождества

$$T(\xi_1 \, \xi_2) = \xi_1 \, (1 + \mu) \, \xi_2 \, (1 + \mu) = \xi_1 \xi_2 \, (1 - \mu) \, (1 + \mu) = \xi_1 \xi_2.$$

3) Из того же тождества следует, что на нечетные по отношению к ξ_1 элементы автоморфизм (1.2.21) действует согласно формуле

$$(Tf)(\xi) = f(\xi)(1 + \mu(\xi)).$$
 (1.2.22)

4) Группа $\operatorname{Aut}_{\mathbf{A}}^{\mathbf{I}}(\Lambda)$ коммутативна и изоморфна $^{\mathbf{A},\mathbf{I}}\Lambda$ как группе по сложению: из (1.2.19) следует, что

$$T_1T_2\xi_i = T_1\xi_i(1+\mu_2(\xi)) = \xi_i(1+\mu_2(\xi)+\mu_1(\xi)).$$

- 5) Группа $\operatorname{Aut}_{\mathbf{A}}^1(\Lambda)$ является нормальным делителем $\operatorname{Aut}(\Lambda)$.
- 6) Группы $\operatorname{Aut}^0_{\mathbf{A}}(\Lambda)$ и $\operatorname{Aut}^1_{\mathbf{A}}(\Lambda)$, отвечающие различным автоморфизмам четности, сопряжены.

Свойства 5) и 6) следуют непосредственно из определений групп $\operatorname{Aut}^{\bullet}_{\mathbf{a}}(\Lambda)$ и $\operatorname{Aut}^{\bullet}_{\mathbf{a}}(\Lambda)$.

7) Множество элементов Aut (A) вида

$$T\xi_i = \xi_i + u(\xi)$$
, deg $u > n$,

образует нормальный делитель $\operatorname{Aut}_A(\Lambda)$, который мы обозначим $\operatorname{Aut}_n(\Lambda)$. В отличие от групп $\operatorname{Aut}_A^0(\Lambda)$ и $\operatorname{Aut}_A^1(\Lambda)$ он не зависит от выбора автоморфизма четности.

Перейдем к индивидуальным автоморфизмам. Пусть $T \in Aut(\Lambda)$ и $\{\xi_i\}$ — некоторая каноническая система образующих. Согласно (1.2.13)

$$T\xi_i = \sum \psi_{ik} \xi_k + \alpha_i, \det \|\psi_{ik}\| \neq 0, \deg \alpha_i \geqslant 2.$$
 (1.2.23)

Автоморфизм $T_{\mathbf{i}}$:

$$T_1 \xi_i = \sum \psi_{ih} \xi_k$$

называется главной линейной частью автоморфизма T, матрица $\Psi = \|\psi_{ik}\|$ — матрицей главной линейной части.

В другой системе образующих $\{\eta_i\}$ автоморфизм (1.2.23) задается аналогичной формулой с заменой матрицы $\Psi = \|\psi_{ih}\|$ матрицей $\widetilde{\Psi} = \|\widetilde{\psi}_{ih}\|_h$. Легко видеть, что матрицы Ψ и $\widetilde{\Psi}$ сопряжены: $\widetilde{\Psi} = C\Psi C^{-1}$, где C — матрица главной линейной части автоморфизма U, переводящего систему ξ_i в систему η_i : $U\xi_i = \eta_i = \Sigma c_{ih} \xi_h + \beta_i$, deg $\beta_i \geqslant 2$. Если в формуле (1.2.23) элементы $\alpha_i = 0$, то автоморфизм T называется линейным в системе образующих $\{\xi_i\}$. Автоморфизм T называется полупростым, если существует система образующих, в которой он линеен. Укажем простой достаточный критерий полупростоты автоморфизма.

Теорема 1.4. Пусть матрица главной линейной части автоморфизма T приводится к диагональной форме и ее собственные числа λ_i удовлетворяют условиям

$$\lambda_i \neq \lambda_{j_1} \dots \lambda_{j_{2k+1}}, \ j_1 < \dots < j_{2k+1}, \ k = 1, 2, \dots;$$
 (1.2.24)
 $1 \neq \lambda_{j_1} \dots \lambda_{j_{2k+1}}, \ j_1 < \dots < j_{2k+1}, \ k = 0, 1, \dots$ (1.2.25)

Tогда автоморфизм T полупрост.

Если $T \in Au$ t_A^0 (Λ) при каком-нибудь автоморфизме четнос-

ти А, то для полупростоты достаточно условия (1.2.24).

 \mathcal{L} оказательство. Так как матрица главной линейной части автоморфизма T приводится к диагональной форме, то в подходящей системе канонических образующих он имеет вид

$$T\xi_i = (\lambda_i \xi_i + u_i(\xi)) (1 + \mu(\xi)), \ u_i, \ \mu \subseteq {}^{1}\Lambda(\xi_1, \ldots, \xi_g), \ \deg u_i \geqslant 3.$$

Рассмотрим образующие

$$\eta_i = \xi_i + a_i(\xi), \ a_i \in \Lambda(\xi_i, ..., \xi_q), \ \deg a_i = \deg u_i,$$

элементы a_i определим явным образом позже. Заметим, что

$$\xi_i = \eta_i - a_i(\eta) + \alpha_i$$
, deg $\alpha_i > \deg a_i$.

Отсюда следует, что в образующих η_i автоморфизм T имеет вид

$$T\eta_i = [\lambda_i(\eta_i - a_i(\eta)) + u_i(\eta) + a_i(\lambda n) + v_i](1 + \mu),$$

где $\deg v_i > \deg u$ и $\lambda\eta$ означает набор элементов $\lambda_1\eta_1$, $\lambda_2\eta_2$, ... Определим $a_i(\eta)$ из условия

$$\lambda_i a_i(\eta) - a_i(\lambda \eta) = u_i(\eta). \tag{1.2.26}$$

Уравнения (1.2.26) разрешимы в силу условий (1.2.24). Таким образом,

$$T\eta_i = (\lambda_i \eta_i + v_i) (1 + \mu), \deg v_i > \deg u_i,$$

продолжая этот процесс, мы через конечное число шагов придем к образующим ζ_i , таким, что

$$T\zeta_i = \lambda_i \zeta_i (1+\mu)$$
.

Положим

$$\varphi_i = \zeta_i (1 + v(\zeta)),$$

где $\nu(\zeta)$ \in $^1\Lambda(\zeta)$ мы определим из уравнения

$$v(\zeta) - v(\lambda \zeta) = \mu(\zeta). \tag{1.2.27}$$

Уравнение (1.2.27) разрешимо в силу условий (1.2.25). В системе образующих φ_i автоморфизм T линеен:

$$T\varphi_i = \lambda_i \varphi_i (1 - \nu(\varphi) + \nu(\lambda \varphi) + \mu(\varphi)) = \lambda_i \varphi_i.$$

5. Антиавтомор физмы грассмановой алгебры. Антиавтоморфизмом ${\mathscr T}$ называется отображение алгебры в себя со свойствами:

i)
$$\mathcal{T}(\lambda f + \mu g) = \bar{\lambda} \mathcal{T} f + \tilde{\mu} \mathcal{T} g$$
,

ii)
$$\mathcal{T}(fg) = \mathcal{T}g\mathcal{T}f$$
,

iii)
$$\mathcal{T}^2 = T$$
,

где λ , μ — числа, T — обратимое отображение алгебры в себя. Из свойств i), ii) и обратимости следует, что отображение T является автоморфизмом алгебры. Легко видеть, что образ канонической системы образующих г. а. при антиавтоморфизме также является канонической системой образующих.

Для нас в дальнейшем особую роль будут играть антиавтоморфизмы с единичным оператором T и с оператором T, являющимся автоморфизмом четности. Эти антиавтоморфизмы мы будем называть соответственно инволюцией 1-го рода и инволюцией 2-го рода. Для них мы применим специальное обозначение: $\mathcal{T}f=f^*$. В случае, если автоморфизм $T=\mathcal{T}^2$ нолупрост, для антиавтоморфизма \mathcal{T} существует каноническая система образующих, в которых он записывается линейно.

Теорема 1.5. Пусть \mathscr{T} — антиавтоморфизм г. а. Λ , обладающий тем свойством, что автоморфизм $T=\mathscr{T}^2$ полупрост. Тогда в Λ существует такая каноническая система образующих $\{\xi_i\}$, что

$$\mathcal{F}\xi_i = \sum a_{ik}\xi_k. \tag{1.2.28}$$

Если, сверх того, матрица главной линейной части автоморфизма T приводится к диагональной форме, то образующие ξ_i можно выбрать так, чтобы матрица $\|a_{ik}\|$ была вещественной. (По-

следнее утверждение имеет смысл лишь для комплексных г. а.) Доказательство. Пусть $\{\xi_i\}$ — система канонических образующих, в которых автоморфизм $T=\mathcal{T}^2$ линеен: $T\xi_i=\Sigma u_{in}\xi_n$. Так как $\{\mathcal{T}\xi_i\}$ — также каноническая система образующих, то согласно (1.2.14)

$$\mathcal{F}\xi_i = \sum a_{ik} (\xi_k + \sigma_k) (1 + \mu), \qquad (1.2.29)$$

где

$$\det \|a_{ik}\| \neq 0$$
, σ_k , $\mu \in {}^{1}\Lambda(\xi)$, $\deg \sigma_k > 1$.

Рассмотрим в Λ вспомогательный антиавтоморфизм $f \rightarrow \tilde{f}$, определяемый равенствами

$$\widetilde{\xi}_i = \sum a_{in} (\xi_n + \sigma_n). \tag{1.2.30}$$

Роль этого преобразования состоит в следующем: если f — нечетный относительно ξ_i элемент, то \tilde{f} обладает тем же свойством и, как легко видеть,

$$\mathcal{F}f = \tilde{f}(1+\mu)$$
.

Вернемся к (1.2.29) и воспользуемся соотношением $\mathcal{F}^2 = T$:

$$T\xi_{i} = \sum u_{in}\xi_{n} = \sum \overline{a}_{ik}\mathcal{T}(1+\mu)\mathcal{T}(\xi_{k}+\sigma_{k}) =$$

$$= \sum \overline{a}_{ik}(1+\widetilde{\mu}(1+\mu))\left[\sum a_{ks}(\xi_{s}+\sigma_{s})(1+\mu)+\widetilde{\sigma}_{k}(1+\mu)\right] =$$

$$= \sum \overline{a}_{ik}\sum a_{ks}(\xi_{s}+\sigma_{s}+\sum \widetilde{a}_{st}\widetilde{\sigma}_{t})(1+\mu-\widetilde{\mu}),$$

где σ_t , μ имеют смысл, объясняемый равенством (1.2.30) и $\|\tilde{a}_{st}\| = \|a_{hs}\|^{-1}$. Приравнивая члены 1-й степени по ξ_i , получаем отсюда, что $u_{in} = \Sigma \bar{a}_{is} a_{sn}$. Учитывая это соотношение, окончательно получаем

$$\xi_{s} = (\xi_{s} + \sigma_{s} + \Sigma \widetilde{a}_{s} \widetilde{\sigma}_{t}) (1 + \mu - \widetilde{\mu}). \tag{1.2.31}$$

Отделим теперь в (1.2.31) четные и нечетные по ξ_i члены:

$$(\xi_{l} + \sigma_{l} + \sum \widetilde{a}_{in}\widetilde{\sigma}_{n})(\mu - \widetilde{\mu}) = 0,$$

$$(1.2.32)$$

$$\sigma_i + \Sigma \widetilde{a}_{ik} \widetilde{\sigma}_k = 0.$$

Рассмотрим новые образующие

$$\eta_i = \xi_i + \alpha_i, \tag{1.2.33}$$

где α_i — пока неопределенные нечетные элементы, deg $\alpha_i > 3$. Применяя антиавтоморфизм \mathcal{T} к η_i , получаем

$$\mathcal{T}\eta_{i} = \mathcal{T}\xi_{i} + \mathcal{T}\alpha_{i} = \sum a_{in}(\xi_{n} + \sigma_{n})(1 + \mu) + \tilde{\alpha}_{i}(1 + \mu) = \sum a_{in}(\eta_{n} + \sigma_{n})(1 + \mu),$$

$$\sigma_i' = \sigma_i - \alpha_i + \Sigma \widetilde{a}_{in} \widetilde{\alpha}_n. \tag{1.2.34}$$

Положим $\alpha_i = \frac{1}{2} \, \sigma_i$. Из второго равенства (1.2.32) следует, что $\sigma'_i = 0$. Таким образом,

$$\mathcal{F}\eta_i = \sum a_{in}\eta_n (1+\mu). \tag{1.2.35}$$

Рассмотрим вспомогательный антиавтоморфизм $f \rightarrow \hat{f}$, аналогичный (1.2.30):

$$\mathring{\eta}_t = \sum a_{tn} \eta_n. \tag{1.2.36}$$

Заметим, что $\mathcal{F}_g = \overset{\circ}{g}(1+\mu)$ для любого нечетного элемента g. Условие $\mathcal{F}^2 = T$ приводит к соотношению, которое получается из 1-го равенства (1.2.32) при $\xi_i = \eta_i$, $\sigma_i = \overset{\circ}{\sigma}_i = 0$, $\overset{\circ}{\mu} = \overset{\circ}{\mu}$:

$$\eta_i (\mu - \mathring{\mu}) = 0.$$
(1.2.37)

Так как это соотношение справедливо при всех i, из него следует, что

$$\mathring{\mu} = \mu + c\eta_1 \dots \eta_q, \tag{1.2.38}$$

где q — число канонических образующих (c=0 в случае четного q). Положим теперь $\zeta_i = \eta_i (1 + \mu/2)$. Образующие ζ_i являются искомыми:

$$\mathcal{F}\xi_{i} = \mathcal{F}\left(1 + \frac{\mu}{2}\right)\mathcal{F}\left(\eta_{i}\right) = \left(1 + \frac{\mathring{\mu}}{2}\left(1 + \mu\right)\right)\Sigma a_{ik}\eta_{k}\left(1 + \mu\right) =$$

$$= \Sigma a_{ik}\eta_{k}\left(1 + \mu - \frac{\mathring{\mu}}{2}\right) = \Sigma a_{ik}\eta_{k}\left(1 + \frac{\mu}{2} - \frac{c}{2}\eta_{1}\dots\eta_{q}\right) =$$

$$= \Sigma a_{ik}\xi_{k}\left(1 - \frac{\mu}{2}\right)\left(1 + \frac{\mu}{2}\right) = \Sigma a_{ik}\xi_{k}. \tag{1.2.39}$$

Перейдем ко второму утверждению теоремы. Заметим, что если антиавтоморфизм $\mathcal F$ имеет вид (1.2.28) в канонической системе образующих $\{\xi_i\}$, то он имеет аналогичный вид в любой системе образующих $\{\eta_i\}$, линейно связанной с $\{\xi_i\}$. При этом если в системе $\{\xi_i\}$ автоморфизм задается матрицей $A = \|a_{ik}\|$, то в системе $\{\eta_i\}$ — матрицей $B = \overline{C}^{-1}AC$, где C — матрица перехода от системы $\{\xi_i\}$ к системе $\{\eta_i\}$: $\xi_i = \sum c_{ik}\eta_k$. Поэтому для завершения доказательства теоремы осталось убедиться в справедливости следующего утверждения.

Лемма 1.1. Пусть A — комплексная квадратная матрица со свойствами: 1) $\det A \neq 0$, 2) матрица $U = \overline{A}A$ приводится к диагональной форме. Тогда существует такая комплексная невы-

рожденная матрица C и такая вещественная матрица W, что $A = \overline{C} W C^{-1}$.

Доказательство. Рассмотрим матрицу $U=\bar{A}A$. Она обладает следующими свойствами: 1) согласно условию $U=XEX^{-1}$, где E — диагональная матрица; 2) коэффициенты характеристического многочлена матрицы U вещественны; 3) $\det U=|\det A|^2>>0$. Из первых двух свойств следует представимость матрицы U в виде $U=YVY^{1-}$, где V — вещественная матрица. Из третьего свойства следует, что $\det V>0$. Из этих свойств матрицы V вытекает, что из V извлекается квадратный корень в классе вещественных матриц $V=W^2$, где W — вещественная матрица $V=W^2$ Положим теперь

$$C = Y \overline{W} \theta + \overline{A} \overline{Y} \overline{\theta}, \qquad (1.2.40)$$

где $|\theta|=1$ — комплексное число. Число θ выберем из условия $\det C \neq 0$. Очевидно, что это всегда можно сделать. Далее:

$$\overline{A}\,\overline{C} = \overline{A}\,\overline{Y}\,\overline{W}\,\overline{\theta} + Y\overline{W}^2Y^{-1}Y\theta = (\overline{A}\,\overline{Y}\,\overline{\theta} + Y\overline{W}\theta)\,\overline{W} = C\overline{W}, (1.2.41)$$

что эквивалентно доказываемому утверждению.

Из теоремы 1.5 вытекает ряд следствий, касающихся инволюций.

Следствие 1. Пусть Λ_q — вещественная г. а. с инволюцией 1-го рода. В Λ_q существует каноническая система образующих ξ_i , на которые инволюция действует следующим образом:

$$\xi_{i} = \varepsilon_{i} \xi_{i}, \ \varepsilon_{i} = \left\{ \begin{array}{l} 1, \ 1 \leqslant i \leqslant s, \\ -1, \ s+1 \leqslant i \leqslant q. \end{array} \right.$$
 (1.2.42)

Число s зависит только от инволюции и не зависит от системы образующих с этим свойством.

Доказательство. Пусть $\{\eta_i\}$ — каноническая система образующих, на которые инволюция действует согласно формуле (1.2.28) с вещественной матрицей $A = \|a_{ih}\|$. Ввиду того что $(\eta_i^*)^* = \eta_i$, матрица A инволютивна: $A^2 = I$. Следовательно, она приводится к диагональной форме в вещественной области: $A = C^{-1}EC$, где C — вещественная матрица и $E = \text{diag}(\varepsilon_i, ..., \varepsilon_q)$, причем $\varepsilon_i = \pm 1$. При надлежащей нумерации ε_i имеют тот же вид, что в (1.2.42). Образующие $\xi_i = \sum c_{ih} \eta_h$ обладают нужным свойством.

Пусть $\{\xi'_i\}$ — другая система канонических образующих со свойством, аналогичным (1.2.42): $\xi_i'^* = \varepsilon'_i \xi'_i$, $\varepsilon'_i = \pm 1$. Выразим ξ'_i через ξ_i :

$$\xi_i = \sum b_{ik} \xi_k + \sigma_i, \ \deg \sigma_i > 1. \tag{1.2.43}$$

Из (1.2.43) следует, что матрицы $E={\rm diag}\,(\varepsilon_1,...,\varepsilon_q),\; E'=={\rm diag}\,(\varepsilon'_1,...,\varepsilon'_q)$ связаны соотношением $E'=B^{-1}EB,\;\;$ где $B==\|b_{ik}\|.$ Поэтому sp $E={\rm sp}\,E',\;$ что эквивалентно доказываемому утверждению.

Следствие 2. Пусть Λ_q — комплексная грассманова алгебра

с инволюцией 1-го рода. В Λ_q существует система канонических образующих $\{\zeta_i\}$, инвариантных относительно инволюции:

$$\zeta_i^{\bullet} = \zeta_i. \tag{1.2.44}$$

При четном q в Λ_q существует каноническая система образующих ϕ_i , ψ_i , 1 < i < q/2, на которые инволюция действует следующим образом:

$$\varphi_i^{\bullet} = \psi_i, \ \psi_i^{\bullet} = \varphi_i. \tag{1.2.45}$$

Доказательство. Прежде всего, так же как в вещественном случае, устанавливаем существование канонической системы образующих $\{\zeta_i\}$ со свойством (1.2.42). Затем полагаем $\zeta_k = \xi_k$ при k < s, $\zeta_k = i\xi_k$ при k > s, где $i = \sqrt[4]{-1}$. При четном q полагаем

$$\varphi_k = \zeta_k + i\zeta_{\frac{q}{2}+k}, \quad \psi_k = \zeta_k - i\zeta_{\frac{q}{2}+k}, \quad 1 \leqslant k \leqslant q/2.$$

Следствие 3. 1) Инволюция второго рода в г. а. Λ_q существует только при четном q.

2) Пусть Λ_q — г. а. с инволюцией 2-го рода \mathscr{F} . Тогда в Λ_q существует каноническая система образующих ϕ_k , ψ_k , 1 < k < < q/2, на которые инволюция действует согласно формуле

$$\mathcal{T}\varphi_k = \psi_k, \ \mathcal{T}\psi_k = -\varphi_k. \tag{1.2.46}$$

Доказательство. Пусть в Λ_q существует инволюция 2-го рода. Обозначим через $\{\xi_i\}$ каноническую систему образующих, на которые инволюция действует согласно формуле (1.2.28) с вещественной матрицей $A = \|a_{ik}\|$. Заметим, что $A^2 = I$. В самом деле, матрица $B = A^2$ является матрицей главной линейной части автоморфизма четности $A = \mathcal{F}^2$. Поэтому $B^2 = I$. Если $B \neq -I$, то, следовательно, у B имеется собственный вектор $s = (s_1, ..., s_q)$ с собственным значением $\lambda = +1$: $s_k = \sum b_{ki} s_i$. В этом случае элемент $\xi = \sum s_k \xi_k$ инвариантен относительно автоморфизма A и, следовательно, четен, что невозможно.

Итак, $A^2 = -I$. Следовательно, собственные числа A равны $\pm i$. Ввиду вещественности A кратность собственного числа $\lambda = -i$ должна совпадать с кратностью собственного числа $\lambda = -i$. Поэтому число q должно быть четным.

Заметим, что из условня $A^2 = -I$ следует, что матрица обладает полной системой собственных векторов. Пусть T — клеточно-диагональная матрица порядка q

$$T = \begin{pmatrix} \tau & 0 \\ 0 & \tau \end{pmatrix}, \ \tau = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}.$$

Матрица T обладает, подобно матрице A, полной системой собственных векторов, ее собственные числа равны $\pm i$, причем

кратность собственного числа $\lambda = i$ равна кратности собственного числа $\lambda = -i$. Поэтому существует обратимая комплексная матрица C, такая, что

$$A = CTC^{-1}$$
. (1.2.46')

Ввиду того что матрицы A и T обе вещественны, из существования комплексной матрицы C со свойством (1.2.46') вытекает существование вещественной матрицы с тем же свойством 1 . Отсюда, в свою очередь, нужное утверждение следует очевидным образом.

6. Подалгебры и факторалгебры грассмановой алгебры. Г. А. обладает значительным количеством разнообразных подалгебр. Наиболее существенными являются следующие два типа.

1) Подалгебры $\Lambda^{(s)}$, состоящие из элементов $f \in \Lambda$, удовлет-

воряющих условию deg > s. Все они являются идеалами.

2) Подалгебры, которые сами являются грассмановыми алгебрами, и идеалы, факторалгебры которых являются грассма-

новыми алгебрами.

Из идеалов 1-го типа важнейшим является идеал $\Lambda^{(1)}$, состоящий из всех нильпотентных элементов алгебры Λ . Если $\Lambda = \Lambda(\mathbf{K})$ является алгеброй над \mathbf{K} , то факторалгебра $\Lambda/\Lambda^{(1)}$ изоморфна \mathbf{K} . Гомоморфизм $\Lambda(\mathbf{K}) \to \mathbf{K}$ обозначим через m. Он играет в дальнейшем фундаментальную роль. Если элемент $f \in \Lambda$ записан с помощью некоторой канонической системы образующих в виде (1.2.2), как функция антикоммутирующих переменных, то гомоморфизм m записывается формулой

$$m(f) = f(0) = f_0,$$
 (1.2.47)

где f_0 — слагаемое в правой части (1.2.2), отвечающее k=0. Очевидно, что m является единственным гомоморфизмом $\Lambda(K)$ в K, кроме нулевого (т. е. гомоморфизма ϕ , что $\phi(f)=0$ при всех $f \in \Lambda$). Другими словами, f(0) является единственным численным значением, которое может принимать функция от антикоммутирующих переменных. В этом проявляется принципиальное различие между обычными функциями и функциями от антикоммутирующих переменных.

Перейдем ко второму типу. Введем следующее важное по-

нятие.

Элементы $\xi_i \in \Lambda_q$, i=1, 2, ..., s < q, называются независимыми, если порождаемая ими и единицей подалгебра изоморфна грассмановой алгебре Λ_s .

Очевидно, что любое подмножество системы канонических образующих состоит из независимых элементов. Обратное не

¹ Пусть $C=C_1+iC_2$. Из (1.2.46°) следует, что $AC_1=C_1T$ и $AC_2=C_2T$. Полагая $C(\lambda)=C_1+\lambda C_2$, находим, что $AC(\lambda)=C(\lambda)T$ при любом λ . Выбирая λ вещественным и удовлетворяющим условию $\det C(\lambda)\neq 0$, получаем нужное утверждение.

верно: в грассмановой алгебре Λ_q при $q \gg 2$ легко указать независимые элементы, которые нельзя включить ни в какую каноническую систему образующих.

Пусть теперь грассманова алгебра $\widetilde{\Lambda}_s$ служит гомоморфным образом Λ_q . Через $\varphi: \Lambda_q \to \widetilde{\Lambda}_s$ обозначим соответствующий гомоморфизм и через N — идеал, состоящий из элементов, обращающихся в ноль при гомоморфизме φ .

Теорема 1.6. 1) Идеал N порожден независимыми элементами $\eta_1, ..., \eta_{q-s}$, которые могут быть включены в каноническую систему образующих.

2) Пусть ξ_i , ..., ξ_s — элементы, дополняющие η_1 , ..., η_{q-s} до канонической системы образующих. Их образы $\widetilde{\xi_i} = \varphi(\xi_i)$ служат каноническими образующими в $\widetilde{\Lambda}_s$.

Заметим, что действие гомоморфизма ϕ на элемент f состоит в следующем: если

$$f = f(\xi, \eta) = \sum_{k} \sum_{\substack{i_1, \dots, i_k \\ j_1, \dots, j_l}} f_{i_1, \dots, i_k} \xi_{i_1} \dots \xi_{i_k} \xi_{i_1} \dots \xi_{i_k} + \sum_{k} \sum_{\substack{i_1, \dots, i_k \\ j_1, \dots, j_l}} f_{i_1, \dots, i_k j_1, \dots j_l} \xi_{i_1} \dots \xi_{i_k} \eta_{i_1} \dots \eta_{i_l}, [(1.2.48)]$$

TO

$$(\varphi f)(\widetilde{\xi}) = f(\widetilde{\xi}, 0) = \sum_{k} \sum_{i_1, \dots, i_k} f_{i_1, \dots, i_k} \widetilde{\xi}_{i_1} \dots \widetilde{\xi}_{i_k}. \quad (1.2.48')$$

В частности, существует естественный изоморфизм между факторалгеброй и подалгеброй, порожденной элементами ξ_ε. Поэтому эти алгебры могут быть отождествлены.

 $\widetilde{\mathcal{H}}_{o}$ казательство. Пусть $\{\xi_i\}$ — некоторая система канонических образующих Λ_q , $\widetilde{\xi}_i = \varphi(\xi_i) \in \widetilde{\Lambda}_s$ — образ ξ_i при гомоморфизме φ . Очевидно, что набор элементов $\widetilde{\xi}_i$ служит системой образующих в $\widetilde{\Lambda}_s$. Согласно теореме 1.1 из него можно выделить s элементов, также служащих системой образующих в $\widetilde{\Lambda}_s$. Пусть для определенности это $\widetilde{\xi}_1$, ..., $\widetilde{\xi}_s$.

Ввиду того что ϕ — гомоморфизм, $\tilde{\xi}_i$ удовлетворяют тем же соотношениям (1.2.1), что и $\tilde{\xi}_i$, следовательно, $\tilde{\xi}_1$, ..., $\tilde{\xi}_s$ служат каноническими образующими в $\tilde{\Lambda}_s$.

Пусть $\mathring{\Lambda}_{q}^{(1)} \subset \mathring{\Lambda}_{q}$, $\mathring{\Lambda}^{(1)}_{s} \subset \widetilde{\Lambda}_{s}$ — пространства однородных элементов 1-й степени в смысле deg по отношению к образующим $\xi_{i} \in \mathring{\Lambda}_{q}$ и $\widetilde{\xi}_{i} \in \widetilde{\Lambda}_{s}$ соответственно. Заметим, что $\phi(\mathring{\Lambda}_{q}^{(1)}) = \mathring{\mathring{\Lambda}}_{s}^{(1)}$ и что $\dim \mathring{\Lambda}_{q}^{(1)} = q$, $\dim \mathring{\mathring{\Lambda}}_{s}^{(1)} = s$. Следовательно, в $\mathring{\Lambda}^{(1)}_{q}$ должно существовать подпространство размерности q-s, аннулируемое отображением ϕ . Обозначим это подпространство $N^{(1)}_{q-s}$, под-

 $\mathring{\Lambda}_{s}^{(1)}$. Очевидно, что эти подпространства не пересекаются и, следовательно, их прямая сумма совпадает с $\mathring{\Lambda}_{q}^{(1)}$. Введем в $N^{(1)}_{q-s}$ каким-нибудь образом базис, обозначим его η_{i} , i=1,2,...,q-s. Очевидно, что совокупность элементов $\xi_{1},...,\xi_{s},\eta_{1},...,\eta_{q-s}$ образует каноническую систему образующих в Λ_{q} . Поэтому любой элемент Λ_{q} представим в виде (1.2.48). Ввиду того что $\varphi(\xi_{i}) = \widetilde{\xi}_{i}, \varphi(\eta_{i}) = 0$, гомоморфизм φ на произвольный элемент f действует согласно формуле (1.2.48'). Таким образом, элементы η_{i} служат образующими идеала N. Первое утверж-

пространство, порожденное образующими \$1, ..., \$5, обозначим

дение доказано. Пусть теперь ζ_i , $i=1,\ 2,\ ...,\ s,\ -$ произвольные элементы, которые в совокупности с η_i составляют каноническую систему образующих Λ_q . Запишем элемент f через $\zeta_i,\ \eta_i$. Аналогично (1.2.48) и применим гомоморфизм ϕ . Элемент $\phi(f)$ выразится через $\widetilde{\zeta}_i = \phi(\zeta_i)$ аналогично (1.2.48). Ввиду того что любой элемент $\widetilde{\Lambda}_s$ представляется в виде $\phi(f)$, $f \in \Lambda_q$, отсюда следует, что ζ_i служат системой образующих в $\widetilde{\Lambda}_s$. Так как их число равно s и они, подобно ζ_i , удовлетворяют соотношениям (1.2.1), то, следовательно, образующие ζ_i являются каноническими.

7. О понятии «четность». Некоторые терминологические соглашения. Мы будем говорить, что в г. а. А фиксирована четность, если в ней указано подпространство ¹А, состоящее из нечетных элементов по отношению к некоторой системе канонических образующих.

Как было показано в п. 4, каждое пространство нечетных элементов однозначно связано с некоторым автоморфизмом четности A: оно состоит из собственных векторов A с собственным значением, равным -1.

Таким образом, задать четность можно, фиксировав автоморфизм четности. Четность является важнейшей дополнительной структурой г. а.

В г. а. с фиксированной четностью элементы пространства $^{1}\Lambda$, определяющего эту четность, называются нечетными, элементы пространства $^{0}\Lambda$ называются четными. Во всех встречающихся в дальнейшем грассмановых алгебрах четность считается фиксированной, канонические образующие всегда нечетны. Оговорок по этому поводу не делается.

Четность грассмановой алгебры является частным случаем более общего понятия четности. Приведем его. Пусть L — некоторое линейное пространство, в котором фиксированы два непересекающихся подпространства, такие, что L является их прямой суммой: $L={}^{0}L \bigoplus {}^{1}L$. Линейные пространства с такой дополнительной структурой называются Z_2 -градуированными, элементы пространств ${}^{0}L$ и ${}^{1}L$ называются однородными. Мы будем говорить, что в Z_2 -градуированном пространстве фиксирована четность, если одно из подпространств объявлено чет-

ным, другое — нечетным. Элементы этих подпространств называются в таком случае соответственно четными и нечетными. Для однородных элементов вводится функция четности

$$\alpha(f) = \begin{cases} 0, & \text{если } f \text{ четен,} \\ 1, & \text{если } f \text{ нечетен.} \end{cases}$$
 (1.2.49)

Суммы вида $\alpha(f) + \alpha(g)$ понимаются по mod 2.

С помощью функции четности вводится линейный оператор А: для однородных элементов

$$Af = (-1)^{\alpha(f)}f,$$
 (1.2.50)

на элементы общего вида оператор A распространяется по линейности. Очевидно, что $A^2=1$.

Оператор A, будучи линейным и обратимым, является автоморфизмом L как линейного пространства. В случае, если пространство L не обладает дополнительными алгебраическими структурами, четность в нем можно ввести двумя способами: каждое из подпространств ^{0}L и ^{1}L может быть объявлено четным или нечетным. При наличии дополнительной структуры всегда будет требоваться, чтобы оператор A был ее автоморфизмом. Это требование может уничтожить симметрию между ^{0}L и ^{1}L . Случай, когда $L=\Lambda$, служит примером такой ситуации (дополнительной структурой служит умножение в Λ). В случае, если в Z_{2} -градуированном линейном пространстве $L=^{0}L \oplus ^{1}L$ фиксирована четность, индекс 0 всегда в дальнейшем будет приписываться четному подпространству, индекс 1— нечетному.

Пусть L, M — Z_2 -градуированные линейные пространства с фиксированной четностью. Гомоморфизм $T:L\to M$ называется градуированным, если он сохраняет четность элементов: $T^0L\subset {}^0M$, $T^1L\subset {}^1M$.

§ 3. АЛГЕБРЫ Л(U)

1. Функции со значениями в грассмановой алгебре. Пусть E — произвольное множество, Λ — грассманова алгебра над K, Λ^E — алгебра всех функций на E со значениями в Λ . В дальнейшем нам встречается главным образом, случай, когда E является бесконечно дифференцируемым многообразием. В этом случае в Λ^E существует подалгебра, которая состоит из всех бесконечно дифференцируемых функций на E со значением в Λ . Эту подалгебру обозначим $\Lambda(E)$.

Пусть $\{\xi_i\}$ — система канонических образующих Λ . С ее помощью каждый элемент $f \in \Lambda^E$ может быть записан в виде

$$f = f(x, \xi) = \sum_{k \geq 0} \sum_{i_1, \dots, i_k} f_{i_1, \dots, i_k}(x) \, \xi_{i_1} \dots \, \xi_{i_k}, \qquad (1.3.1).$$

где $x \in E$, $f_{i_1,...,i_k}(x)$ — вещественно- или комплекснозначные функции на E, в зависимости от того, вещественной или комплексной является алгебра Λ . В случае, если E — бесконечно дифференцируемое многообразие и $f \in \Lambda(E)$, функции $f_{i_1,...,i_k}$ бесконечно дифференцируемы. Функции $f_{i_1,...,i_k}$ если противное не оговорено, будут всегда считаться антисимметричными по отношению к индексам $i_1, ..., i_k$.

В алгебру $\Lambda(E)$ естественным образом вводится понятие сходимости: последовательность $f_n \in \Lambda(E)$ сходится к $f \in \Lambda(E)$, если все коэффициентные функции элементов f_n , f_{n,i_1,\ldots,i_k} , вместе со всеми своими производными сходятся к соответствующим коэффициентным функциям и их производным равномерно на каждом компакте $F \subset E$. Легко видеть, что хотя сами коэффициентные функции f_{n,i_1,\ldots,i_k} , f_{i_1,\ldots,i_k} зависят от выбора канонической системы образующих в Λ , определение сходимости от этого выбора не зависит.

Аргумент ξ в выражении $f(x, \xi)$ символизирует систему образующих $\{\xi_i\}$, использованную для записи f в виде (1.3.1). В дальнейшем, однако, мы придадим этому аргументу менее

формальный смысл.

На алгебры Λ^{E} переносятся понятия четности и степени элементов, имеющиеся в г. а. Λ .

Элемент $f \in \Lambda^E$ называется четным, если $f(x) \in {}^{0}\Lambda$ и нечетным — если $f(x) \in {}^{1}\Lambda$ при каждом $x \in E$.

Другими словами элемент f четен, если в правой части (1.3.1) присутствуют слагаемые только с четными k, и нечетен — если только с нечетными k. Как четные, так и нечетные элементы называются однородными в смысле четности. Для однородных в смысле четности элементов определена функция четности $\alpha(f)$ в соответствии с общей формулой (1.2.49). Отметим, что множество четных элементов Λ^E совпадает с $(^0\Lambda)^E$, множество нечетных элементов — с $(^1\Lambda)^E$, где в соответствии с общими обозначениями $(^0\Lambda)^E$, $(^1\Lambda)^E$ означают множества всех функций на E со значениями в $^0\Lambda$ и $^1\Lambda$ соответственно. В случае, если E — бесконечно дифференцируемое многообразие, подмножества $(^0\Lambda)^E$ и $(^1\Lambda)^E$, состоящие из бесконечно дифференцируемых функций, будем обозначать $^0\Lambda(E)$ и $^1\Lambda(E)$ соответственно.

Степенью $f \in \Lambda^E$ будем называть число $\deg f = \min \deg f(x)$. Пусть m, n — неотрицательные целые числа. Через $(\Lambda^E)^{m,n}$ будем обозначать множество, состоящее из всевозможных наборов m четных и n нечетных элементов

$$\Lambda^{E}: (f_{1}(x), ..., f_{m}(x), \varphi_{1}(x), ..., \varphi_{n}(x)) \in (\Lambda^{E})^{m+n}, \alpha(f_{i}) = 0,$$

 $\alpha(\varphi_{i}) = 1.$

В $(\Lambda^E)^{m,n}$ естественным образом определяется операция сложения, а также операция умножения элементов $(\Lambda^E)^{m,n}$ на элементы $({}^0\Lambda)^E$ со свойством дистрибутивности. Таким образом,

 $(\Lambda^E)^{m,n}$ является модулем над $({}^0\Lambda)^E$. В случае, если E — бесконечно дифференцируемое многообразие, подмножество $(\Lambda^E)^{m,n}$, состоящее из наборов бесконечно дифференцируемых функций $f_i(x)$, $\phi_i(x)$, будем обозначать $\Lambda^{m,n}(E)$. Очевидно, что $\Lambda^{m,n}(E)$ является модулем над ${}^0\Lambda(E)$.

Пусть K^E — алгебра всех функций на E со значениями в K. Обозначим через $m: \Lambda^E \to K^E$ гомоморфизм

$$m(f) = m(f)(x) = f(x, 0) = f_0(x),$$
 (1.3.2)

где $f_0(x)$ — слагаемое в (1.3.1), отвечающее k=0.

Отметим, что если E — бесконечно дифференцируемое многообразие, то образом $\Lambda(E)$ при гомоморфизме (1.3.2) служит не вся K^E , но ее подалгебра $\mathscr{A}(E)$, состоящая из бесконечно дифференцируемых функций. Зафиксировав в (1.3.2) точку x=a, мы получим гомоморфизм Λ^E в K:

$$\mu_a(f) = m(f)(a) = f_0(a).$$
 (1.3.3)

Можно показать, что если E — бесконечно дифференцируемое многообразие, то всякий гомоморфизм $\mu: \Lambda(E) \to K$ имеет вид (1.3.3). Таким образом, существует взаимно-однозначное соответствие между точками многообразия E и гомоморфизмами $\Lambda(E)$ в K.

С гомоморфизмом (1.3.2) тесно связано понятие спектра

набора элементов Λ^E .

Пусть f_1 , ..., f_n — некоторый упорядоченный набор элементов Λ^E . Спектром этого набора называется множество в пространстве \mathbb{R}^n в вещественном случае или в \mathbb{C}^n в комплексном случае, пробегаемое вектором:

$$f(x) = (m(f_1)(x), ..., m(f_n)(x)),$$

когда x пробегает E.

Спектр упорядоченного набора элементов $f_1, ..., f_n$ обозна-

чается spec $(f_1, ..., f_n)$.

2. Гомоморфизмы ограничения. Пусть M — бесконечно дифференцируемое многообразие, V, U — открытые подмножества M, причем $V \subset U$ и функция $f(x) \in \Lambda(U)$, рассматриваемая только при $x \in V$, называется ограничением f на V. Очевидно, что ограничение f на V является элементом $\Lambda(V)$. Таким образом, сопоставляя каждому элементу $f \in \Lambda(U)$ его ограничение на V, мы получаем отображение $\Lambda(U)$ в $\Lambda(V)$. Это отображение обозначим ρ_V^{u} . Очевидно, что

$$\mathring{\rho_V^U}(\alpha f + \beta g) = \alpha \mathring{\rho_V^U} f + \beta \mathring{\rho_V^U} g, \ \mathring{\rho_V^U}(fg) = \mathring{\rho_V^U} f \cdot \mathring{\rho_V^U}(g),$$

где α , β — числа. Следовательно, ρ_V^U является гомоморфизмом алгебр. Гомоморфизм ρ_V^U мы будем называть в дальнейшем стандартным гомоморфизмом ограничения.

Отметим, что если $f \in \Lambda(U)$ имеет вид (1.3.1), то $\mathring{\rho}_V^U f$ имеет аналогичный вид, коэффициентные функции $f_{i_1,\dots,i_k}(x)$ в обоих случаях одни и те же. Разница состоит лишь в том, что в первом случае аргумент x пробегает все множество U, во втором — подмножество V.

Заметим, что гомоморфизмы $\mathring{\rho}_{V}^{U}$ обладают следующими свойствами:

- 1) $\mathring{
 ho}_U^U$ является тождественным изоморфизмом;
- 2) если $W \subset V \subset U$, то $\mathring{
 ho}_W^U = \mathring{
 ho}_W^V \mathring{
 ho}_V^U$;
- 3) пусть $\{U_{\alpha}\}$ покрытие U областями $U_{\alpha}: U = \bigcup U_{\alpha}$, тогда: 3_1) если для некоторых f, $g \in \Lambda(U)$ справедливо равенство $\mathring{\rho}_{U_{\alpha}}^{U} f = \mathring{\rho}_{U_{\alpha}}^{U} g$, то f = g;
- 3_2) если в каждой алгебре Λ (U_lpha) имеется такой элемент f_lpha , что $ho_{Ulpha}^{arrho_{Ueta}} \cap_{Ueta} f_lpha$ по в алгебре Λ (U) существует такой элемент f, что $f_lpha =
 ho_{Ulpha}^{arrho_U} f$;
 - 4) гомоморфизмы $\mathring{\rho}_{V}^{U}$ сохраняют четность.

Всякое семейство гомоморфизмов алгебр $\Lambda(U) \to \Lambda(V)$, обладающее этими свойствами, называется семейством гомоморфизмов ограничения.

Используя гомоморфизмы ho_V^U можно построить много других семейств гомоморфизмов ограничения с помощью следующего приема. Фиксируем для каждой алгебры $\Lambda(U)$ некоторый изоморфизм T_U , сохраняющий четность, и положим

$$\rho_{V}^{U} = T_{V}^{-1} \, \mathring{\rho}_{V}^{U} \, T_{U}. \tag{1.3.4}$$

Легко проследить, что гомоморфизмы ρ_V^{U} удовлетворяют всем требованиям 1)—4).

Пусть $V \subset U$ и $\rho: \Lambda(U) \to \Lambda(V)$ — произвольный гомоморфизм.

В случае, если $g=\rho f$, элемент g мы будем называть ограничением (относительно ρ) f на V, соответственно элемент f будем называть продолжением (относительно ρ) g на U. Если $\rho_V^U=\mathring{\rho}_V^U$ — стандартный гомоморфизм ограничения, то g будем называть стандартным ограничением f, соответственно f— стандартным продолжением g.

В случае, если $U \subset \mathbb{R}^p$ и алгебра $\Lambda = \Lambda_q$ имеет q канонических образующих, мы будем наряду с обозначением $\Lambda(U)$ пользоваться также более детальными обозначениями $\Lambda_{p,q}(U)$ или $\Lambda(U|x_1,...,x_p,\,\xi_1,...,\,\xi_q)$, где x_i — декартовы координаты в U и ξ_i — образующие алгебры Λ_q . Эти обозначения призваны подчеркнуть важную особенность таких алгебр. Как мы увидим ниже, элементы $1,\,x_i,\,\xi_i,\,1 < i < p,\,1 < j < q,\,$ составляют систему топологических образующих алгебры $\Lambda(U)$, причем элементы $x_i,\,\xi_i$ играют равноправную роль.

3. Грассмановы аналитические функции. Пусть $f_i(x, \xi) \in \Lambda_{p,q}(U)$ — четные элементы, i=1, 2, ..., n. Отделим в

 f_i слагаемые нулевой степени

$$f_i(x, \xi) = a_i(x) + h_i(x, \xi), \quad \deg h_i \ge 2.$$
 (1.3.5)

Пусть, далее, g(x), $x=(x_1, ..., x_n) \in \mathbb{R}^n$, — бесконечно дифференцируемая функция, в область определения которой входит множество spec $(f_1, ..., f_n)$. Определим суперпозицию $g(f_1, ..., f_n) \in \Lambda_{p,q}(U)$ с помощью разложения в ряд Тейлора:

$$g(f_1, \ldots, f_n) = g(a_1 + h_1, \ldots, a_n + h_n) =$$

$$= g(a_1, \ldots, a_n) + \sum_{\sum k_i \geqslant 0} \frac{h_1^{k_1} \ldots h_n^{k_n}}{k_1! \ldots k_n!} \frac{\partial^{k_1+ \ldots + k_n}}{\partial a_1^{k_1} \ldots \partial a_n^{k_n}} g(a_1, \ldots, a_n).$$

(1.3.6)

Сумма в (1.3.6) является конечной в силу нильпотентности h_i . Пусть теперь $g(y, \eta) \in \Lambda_{m,n}(W)$, $f_i(x, \xi)$, $\phi_i(x, \xi) \in \Lambda_{p,q}(U)$, i=1, 2, ..., m, j=1, 2, ..., n, причем элементы f_i , ϕ_i являются однородными, $\alpha(f_i) = 0$, $\alpha(\phi_i) = 1$, spec $(f_1, ..., f_m) \subset W$. Определим элемент $g(f_1, ..., f_m, \phi_1, ..., \phi_n) = g(f, \phi)$ с помощью равенства

$$g(f, \varphi) = \sum g_{i_1, \dots, i_k}(f_1, \dots, f_m) \varphi_{i_1} \dots \varphi_{i_k},$$
 (1.3.7)

где $g_{i_1,...,i_k}$ — коэффициенты в разложении (1.3.1) элемента $g, g_{i_1,...,i_k}(f_1, \ldots, f_m)$ понимается в смысле (1.3.6).

Элемент $g(f, \varphi)$ будем называть суперпозицией g и f_i , φ_i .

Вернемся к формуле (1.3.7). Напомним, что всевозможные наборы вида $(f_1, ..., f_m, \varphi_1, ..., \varphi_n)$, где f_i , $\varphi_i \in \Lambda_{p,q}(U)$ образуют пространство, которое обозначается $\Lambda_{p,q}^{m,n}(U)$. Те из них, которые обладают дополнительным свойством spec $(f_1, ..., f_m) \subset W$, образуют множество, которое мы обозначим $\Lambda_{p,q}^{m,n}(U,W)$,

Формула (1.3.7) сопоставляет каждому элементу $g \in \Lambda_{m,n}(W)$ функцию на $\Lambda_{p,q}^{m,n}(U,W)$ со значениями в $\Lambda_{p,q}(U)$. Эту функцию мы будем иногда обозначать F_g , $F_g(f,\varphi) = g(f,\varphi)$. Подчеркнем, что F_g в отличие от элемента $g \in \Lambda_{m,n}(W)$ является функцией в обычном смысле слова, т. е. отображением.

Функции описанного вида будем называть трассмановскими аналитическими (сокращенно г. а.). Г. а. функции, определенные в $\Lambda_{p,q}^{m,n}(U,W)$ и принимающие значения в $\Lambda_{p,q}^{m,n}(U)$, образуют алгебру, которую мы будем обозначать $\mathfrak{A}_{p,q}^{m,n}(U,W)$.

Алгебра $\mathfrak{A}_{p,q}^{m,n}(U,W)$ является подалгеброй более широкой алгебры $\mathfrak{B}_{p,q}^{m,n}(U,W)$, которая состоит из линейных комбинаций элементов $\mathfrak{A}_{p,q}^{m,n}(U,W)$ с коэффициентами из $\Lambda_{p,q}(U)$. Элементы алгебры $\mathfrak{B}_{p,q}^{m,n}(U,W)$ будем называть r. а. функциями с грассмановскими коэффициентами.

Алгебра $\mathfrak{B}_{p,q}^{m,n}(U,W)$ как линейное пространство распадается в сумму двух подпространств:

$$\mathfrak{B}^{m,n}_{p,q}\left(U,\,W\right)\,=\,{}^{\scriptscriptstyle{0}}\mathfrak{B}^{m,n}_{p,q}\left(U,\,W\right)\otimes{}^{\scriptscriptstyle{1}}\mathfrak{B}^{m,n}_{p,q}\left(U,\,W\right),$$

каждое из них состоит из линейных комбинаций вида

$$u = \sum a_i g_i(f, \varphi)$$

с однородными $a_i \in \Lambda_{p,q}(U)$, $g_i \in \Lambda_{m,n}(W)$, при этом $u \in {}^{0}\mathfrak{B}_{p,q}^{m,n}(U,W)$, если $\alpha(a_i) = \alpha(g_i)$, $u \in {}^{1}\mathfrak{B}_{p,q}^{m,n}(U,W)$, если $\alpha(a_i) \neq \alpha(g_i)$. Очевидно,

что $\mathfrak{B}_{p,q}^{m,n}(U,W)$ является подалгеброй алгебры $\mathfrak{B}_{p,q}^{m,n}(U,W)$. Все рассматриваемые алгебры и пространства играют важ-

ную роль в теории представлений супергрупп.

В случае, если $\Lambda_{m,n}(W) \subset \Lambda_{p,q}(U)$, суперпозицию (1.3.7) можно рассматривать как продолжение функции g, первоначально определенной на элементах $x_1, ..., x_m$, $\xi_1, ..., \xi_n$, где x_i — координаты в W, на произвольный элемент пространства $\Lambda_{p,q}^{m,n}(U,W)$.

Получаемое таким образом продолжение будем называть грассмановским аналитическим (сокращенно г.а.) продол-

жением функции д.

Существует значительная аналогия между г.а. функциями и обычными аналитическими функциями, г.а. продолжением и обычным аналитическим продолжением.

4. Образующие алгебры $\Lambda_{p,q}(U)$. Пусть

$$y_i(x,\xi), \eta_i(x,\xi) \in \Lambda_{p,q}(U), i=1,...,p', j=1,...,q'$$

некоторый набор однородных элементов $\alpha(y_i) = 0$, $\alpha(\eta_i) = 1$. Совокупность y_i , η_i будем называть системой образующих $\Lambda_{p,q}(U)$, если:

1) spec $(y_1, ..., y_{p'})$ является областью в $R^{p'}$.

2) любой элемент $f \in \Lambda_{\rho,q}(U)$ может быть записан с помощью y_i , η_i в виде, аналогичном (1.3.1):

$$f = \sum_{k} \sum_{i_1, \dots, i_k} f_{i_1, \dots, i_k}(y_1, \dots, y_{p'}) \, \eta_{i_1} \dots \, \eta_{i_k},$$

где f_{i_1,\ldots,i_k} — бесконечно дифференцируемые функции, определенные в области spec $(y_1,\ldots,y_{p'})$.

Элементы y_i , η_i при этих условиях называются соответственно четными и нечетными образующими алгебры $\Lambda_{p,q}(U)^{-1}$.

Вещественные переменные x_i и образующие ξ_j алгебры Λ_q , с которых мы начали построение алгебры $\Lambda_{p,q}(U)$, служат примером соответственно четных и нечетных образующих.

Пусть x_i , ξ_i , $1 \leqslant i \leqslant p'$, $1 \leqslant j \leqslant q'$, — образующие алгебры

 $\Lambda_{p,q}(U)$;

$$y_i = y_i(x, \xi) = a_i(x) + \sum_{k>0} \sum_{s_1, \dots, s_{2k}} (x) \xi_{s_1} \dots \xi_{s_{2k}},$$
 (1.3.8)

$$\eta_j = \eta_j(x, \xi) = \sum_{j=1}^{n} \varphi_{j;s_j}(x) \, \xi_s + \sum_{k>0} \sum_{s_1, \ldots, s_{2k+1}} \varphi_{j;s_1, \ldots, s_{2k+1}}(x) \xi_{s_1} \ldots \xi_{s_{2k+1}},$$

$$i=1, 2, ..., p'', j=1, 2, ..., q'',$$

некоторый набор четных и нечетных элементов алгебры $\Lambda_{p,q}(U)$. Найдем условия, при которых этот набор служит системой образующих алгебры $\Lambda_{p,q}(U)$.

Очевидно, что эти условия суть условия разрешимости си-

стемы уравнений (1.3.8) относительно x_i , ξ_i .

Теорема 1.7. Пусть $a_t(x)$, $\varphi_{i;s}(x) \in \Lambda_{p,q}(U)$ определяются равенством (1.3.8). Для того чтобы набор элементов y_i , η_i вида (1.3.8) служил системой образующих в $\Lambda_{p,q}(U)$, необходимо и достаточно:

1) чтобы множество spec $(y_1, ..., y_{p''})$ было областью в $\mathbb{R}^{p''}$:

2) чтобы система уравнений

$$\widetilde{y}_i = a_i(\widetilde{x}), \ \widetilde{x} = (mx_1, \dots, [mx_{p'}), \ \widetilde{x} \in \operatorname{spec}(x_1, \dots, x_{p'}), \quad (1.3.9)$$

относительно \tilde{x} была однозначно разрешима при всех $\tilde{y} \in$ \in spec $(y_1, ..., y_{p''})$ в классе бесконечно дифференцируемых функций;

3) чтобы матрица $\varphi_{i;k}(\tilde{x})$ была обратима при всех $\tilde{x} \in \operatorname{spec}(x_1,...,x_{n'})$.

При этих условиях образующие x_i , ξ_i выражаются через y_i , η_i согласно формулам

$$x_{i} = f_{i}(y) + \sum_{k>0} \sum_{s_{1}, \dots, s_{2k}} f_{i; s_{1}, \dots, s_{2k}}(y) \, \eta_{s_{1}} \dots \eta_{s_{2k}},$$

$$(1.3.10)$$

$$\xi_{j} = \sum_{i} \psi_{i;s}(y) \, \eta_{s} + \sum_{k>0} \sum_{s_{1}, \ldots, s_{nk+1}} f_{i;s_{1}, \ldots, s_{2k+1}}(y) \, \eta_{s_{1}} \ldots \, \eta_{s_{2k+1}},$$

 $^{^1}$ Они являются топологическими образующими алгебры $\Lambda_{p,\;q}(u)$ в смысле общего определения, данного в § 1 этой главы.

причем $\tilde{x}_i = f_i(\tilde{y})$ — решение системы уравнений (1.3.9), $\|\psi_{i;s}(\alpha(\tilde{x}))\|$ — матрица, обратная $\|\varphi_{i;s}(\tilde{x})\|$.

Доказательство. Пусть элементы y_i , η_i служат образующими. В таком случае spec $(y_1, ..., y_{p''})$ является областью согласно определению системы образующих.

Далее, элементы x_i , ξ_j могут быть выражены через y_i , η_j по формулам (1.3.10) с пока неизвестными бесконечно дифференцируемыми функциями f_i , $f_{\tilde{u}s_1,\ldots,s_{2k}}$, $\psi_{\tilde{u}s_1}$, $\psi_{\tilde{u}s_1,\ldots,s_{2k+1}}$. Применяя к обеим частям (1.3.10) гомоморфизм m, находим, что $\tilde{x}_i = f_i(\tilde{y})$, где $\tilde{y} = (\tilde{y}_1,\ldots,\tilde{y}_{p''})$ $\tilde{y}_i = my_i = a_i(\tilde{x})$. Следовательно, уравнения (1.3.9) разрешимы и $\tilde{x}_i = f_i(\tilde{y})$ является решением этих уравнений. Далее, подставляя η_s из (1.3.8) в (1.3.10), находим, что слагаемое первой степени по совокупности ξ_s в правой части второго равенства (1.3.10) имеет вид $\sum \psi_{i;s}(y) \varphi_{s;k}(x) \xi_k$.

Следовательно, $\sum_{s} \psi_{i;s}(y) \, \phi_{s;k}(x) = \delta_{i,k}$. Аналогично, подставляя ξ_s

из (1.3.10) в (1.3.8), находим, что $\sum_{s} \varphi_{j;k}(x) \psi_{s;k}(y) = \delta_{j,k}$. Приме-

няя к этим тождествам гомоморфизм m, получаем, что матрица $\|\phi_{s;k}(\tilde{x})\|$ обратима и что $\|\psi_{i;k}(\tilde{y})\| = \|\phi_{i;k}(\tilde{x})\|^{-1}$ при $\tilde{y}_i = a_i(\tilde{x})$. Перейдем к доказательству достаточности. Подставим

(1.3.10) в (1.3.8) и приравняем нулю коэффициенты при $\eta_{i_1} \dots \eta_{i_k}$ (k > 1) в обоих равенствах (1.3.8). Зная $f_i(y)$ и $\psi_{i;s}(y)$, мы получаем рекуррентные соотношения для $f_{i;s_1,\dots,s_{2k}}$ и $\psi_{i;s_1,\dots,s_{2k+1}}$. Эти функции оказываются очевидным образом бесконечно дифференцируемыми в области spec $(y_1,\dots,y_{p''})$. Найдя их, мы выражаем образующие x_i , ξ_i через y_i , η_i .

Замечание 1. Пусть U, V — области в пространствах $\mathbb{R}^{p'}$ п $\mathbb{R}^{p''}$ соответственно и $f: U \to V$ — отображение. Отображение f называется диффеоморфизмом, если оно обладает обратным f^{-1} (т. е. взаимно-однозначно) и если оба отображения f и f^{-1} бесконечно дифференцируемы. (Отображение $x \to y = f(x)$, $x \in U$ называется бесконечно дифференцируемым, если координаты $y_i(x)$ точки $y = f(x) \in V$ являются бесконечно дифференцируемыми функциями координат x_i точки $x \in U$.)

В случае, если U = V, отображение f называется диффеоморфизмом области U.

Таким образом, условие (1.3.9) теоремы 1.1 состоит в том, что отображение $\tilde{x} \to a(\tilde{x})$ области spec $(x_1, \ldots, x_{p'})$ в spec $(y_1, \ldots, y_{p''})$ является диффеоморфизмом. Так как диффеоморфизм сохраняет размерность области, то p'=p''. Поскольку координаты в U являются четными образующими и их число равно dim U=p, то p'=p''=p. Комбинируя это обстоятельство с 3-м утверждением теоремы, получаем в качестве следствия, что во всех системах образующих алгебры $\Lambda_{p,q}(U)$ число четных образующих равно p, число нечетных образующих равно q.

Замечание 2. Переход от одной системы образующих y_i , η_i к другой системе x_i , ξ_i может быть осуществлен в два этапа:

1) $x_i = x_i(z, \zeta), \ \xi_i = \zeta_i,$

2) $Z_i = y_i, \ \zeta_i = \zeta_i(y, \eta)$.

Доказательство очевидно.

Замечание 3. Теорема 1.7 описывает все автоморфизмы алгебр $\Lambda_{p,q}(U)$. В самом деле, если y_i , η_i — образующие алгебры $\Lambda_{p,q}(U)$, причем y_i — координаты в U, T — автоморфизм, то элементы $x_i = Ty_i$, $\xi_i = T\eta_i$ также являются образующими $\Lambda_{p,q}(U)$, причем spec $(x_1,...,x_p)$ = spec $(y_1,...,y_p)$. (Последнее условие очевидным образом необходимо для того, чтобы автоморфизм T мог быть продолжен с образующих y_i , η_i на произвольный элемент $f(y,\eta)$.) Обратно, пусть x_i , ξ_i , y_i , η_i — произвольные системы образующих, такие, что spec $(x_1,...,x_p)$ = spec $(y_1,...,y_p) = U$. Каждому $f(x,\xi) \in \Lambda_{p,q}(U)$ сопоставим элемент $(Tf)(x,\xi) = f(y(x,\xi),\eta(x,\xi)) \in \Lambda_{p,q}(U)$. Очевидно, что отображение $f \mapsto Tf$ является автоморфизмом алгебры $\Lambda_{p,q}(U)$.

Другими словами, характерной особенностью автоморфизма является то обстоятельство, что отображение, определяемое формулами (1.3.9), является диффеоморфизмом области U.

Из замечания 2 следует, что каждый автоморфизм T алгебры $\Lambda_{\rho,q}(U)$ представим в виде $T=T_1T_2$, где T_1 , T_2 — автоморфизмы специального вида:

$$x_i = T_1 y_i = x_i (y, \eta), \quad \xi_j = T_1 \eta_j = \eta_j,$$

 $x_i = T_2 y_i = y_i, \quad \xi_j = T_2 \eta_j = \xi_j (y, \eta).$

Замечание 4. Степень элемента $\deg f$ не зависит от системы образующих.

Из теоремы 1.6 вытекает ряд важных следствий.

1. Если области U и U' связаны диффеоморфизмом, то алгебры $\Lambda_{p,q}(U)$ и $\Lambda_{p,q}(U')$ изоморфны.

2. При гомоморфизме ограничения вида (1.3.4) образующие

переходят в образующие.

3. В определении сходимости элементов $\Lambda_{p,q}(U)$ можно систему образующих x_i , ξ_i , где x_i — координаты в U, заменить любой другой системой образующих. В результате получается эквивалентное определение сходимости.

4. Пусть x_i , ξ_j — система образующих в алгебре $\Lambda_{p,q}(U)$ и y_i , η_j — элементы, связанные с x_i , ξ_j соотношениями

$$y_i = x_i + h_i$$
, $\eta_i = \xi_i + \varphi_i$, $\deg h_i \geqslant 2$, $\deg \varphi_i \geqslant 2$,

тогда y_i , η_j также составляют систему образующих алгебры $\Lambda_{p,q}(U)$.

Доказательство этих следствий очевидно.

Отметим важное обстоятельство. Особая роль первоначальных образующих x_i , ξ_f , где x_i — декартовы координаты в U, полностью исчерпывается тем, что с их помощью строятся гомоморфизмы ρ^U_V , m и μ_a . Возможно построение теории, при

котором эти гомоморфизмы вводятся аксиоматически. При таком подходе выделенных образующих нет.

Если стоять на инвариантной точке зрения, при которой в алгебре $\Lambda_{p,q}(U)$ не выделяется никакая система образующих, то роль аргумента U в обозначении $\Lambda_{p,q}(U)$ состоит в указании на то, что в этой алгебре существует такая система образующих x_i , ξ_i , что spec $(x_1, ..., x_p) = U$.

5. Продолжение систем образующих. Пусть $U, V \subset \mathbb{R}^p$ — открытые множества и $V \subset U$. Рассмотрим алгебры $\Lambda_{p,q}(U), \Lambda_{p,q}(V)$ и гомоморфизм $\rho: \Lambda_{p,q}(U) \to \Lambda_{p,q}(V)$. Образ $\Lambda_{p,q}(U)$ при этом гомоморфизме обозначим $\widetilde{\Lambda}_{p,q}(V)$. Предположим, что алгебра $\Lambda_{p,q}(V)$ обладает системой образующих x_i , ξ_i , каждая из которых продолжима: $x_i, \xi_j \in \widetilde{\Lambda}_{p,q}(V)$. Если элементы x_i, ξ_i обладают такими продолжениями, которые составляют системы образующих алгебры $\Lambda_{p,q}(U)$, то систему образующих x_i, ξ_i назовем продолжимой.

Возникает вопрос: пусть в алгебре $\Lambda_{p,q}(V)$ задана система образующих, состоящая из продолжимых элементов, продолжима ли эта система?

Ответ не всегда положителен, как показывает следующий пример. Пусть U — круг на плоскости $x_1, x_2: U = \{x_1^2 + x_2^2 < 1\}$, V — кольцо: $V = \left\{\frac{1}{2} < x_1^2 + x_2^2 < 1\right\}$, $\rho = \stackrel{\circ}{\rho}_V^U$ — стандартный гомоморфизм ограничения, ξ_1 , ξ_2 — продолжимая система нечетных образующих в $\Lambda_{2,2}(V)$ и

$$\eta_1 = \xi_1 \cos \varphi + \xi_2 \sin \varphi,$$

 $\eta_2 = -\xi_1 \sin \varphi + \xi_2 \cos \varphi,$

где
$$\phi$$
 — полярный угол вектора $\binom{x_1}{x_2}$. Элементы $\eta_1,\ \eta_2$ в силу

теоремы 1.7 составляют систему нечетных образующих алгебры $\Lambda_{2,2}(V)$, каждый из них продолжим, однако они не продолжаются до системы нечетных образующих в $\Lambda_{2,2}(U)$. В самом деле, положим

$$\eta'_1 = a_{11}(x)\xi'_1 + a_{12}(x)\xi'_2$$

$$\eta'_2 = a_{21}(x)\xi'_1 + a_{22}(x)\xi'_2,$$

где ξ'_1 , ξ'_2 — продолжения ξ_1 , ξ_2 до нечетных образующих в $\Lambda_{2,2}(U)$ и

$$A(x) = \begin{pmatrix} a_{11}(x), a_{12}(x) \\ a_{21}(x), a_{22}(x) \end{pmatrix}$$

матрица с бесконечно дифференцируемыми элементами. Для того, чтобы элементы η'_1 , η'_2 служили продолжением η_1 , η_2 , матрица A(x) должна удовлетворять условию

$$A(x) = \begin{pmatrix} \cos \varphi & \sin \varphi \\ -\sin \varphi & \cos \varphi \end{pmatrix} \text{ при } x \in V.$$

В случае, если η_1 , η_2 продолжаются до нечетных образующих $\Lambda_{2,2}(U)$, их продолжения с необходимостью имеют прежний вид, однако матрица A(x) удовлетворяет более жестким условиям:

$$A(x) = \begin{pmatrix} \cos \varphi & \sin \varphi \\ -\sin \varphi & \cos \varphi \end{pmatrix}$$
 при $x \in V$, $\det A(x) \neq 0$ при $x \in U$.

Покажем, что эти условия противоречивы. Рассмотрим функции

$$\alpha_{1}(x) = \frac{\frac{\partial}{\partial x_{1}}(a_{11} + ia_{12})}{a_{11} + ia_{12}}, \quad \alpha_{2}(x) = \frac{\frac{\partial}{\partial x_{2}}(a_{11} + ia_{12})}{a_{11} + ia_{12}}.$$

Ввиду того что $\det A(x) \neq 0$, знаменатели не обращаются в нуль, следовательно α_1 и α_2 бесконечно дифференцируемы в U. Кроме того, очевидно, что $\frac{\partial \alpha_1}{\partial x_2} = \frac{\partial \alpha_2}{\partial x_1}$. Поэтому при любом замкнутом контуре $C \subset U$

$$\int_C \alpha_1 dx_1 + \alpha_2 dx_2 = 0.$$

Выбирая в качестве C окружность $x_1^2 + x_2^2 = 3/4$, находим, что

$$\int_{C} \alpha_{1} dx_{1} + \alpha_{2} dx_{2} = \int_{0}^{2\pi} \frac{\left(\frac{\partial}{\partial x_{1}} e^{i\varphi}\right) dx_{1} + \left(\frac{\partial}{\partial x_{2}} e^{i\varphi}\right) dx_{2}}{e^{i\alpha}} = i \int_{0}^{2\pi} d\varphi = 2\pi i,$$

что противоречит предыдущему равенству.

Общие условия продолжимости системы образующих не просты, однако для наших целей достаточно следующего признака.

Теорема 1.8. Пусть V, $U \in \mathbb{R}^p$ — области, $V \subset U$, $\rho : \Lambda_{p,q}(U) \to \Lambda_{p,q}(V)$ — гомоморфизм, имеющий вид $\rho = T_v^{-1} \mathring{\rho}_v^U T_U$, где $\mathring{\rho}_v^U -$ стандартный гомоморфизм ограничения и T_U , T_V — изоморфизмы алгебр $\Lambda_{p,q}(U)$ и $\Lambda_{p,q}(V)$ соответственно. Пусть, далее, x_i , ξ_i — образующие в $\Lambda_{p,q}(V)$, продолжимые до образую-

щих x'_i , ξ'_j в $\Lambda_{p,q}(U)$ и y_i , $\eta_j \in \widetilde{\Lambda}_{p,q}(V)$ — продолжимые образующие в $\Lambda_{p,q}(V)$, сязанные с x_i , ξ_j соотношениями $y_i = x_i + h_i$, $\eta_j = \xi_j + \gamma_j$,

причем $\deg h_i \gg 2$, $\deg \gamma_i \gg 2$. Тогда образующие y_i , η_i продолжимы до образующих y'_i , η'_i алгебры $\Lambda_{p,q}(U)$.

Доказательство. Пусть h'_i , γ'_i — произвольное продолжение элементов h_i , γ_i на U с сохранением степени. Очевидно, что такое продолжение возможно. Положим

$$y'_{i} = x'_{i} + h'_{i}, \quad \eta'_{i} = \xi'_{i} + \gamma'_{i},$$

где $x'_i,\ \xi'_i$ — образующие в $\Lambda_{
ho,q}(U)$, служащие продолжением

 x_i , ξ_i . Из теоремы 1.7 (см. следствие 4) следует, $\eta = y'_i$, η'_i являются образующими в $\Lambda_{p,q}(U)$.

6. Теорема о неявных функциях. Пусть f_i , ϕ_j , i=1,...,p', j=1,...,q', — некоторый набор соответственно четных и нечетных элементов вещественной алгебры $\Lambda_{p,q}(U)$, $p' \leqslant p$, $q' \leqslant q$.

Рассмотрим систему уравнений

$$f_i(x,\xi) = 0, \quad \varphi_i(x,\xi) = 0.$$
 (1.3.11)

Решением системы (1.3.11) будем называть всякий набор четных и нечетных элементов, соответственно x_i , ξ_i алгебры $\Lambda_{p,q}(U)$, удовлетворяющий этим уравнениям. Мы будем говорить, что элементы x_i , ξ_i служат решением системы (1.3.11) в области V, если spec $(x_1, ..., x_p) \subset V$. Справедлив следующий аналог классической теоремы о неявных функциях.

Теорема 1.9. Пусть выполнены следующие условия:

существует набор четных и нечетных элементов вещественной грассмановой алгебры Λ_q :

$$x_{0,i} = \widetilde{x}_{0,i} + \sum_{k>1} \sum_{s_i} x_{0,i;s_1,\ldots,s_{2k}} \zeta_{s_1} \ldots \zeta_{s_{2k}}, 1 \leqslant i \leqslant p,$$

$$\xi_{0,j} = \sum_{k\geqslant 0} \sum_{s_i} c_{j;s_1,\ldots,s_{2k+1}} \zeta_{s_1} \ldots \zeta_{s_{2k+1}}, 1 \leqslant j \leqslant q,$$

такой, что:

1)
$$f_i(x_0, \xi_0) = 0$$
, $\varphi_i(x_0, \xi_0) = 0$,

2)
$$\det \left\| \frac{\partial f_i(\widetilde{x}, 0)}{\partial \widetilde{x}_k} \right\|_{i,k=1}^{p'} \neq 0$$
 при $\widetilde{x} = (\widetilde{x}_{0,1}, \ldots, \widetilde{x}_{0,p}),$

3) функции $\varphi_j(x, \xi)$ представимы в виде

$$\varphi_{j}(x, \xi) = \sum_{i} \varphi_{j,s}(x) \, \xi_{s} + \sum_{k>0} \sum_{s_{j}} \varphi_{j,s_{1},...,s_{2k+1}}(x) \, \xi_{s_{1}} \ldots \, \xi_{s_{2k+1}},$$

причем

$$\det \| \varphi_{i:s}(\widetilde{x}) \|_{i,s=1}^{q'} \neq 0$$
 при $\widetilde{x} = (\widetilde{x}_{0,t}, \ldots, \widetilde{x}_{0,p}).$

Тогда, если $V \subset \mathbb{R}^p$ — достаточно малая окрестность точки $\tilde{x} = (\tilde{x}_{0,1},...,\tilde{x}_{0,p})$, то существует такая область $W \subset \mathbb{R}^{p-p'}$ и такие однозначно определенные грассмановские аналитические функции g_i , ψ_j от элементов алгебры $\Lambda_{p-p',q-q'}(W)$ что:

1) каждое решение уравнений (1.3.11) в области V представимо в виде

виде
$$x_i = g_i(x_{p'+1}, \ldots, x_p; \xi_{q'+1}, \ldots, \xi_q), 1 \leqslant i \leqslant q',$$
 (1.3.12)

$$\xi_j = \psi_j(x_{p'+1}, \ldots, x_p; \xi_{q'+1}, \ldots, \xi_q), 1 \ll j \ll q',$$

где x_{i+1} , $\xi_{q'+1}$ — некоторые элементы алгебры $\Lambda_{p-p',q-q'}(W)$; 2) если $x_{p'+l}$, $\xi_{q'+l}$ — произвольные, соответственно четные и нечетные элементы $\Lambda_{p-p',q-q'}(W)$ и x_i,ξ_i при $i \leqslant p',j \leqslant q'$

связаны с $x_{p'+i}$, $\xi_{q'+i}$ соотношениями (1.3.12), то набор элементов $x = (x_1, ..., x_p)$, $\xi = (\xi_1, ..., \xi_q)$ удовлетворяет уравнениям (1.3.11).

Прежде чем переходить к доказательству, дадим следующее определение.

В случае, если $x_{p'+l}$, $\xi_{q'+l}$ служат образующими алгебры $\Lambda_{p-p',q-q'}(W)$ и x_i , ξ_l при $i\leqslant p'$, $j\leqslant q'$ связаны с $x_{p'+1}$, $\xi_{q'+l}$ соотношениями (1.3.12), решение x, ξ уравнений (1.3.11) будем называть общим.

Доказательство. Положим для удобства $x_{p'+i} = u_i$, $\xi_{q'+i} = \mu_i$. Разложим функции f_i в ряд по степеням $x - x_0$ и отделим слагаемые первой степени, функции ф; разложим в ряд по ξі и отделим слагаемые нулевой и первой степеней

$$\Sigma a_{t,k} (u, \xi, \mu) (x_k - x_{0,k}) + \tilde{f}_t (x, u, \xi, \mu) = 0,$$
(1.3.13)

$$\Sigma \varphi_{j,k}(x, u, \mu) \xi_k + \widetilde{\eta}_j(x, u, \mu) + \widetilde{\varphi}_j(x, u, \xi, \mu) = 0,$$

где $x = (x_1, \ldots, x_{p'}), \xi = (\xi_1, \ldots, \xi_{q'}).$

Согласно условию теоремы матрица $||a_{i,k}(u,0,0)||$ обратима при вещественных u_i , если область V достаточно мала. Пусть $\widetilde{u} = (\widetilde{u}_1, \ldots, \widetilde{u}_{p-p'}), \quad \widetilde{u}_i = m(u_i).$ Samethm, sto $a_{i,k}(u, \xi, \mu) =$ $=a_{i,k}(\widetilde{u},0,0)+b_{i,k}$, причем элементы $b_{i,k}$ нильпотентны. Отсюда следует, что если матрица $a_{i,k}(u,0,0)$ обратима, то матрица $a_{i,k}(u,\xi,\mu)$ обладает тем же свойством.

Аналогичное соображение относится к матрице $\varphi_{j,k}(x,u,\mu)$.

Пусть $\|\tilde{a}_{i,k}\|$, $\|\phi_{i,k}\|$ — матрицы, обратные $\|a_{i,k}\|$ и $\|\phi_{i,k}\|$ соответственно. Применяя эти матрицы к уравнениям (1.3.13), перепишем их в равносильном виде

$$x_{k} = x_{0,k} + F_{k}(x, u, \xi, \mu), \qquad (1.3.14)$$

$$\xi_{j} = \eta_{j}(x, u, \mu) + \Phi_{j}(x, u, \xi, \mu),$$

где
$$F_k = -\sum \widetilde{a}_{k,l} \widetilde{f}_l$$
, $\eta_l = -\sum \widetilde{\varphi}_{l,k} \widetilde{\eta}_k$, $\Phi_l = -\sum \widetilde{\varphi}_{l,k} \widetilde{\varphi}_k$.

 Φ_j имеет по ξ_i степень не ниже двух. Заметим, что при вещественных

$$x, u, u_i = x_{p'+l}, \widetilde{f}_k(x, u, 0, 0) = \sum_{l,i=1}^{n} (x_i - x_{0,l})(x_i - x_{0,j}) a_{k;i,l}(x,u),$$

где $a_{k:i,j}(x,u)$ — непрерывно дифференцируемые функции. Аналогичным свойством обладают функции F_k . Поэтому

$$\frac{\partial F_k(x,u,0,0)}{\partial x_i}\bigg|_{x_i=x_{0,i}}=0.$$

Уточним условия, налагаемые на область V. Мы будем считать область V вынуклой, обеспечивающей существование матриц $\|\tilde{\alpha}_{i,k}\|$, $\|\tilde{\phi}_{j,k}\|$ и такой, что при вещественных x, u и некотором $\varkappa < 1$ справедливо неравенство

$$\sum_{k} \left| \frac{\partial F_k(x, u, [0, 0))}{\partial x_j} \right| \leqslant \varkappa < 1. \tag{1.3.15}$$

Обозначим через W проекцию области V на $\mathbb{R}^{p-p'}$: $(x^{p'+1},\dots,x^p)$ $\in W$, если (x^1,\dots,x^p) $\in V$. Вместо исходных уравнений (1.3.11) будем решать уравнения (1.3.14). Воспользуемся методом итераций:

$$x_{n,k} = x_{0,k} + F_k(x_{n-1}, u, \xi_{n-1}, \mu),$$

$$\xi_{n,j} = \eta_j(x_{n-1}, u, \mu) + \Phi_j(x_{n-1}, u, \xi_{n-1}, \mu),$$

$$\xi_{0,j} = 0.$$
(1.3.16)

Положим

$$x_{n,k} = r_{n,k}(u) + \sum g_{n,k;t_1,\ldots,t_{2s}}(u) \mu_{t_1} \ldots \mu_{t_{2s}},$$

$$\xi_{n,j} = \sum \varphi_{n,j;t_1,\ldots,t_{2s+1}}(u) \mu_{j_1} \ldots \mu_{j_{2s+1}}.$$
(1.3.17)

Покажем, что последовательности функций $r_{n,k}$, $\varphi_{n,k;i_1,...,i_{2s}}$, $\psi_{n,i;i_1,...,i_{2s+1}}$ сходятся равномерно вместе со всеми производными.

Для того чтобы в этом убедиться, достаточно рассмотреть случай, когда элементы u_i являются координатами в области W, элементы μ_i — нечетными образующими алгебры $\Lambda_{p-p',q-q'}$ (W).

Обозначим для краткости $\Lambda_k(x,u) = F_k(x,u,0,0)$. Полагая в (1.3.16) $\xi = \mu = 0$, получаем рекуррентные соотношения для $f_{n,k}$:

$$r_{n,k} = \tilde{x}_{0,k} + A_k(r_{n-1}, u).$$
 (1.3.18)

Положим

$$||r|| = \sup_{\mu} \sum_{k=1}^{p'} |r_{k}|. \tag{1.3.19}$$

Рассмотрим семейство функций $\tilde{x}_{0,k} + A_k(r,u)$ как оператор над вектор-функциями r(u) и покажем, что он является сжимающим в смысле введенной нормы:

$$\begin{split} \sum_{k} |A_{k}(r,u) - A_{k}(r',u)| &= \sum_{k} \Big| \sum_{i} \frac{\partial A_{k}(\widetilde{r},u)}{\partial \widetilde{r}_{i}} (r_{i} - r'_{i}) \Big| \leqslant \\ &\ll \sum_{i} |r_{i} - r'_{i}|, \end{split}$$

где \tilde{r} — некоторая точка на отрезке, соединяющем r и r'. Применяя принцип сжатых отображений, находим, что итерации $r_{n,k}(u)$ сходятся к единственному решению уравнений $r_k = \tilde{x}_{0,k} + A_k(r,u)$.

Отметим, что сходимость в смысле нормы (1.3.19) является равномерной. Сходимость производных $r_{n,k}$ удобно доказать

позже.

В дальнейшем часто встречаются функции или элементы грассмановой алгебры со сложными индексами. Для уменьшения громоздкости записи мы будем пользоваться мультииндексами, которые будем обозначать следующим образом:

$$(i_1,\ldots,i_m)=\overrightarrow{i}$$
, например, $f_{k;i_1,\ldots,i_m}=f_{k\rightarrow i}$.

Число компонент мультииндекса \overrightarrow{i} обозначим через $d(\overrightarrow{i})$. Пусть $f=\{f_{k;\overrightarrow{i}}\}$. Положим

$$||f|| = \sup_{u, i_1, \dots, i_m} \sum_{k} |f_{k; i_1, \dots, i_m}(u)|.$$
 (1.3.19_m)

Обозначим однородные слагаемые в правых частях первого и второго равенств (1.3.17) через $t_{n,k;\vec{t}}$ и $\xi_{n,j;\vec{t}}$ соответственно. Пусть равномерная сходимость функций $g_{n,k;\vec{t}}$ и $\psi_{n,k;\vec{t}}$ доказана при $d(\vec{t}) < 2s$, $d(\vec{t}) < 2s - 1$, s — натуральное число.

Пользуясь нильпотентностью $t_{n,k;\vec{i}}$, $\xi_{n,k;\vec{j}}$ при $d(\vec{i}) > 2$, $d(\vec{j}) > 1$, разложим правые части (1.3.16) по $t_{n,k;\vec{i}}$, $\xi_{n,k;\vec{j}}$ и приравняем коэффициенты одинаковой степени по μ_j :

$$g_{n,k;\vec{i}} = g_{0,k;\vec{i}} + \sum_{i} \frac{\partial A_{k}(r_{n-1}, u)}{\partial r_{n-1,i}} g_{n-1,i;\vec{i}} + b_{n,k;\vec{i}},$$

$$\psi_{n,k;\vec{j}} = \beta_{n,k;\vec{j}}, \qquad (1.3.20)$$

где через $\beta_{n,k;j}$ обозначен коэффициент при $\mu_{i_1} \dots \mu_{i_{2s+1}}$ в разложении правой части 2-го уравнения (1.3.16).

Рассмотрим равенства (1.3.20) при $d(\vec{i}) = 2s$, $d(\vec{j}) = 2s - 1$. Очевидно, что $\beta_{n,k;\vec{j}}$ является полиномом с независящими от n коэффициентами от $g_{n-1,k;\vec{i}}$, $\psi_{n-1,k;\vec{j}}$ при $d(\vec{i}) < 2s$, $d(\vec{j}) < 2s - 1$. Поэтому в силу предположения индукции из второго равенства (1.3.20) следует равномерная сходимость $\psi_{n,k;\vec{j}}$ при $d(\vec{j}) = 2s - 1$.

Перейдем к первому равенству (1.3.20). Заметим, что $b_{n,k;i}$ является полиномом с независящими от n коэффициентами от $g_{n-1,k;i}$ при d(i) < 2s и $\psi_{n-1,k;j}$ при $d(j) \leq 2s-1$. Поэтому последовательность $b_n = \{b_{n,k;j}\}$ имеет предел в смысле

нормы (1.3.19_m). Следовательно, $||b_n|| \le c < \infty$. Учитывая это, получаем из 1-го уравнения (1.3.20):

$$\|g_n\|_{\mathcal{X}} \leq \|g_{n-1}\| + c + \|g_i\|.$$

Отсюда

$$\|g_n\| \le \kappa^n \|g_0\| + \frac{c + \|g_i\|}{1 - \kappa} \le a < \infty.$$

Обозначим через $b=\{b_{k;\,i}\}$ предел последовательности $b_n=\{b_{n,k;\,i}\}$ в смысле нормы $(1.3.19_m)$. Перепишем 1-е уравнение (1.3.20) в виде

$$g_{n,k;\vec{l}} = \sum_{l} \frac{\partial A_{k}(r,u)}{\partial r_{l}} g_{n-1,l;\vec{l}} + a_{k;\vec{l}} + c_{n,k;\vec{l}}, \qquad (1.3.21)$$

$$r_l = \lim r_{n,l}, a_{k;\overrightarrow{l}} = b_{k;\overrightarrow{l}} + g_{0,k;\overrightarrow{l}},$$

$$c_{n,k;\vec{t}} = b_{n,k;\vec{t}} - b_{k;\vec{t}} + \sum_{l} \left(\frac{\partial A_k(r_{n-1}, u)}{\partial r_{n-1,l}} - \frac{\partial A_k(r, u)}{\partial r_l} \right) g_{n-1,l;\vec{t}}.$$

Заметим, что $||c_n|| \to 0$. Положим $\varepsilon_n = \sup_{m > n} ||c_m||$. Последовательность ε_n монотонно сходится к нулю.

Рассмотрим вспомогательную систему уравнений

$$g'_{n,k;\vec{i}} = \sum_{l} \frac{\partial A_{k}(r,u)}{\partial r_{l}} g^{i}_{n-1,l;\vec{i}} + a_{k,i}.$$
 (1.3.21')

Оператор в правой части (1.3.21') является сжимающим в смысле нормы (1.3.19_m). Поэтому g_n ' имеет предел в смысле нормы (1.3.19_m), не зависящий от начальных данных. Положим $g_{n,k;\;\vec{t}}=g_{n,k;\;\vec{t}}-g_{n,k;\;\vec{t}}^{'}$. Из (1.3.21) и (1.3.21') следует, что

$$y_{n,k;\overrightarrow{i}} = \sum_{l} \frac{\partial A_{k}(r,u)}{\partial r_{l}} y_{n-1,l;\overrightarrow{i}} + c_{n,k;\overrightarrow{i}}.$$

Отсюда

$$||y_n|| \leqslant \varkappa ||y_{n-1}|| + \varepsilon_n, ||y_{n+m}|| \leqslant \varkappa^m y_n + \frac{\varepsilon_n}{1-\varkappa}.$$

Будем решать систему (1.3.21') при начальном условии

$$g_{n,k;\overrightarrow{t}} = g_{n,k;\overrightarrow{t}}$$
. Тогда $\|g_{n+m} - g_{n+m}\| \leqslant \frac{\varepsilon_n}{1-\kappa}$.

Таким образом, последовательность g_n имеет предел в смысле нормы $(1.3.19_m)$, совпадающий с пределом последовательности. Отметим, что сходимость в смысле нормы $(1.3.19_m)$ означает равномерную сходимость.

Дифференцируемость. Дифференцируя (1.3.18) по u_i , получаем

$$\frac{\partial r_{n,k}}{\partial u_i} \sum \frac{\partial A_k(r_{n-1}, u)}{\partial r_{n-1,l}} \frac{\partial r_{n-1,l}}{\partial u_i} + \frac{\partial A_k(r_{n-1}, u)}{\partial u_i}.$$
 (1.3.22)

Дифференцируя уравнения (1.3.20) по u_i , получаем

фференцируя уравнения (1.5.26) по
$$u_i$$
, получаем
$$\frac{\partial g_{n,k,\vec{t}}}{\partial u_i} = \frac{\partial g_{0,k;\vec{t}}}{\partial u_i} + \sum_{\alpha} \frac{\partial A_k(r_{n-1}, u)}{\partial r_{n-1,\alpha}} \frac{\partial g_{n-1,0,\vec{t}}}{\partial u_i} + \frac{1}{2} \left(\frac{\partial^2 A_k(r_{n-1}, u)}{\partial r_{n-1,\alpha}} + \sum_{\beta} \frac{\partial^2 A_k(r_{n-1}, u)}{\partial r_{n-1,\beta}} \frac{\partial r_{n-1,s}}{\partial u_i} \right) g_{n-1,\alpha;\vec{t}} + \frac{\partial b_{n,k;\vec{t}}}{\partial u_i}, \qquad (1.3.23)$$

$$\frac{\partial \phi_{n,k;\vec{t}}}{\partial u_i} = \frac{\partial \beta_{n,k;\vec{t}}}{\partial u_i}.$$

(1.3.23) имеют тот же вид, что первое соотношение (1.3.20), 2-е соотношение (1.3.23) имеет тот же вид, что второе соотношение (1.3.20). Поэтому доказательство равномерной сходимости производных $\frac{\partial r_{n,k}}{\partial u_i}$, $\frac{\partial g_{n,k;\vec{l}}}{\partial u_i}$, $\frac{\partial n_{n,k;l}}{\partial u_l}$ не отличается от доказательства равномерной сходимости $g_{n,k;l}$, $\psi_{n,k;\vec{l}}$.

Рекуррентные соотношения (1.3.22) и первое соотношение

Равномерная сходимость высших производных устанавли-

вается с помощью очевидной индукции.

Докажем единственность решения системы (1.3.14) при произвольных четных u_i и нечетных μ_j . Пусть $\{x_i', \xi_j'\}$, $\{x_i'', \xi_j''\}$ решения системы (1.3.14). Применяя к первому уравнению (1.3.14) гомоморфизм m, находим

$$\tilde{x}_{k}' = \tilde{x}_{0,k} + A_{k}(\tilde{x}', \tilde{u}), \quad \tilde{x_{k}}'' = \tilde{x}_{0,k} + A_{k}(\tilde{x}'', \tilde{u}),$$

где, как обычно, $\tilde{x}_i = m(x_i)$, $u_i = m(u_i)$. Ввиду того, что оператор A является сжимающим, отсюда следует, что $\tilde{x_k}' = \tilde{x_k}''$.

Введем в алгебру $\Lambda_{p-p',q-q'}(W)$ образующие y_i , v_j и выразим через них $x_{k'}$, ξ_j' , $x_{k''}$, $\xi_{j''}$. Коэффициентные функции обозначим через $g_{k;\overrightarrow{t}}$, $\psi_{k;\overrightarrow{f}}$, $g_{k;\overrightarrow{t}}$, $\psi_{k;\overrightarrow{f}}$, $g_{k;\overrightarrow{t}}$, $\psi_{k;\overrightarrow{f}}$. В качестве образующих y_i рассмотрим координаты в W. Предположим, что совпадение $g_{k;\overrightarrow{t}}$ = $g_{k;\overrightarrow{t}}$, $\psi_{k;\overrightarrow{f}}$ = $\psi_{k;\overrightarrow{f}}$ доказано при $d(\overrightarrow{i}) < 2s$, $d(\overrightarrow{j}) < 2s - 1$. Положим $g_{k;\overrightarrow{t}}$ = $g_{k;\overrightarrow{t}}$ при $d(\overrightarrow{i}) < 2s$, $\psi_{k;\overrightarrow{f}}$ = $\psi_{k;\overrightarrow{f}}$ при $d(\overrightarrow{i}) < 2s$, $d(\overrightarrow{f}) = 2s - 1$ из

(1.3.14) следуют уравнения, аналогичные (1.3.20):

$$g_{k;l}^{'} = g_{0,k;\overrightarrow{l}} + \sum_{i} \frac{\partial A_{k}(\widetilde{x}, \widetilde{u})}{\partial \widetilde{x}_{e}} g_{e;\overrightarrow{l}}^{'} + b_{k;\overrightarrow{l}},$$

(1.3.24)

$$\psi_{k;\overrightarrow{j}} = \beta_{k;\overrightarrow{j}},$$

причем $\beta_{k;\overrightarrow{j}}$ является полиномом от $g_{k;\overrightarrow{i}}$, $\psi_{k;\overrightarrow{j}}$ при d(i) < 2s, d(j) < 2s - 1. Функции $g_{k;\overrightarrow{i}}$, $\psi_{k;\overrightarrow{j}}$ удовлетворяют тем же уравнениям. Следовательно, $\psi_{k;\overrightarrow{j}} = \psi_{k;\overrightarrow{j}}$ при d(j) = 2s - 1. Положим $\psi_{k;\overrightarrow{j}} = \psi_{k;\overrightarrow{j}}$ при d(j) = 2s - 1. Далее, $b_{k;\overrightarrow{i}}$ при d(i) = 2s является полиномом от $g_{k;\overrightarrow{i}}$ с d(i) < 2s и $\psi_{k;\overrightarrow{j}}$ с d(j) < 2s - 1; оператор в правой части первого уравнения (1.3.24) является сжимающим в смысле нормы (1.3.19_m). Следовательно, $g_{k;\overrightarrow{i}} = g_{n,\overrightarrow{j}}$ при d(i) = 2s.

N3 полученных результатов немедленно следуют утверждения теоремы. В самом деле, установлено, что при вещественных u_i и μ_j , являющихся нечетными образующими в $\Lambda_{p-p',q-q'}(W)$, справедливы тождества

$$g_{k}(u, \mu) = x_{0,k} + F_{k}(g(u, \mu), u, \psi(u, \mu), \mu),$$

$$\psi_{j}(u, \mu) = \eta_{j}(g(u, \mu), u, \mu) + \Phi_{j}(g(u, \mu), u, \psi(u, \mu), \mu),$$

причем коэффициентные функции у $g_k(u,\mu)$, $\psi_j(u,\mu)$ являются бесконечно дифференцируемыми. Тем же свойством обладают $F_k(x,u,\xi,\mu)$, $\eta_j(x,u,\mu)$, $\Phi_j(x,u,\xi,\mu)$. Следовательно, в этих тождествах возможно грассмановское аналитическое продолжение, т. е. они остаются справедливыми при замене u_i , μ_j произвольными четными и нечетными элементами $\Lambda_{p-p',q-q'}(W)$.

Далее, пусть u_i , μ_j — произвольные четные и нечетные элементы $\Lambda_{p-p',q-q'}(W)$, x_i' , ξ_j' — какое-то решение уравнений (1.3.14). Согласно предыдущему, $x_i = g_i(u,\mu)$, $\xi_j = \psi_j(u,\mu)$ также является решением. В силу единственности $x_i = x_i'$, $\xi_j = \xi_j'$.

Γ лава 2. АНАЛИЗ В АЛГЕБРАХ $\Lambda_{p,q}(\mathbf{U})$

В этой главе строится элементарная теория дифференцирования и интегрирования элементов алгебр $\Lambda_{p,q}(U)$.

§ 1. производные

Пусть $f(x,\xi) \in \Lambda_{p,q}(U)$ записан в виде (1.3.1), x_i , ξ_j — некоторые образующие $\Lambda_{p,q}(U)$. Положим по определению

$$\frac{\partial}{\partial x_i} f(x, \xi) = \sum_k \sum_{i_1 \dots i_k} \frac{\partial}{\partial x_i} f_{i_1, \dots, i_k}(x) \, \xi_{i_1} \dots \, \xi_{i_k}, \qquad (2.1.1)$$

Определим теперь производные по антикоммутирующим переменным. Эти производные имеются двух видов, левые и правые, обе являются линейными операторами в $\Lambda_{p,q}(U)$, перестановочными с умножением на четные образующие. Поэтому их достаточно определить на произведении нечетных образующих.

Левая производная:

$$\frac{\partial}{\partial \xi_i} \xi_{l_1} \dots \xi_{l_k} = \delta_{il_1} \xi_{l_2} \dots \xi_{l_k} - \delta_{il_2} \xi_{l_1} \xi_{l_2} \dots \xi_{l_k} + \dots,$$

$$(2.1.2)$$

правая производная:

$$(\xi_{i_1} \dots \xi_{i_k}) \frac{\partial}{\partial \xi_i} = \delta_{ii_k} \xi_{i_1} \dots \xi_{i_{k-1}} - \delta_{ii_{k-1}} \xi_{i_1} \dots \xi_{i_{k-2}} \xi_{i_k} + \dots$$
(2.1.3)

Другими словами, если $i=i_s$, то для вычисления левой производной следует ξ_{i_s} вынести из произведения $\xi_{i_1}\dots\xi_{i_k}$ налево, воспользовавшись перестановочным правилом (1.2.1), и вычеркнуть. Для вычисления правой производной следует ξ_{i_s} вынести

направо и вычеркнуть. Если же i не содержится среди чисел $i_1, ..., i_k$, то

$$\frac{\partial}{\partial \xi_i} (\xi_{i_1} \dots \xi_{i_k}) = (\xi_{i_1} \dots \xi_{i_k}) \frac{\partial}{\partial \xi_i} = 0.$$

Для большей выразительности мы будем иногда пользоваться обозначениями $\frac{\overrightarrow{\partial}}{\partial \xi_i}$ и $\frac{\overleftarrow{\partial}}{\partial \xi_i}$ для левых и правых производных соответственно.

Справедливы легко проверяемые формулы:

$$\frac{\partial}{\partial \xi_{i}} f = -(-1)^{\alpha(f)} f \frac{\partial}{\partial \xi_{i}},$$

$$\frac{\partial}{\partial \xi_{i}} (fg) = \left(\frac{\partial}{\partial \xi_{i}} f\right) g + (-1)^{\alpha(f)} f \left(\frac{\partial}{\partial \xi_{i}} g\right),$$

$$(fg) \frac{\partial}{\partial \xi_{i}} = f \left(g \frac{\partial}{\partial \xi_{i}}\right) + (-1)^{\alpha(g)} \left(f \frac{\partial}{\partial \xi_{i}}\right) g,$$

$$(2.1.4)$$

$$\frac{\partial}{\partial \xi_{i}} f(u(x, \xi), \eta_{i}(x, \xi)) = \sum \left(\frac{\partial}{\partial \xi_{i}} u_{k} \right) \frac{\partial f}{\partial u_{k}} + \sum \left(\frac{\partial}{\partial \xi_{i}} \eta_{k} \right) \frac{\partial}{\partial \eta_{k}} f, \qquad (2.1.5)$$

$$f\left(u\left(x,\,\xi\right),\,\eta\left(x,\,\xi\right)\right)\frac{\partial}{\partial\xi_{i}}=\sum\frac{\partial f}{\partial u_{k}}\left(u_{k}\frac{\partial}{\partial\xi_{i}}\right)+\sum\left(f\frac{\partial}{\partial\eta_{k}}\right)\left(\eta_{k}\frac{\partial}{\partial\xi_{i}}\right).$$

Поскольку для нечетных элементов левые и правые производные совпадают, мы будем в этом случае пользоваться также обычным обозначением:

$$\frac{\partial}{\partial \xi_i} f = f \frac{\partial}{\partial \xi_i} = \frac{\partial f}{\partial \xi_i}.$$

Мы будем говорить, что элемент f не зависит от образующей x_i или ξ_j , если $\frac{\partial f}{\partial x_i} = 0$ или соответственно $\frac{\partial f}{\partial \xi_i} f = 0$.

§ 2. ИНТЕГРАЛ

1. Определение интеграла. Пусть x_i , ξ_j — образующие алгебры $\Lambda_{p,q}(U)$. Рассмотрим формальные символы $d\xi_i$, dx_i , которые мы будем называть дифференциалами переменных ξ_i и x_i соответственно. Подчиним их следующим соотношениям коммутации:

$$\overline{d}\xi_{i}\cdot\xi_{j}=\xi_{j}\cdot\overline{d}\overline{\xi}_{i}\ \ \, \overline{d}\xi_{i}\cdot\overline{d}\xi_{j}=\overline{d}\xi_{j}\cdot\overline{d}\xi_{i}\ \ \, \overline{d}\xi_{i}\cdot x_{j}=x_{j}\cdot\overline{d}\xi_{i}.$$

Соотношения коммутации, в которые входят dx_i , в этой главе для нас не существенны. Однако, имея в виду дальнейшее (см.

гл. 5), мы потребуем, чтобы дифференциалы $\bar{d}\xi_i$ и dx_i коммутировали между собой. Другими словами, алгебра, порожденная x_i , ξ_i , dx_i , $\bar{d}\xi_i$, является алгеброй Λ_{p+q} , p+q (U), причем рольчетных образующих у нее играют x_i , $\bar{d}\xi_i$, нечетных — ξ_i , dx_i .

чых образующих у нее играют хі, аξі, нечетных — ξі, ахі з Определим интеграл по антикоммутирующим переменным:

$$\int \overline{d}\xi_i = 0, \int \xi_i \overline{d}\xi_i = 1, \int ab\overline{d}\xi_i = a \int b\overline{d}\xi_i, \qquad (2.2.1)$$

если $\frac{\partial}{\partial \hat{z}_{t}}a=0.$

Кратный интеграл будем понимать как повторный. Непро-

тиворечивость этого определения очевидна.

Теперь мы в состоянии определить интеграл элемента $f(x,\xi)$ по всем переменным. Пусть s_i — координаты в U, $x_i = x_i(s,\xi)$, $y_i = x_i(s,0) = m(x_i)$. Отметим, что y_i , подобно s_i , служат координатами в U. Положим

$$J(f) = \int f(x, \xi) dx_1 \dots dx_p \overline{d}\xi_q \dots \overline{d}\xi_1 \stackrel{\text{def}}{=}$$

$$= \int_{y \in \text{Spec}(x_1, \dots, x_p)} f(y, \xi) dy_1 \dots dy_p \overline{d}\xi_q \dots \overline{d}\xi_1. \qquad (2.2.2)$$

Интеграл по dy_i понимается в обычном смысле. В дальнейшем мы часто используем сокращенные обозначения:

$$dx = dx_1 \dots dx_n, \ \overline{d\xi} = \overline{d\xi}_q \dots \overline{d\xi}_1. \tag{2.2.3}$$

Из определения немедленно следует, что если элемент $f(x,\xi)$ имеет вид (1.3.1), то

$$J(f) = q! \int_{y \in \text{spec}(x_1, \dots, x_p)} f_{1, \dots, q}(y_1, \dots, y_p) dy_1 \dots dy_p. \quad (2.2.4)$$

Несмотря на то что формула (2.2.2) полностью эквивалентна (2.2.4), она имеет право на самостоятельное существование. Это право основано на алгебраических свойствах интеграла (2.2.2), поразительным образом напоминающих свойства обычного интеграла. При этом интеграл по антикоммутирующим переменным похож на обычный интеграл по всему пространству. Интеграл (2.2.2) естественно ассоциируется с областью *U*. Аналогично может быть определен интеграл, связанный с границей *U*. Положим

$$d_{i}x = dx_{1} \dots dx_{i-1}dx_{i+1} \dots dx_{p}. \tag{2.2.5}$$

¹ Напомним в связи с этим, что в обычном анализе дифференциалы удобно считать антикоммутирующими, но коммутирующими с независимыми переменными x_i . Соотношения коммутации между dx_i , $\overline{d}\xi_i$, ξ_i , x_i обобщают это свойство обычных дифференциалов.

Пусть $f_i(x,\xi) \in \Lambda_{p,q}(U)$, причем коэффициентные функции f_i ; $j_i ... j_k(x)$ элементов $f_i(x,\xi)$ непрерывны вплоть до границы U. Определим интеграл $J_{\Gamma}(f)$, связанный с границей Γ области U:

$$J_{\Gamma}(f) = \int_{\Gamma} \Sigma f_{i}(x, \xi) d_{i}x d\xi \stackrel{\text{def}}{=} \int_{y \in \Gamma} \Sigma f_{i}(y, \xi) d_{i}y d\xi, \qquad (2.2.6)$$

где $y = (y_1, ..., y_p), y_i = m(x_i).$

2. Интегрирование по частям.

$$\int f_{1}\left(\frac{\partial}{\partial x_{i}}f_{2}\right)dx\bar{d\xi} = -\int \left(\frac{\partial}{\partial x_{i}}f_{1}\right)f_{2}dx\bar{d\xi} + \int_{\Gamma}f_{1}f_{2}d_{i}x\bar{d\xi}, \quad (2.2.7)$$

где Г — надлежащим образом ориентированная граница области U, интеграл во втором слагаемом правой части (2.2.7)понимается в смысле определения (2.2.6).

$$\int f_{1}\left(\frac{\partial}{\partial \xi_{i}} f_{2}\right) dx d\overline{\xi} = \int \left(f_{1} \frac{\partial}{\partial \xi_{i}}\right) f_{2} dx d\overline{\xi}$$

$$\int f_{1}\left(f_{2} \frac{\partial}{\partial \xi_{i}}\right) dx d\overline{\xi} = (-1)^{q+1} \int \left(\frac{\partial}{\partial \xi_{i}} f_{1}\right) f_{2} dx d\overline{\xi},$$
(2.2.8)

где q — число нечетных образующих ξ_i . Формула (2.2.7) сводится к хорошо известному факту из обычного интегрального исчисления. Формулы (2.2.8) легко доказываются для случая, когда f_1 , f_2 являются произведениями нечетных образующих и переносятся на общий случай по линейности.

3. Замена переменных. По определению заменой переменных будем называть переход от одной системы образующих алгебры $\Lambda_{pq}(U)$ к другой с сохранением четности:

$$x_i = x_i(y, \eta), \ \xi_j = \xi_j(y, \eta).$$
 (2.2.9)

Сопоставим преобразованию образующих (2.2.9) матрицу

$$R(x, \xi/y, \eta) = \begin{pmatrix} A & B \\ C & D \end{pmatrix}, \qquad (2.2.10)$$

где

$$A_{ik} = \frac{\partial x_i}{\partial y_k}, \ B_{ik} = x_i \frac{\partial}{\partial \eta_k}, \ C_{ik} = \frac{\partial \xi_i}{\partial y_k}, \ D_{ik} = \frac{\partial \xi_i}{\partial \eta_k},$$

 $A_{ik}, B_{ik}, \ldots,$ — элементы матриц A, B, \ldots Обратим внимание на то, что ξ_i — нечетные элементы, поэтому $D_{ik} = \frac{\partial \xi_i}{\partial \eta_k}$ — четные, A_{ik} — также четные элементы, B_{ik} ,

 C_{ik} — нечетные. Положим

$$\Delta(x, \xi/y, \eta) = \det(A - BD^{-1}C) \det D^{-1}.$$
 (2.2.11)

(Обратим внимание на то, что согласно теореме 1.7 матрица Dобратима.)

При замене переменных в обычных интегралах возникает якобиан. Его аналогом в случае интегралов (2.2.2) служит функция $\Delta(x, \xi/y, \eta)$.

Пусть Γ — граница области $U = \operatorname{spec}(x_1, ..., x_p)$ и Γ_{δ} — δ -окрестность Γ . Функцию $f(x, \xi) \in \Lambda_{pq}(U)$ назовем финитной, если

 $\tilde{f}(\tilde{x},\xi)=0$ при \tilde{x} \in Γ_{δ} .

Теорема 2.1. Пусть $f(x, \xi)$ — финитная функция. Тогда

$$\int f(x(y, \eta), \xi(y, \eta)) \Delta(x, \xi/y, \eta) dy d\eta = \int f(x, \xi) dx d\xi. \quad (2.2.12)$$

Доказательство этой теоремы в полном объеме помещено в следующем пункте.

Проиллюстрируем теорему 2.1 примерами.

1) Простейшая линейная замена переменных:

$$\mathbf{x}_i = \sum a_{ik} y_k, \ \xi_i = \sum d_{ik} \eta_k, \tag{2.2.13}$$

где a_{ik} , d_{ik} — вещественные или комплексные числа. В этом случае по необходимости B=C=0, $\Delta(x,\xi/y,\eta)=\det A(\det D)^{-1}$. Формула (2.2.12) легко следует из основных определений.

Обратим внимание на то, что det D входит в формулу так, как в обычном случае входит якобиан обратного преобразо-

вания. 2) Рассмотрим алгебру $\Lambda_{r+p',\,q+q'}(U),\,\,U \subset \mathbb{R}^{r+p'}$ и в ней две системы образующих

$$x_1, \ldots, x_p, u_1, \ldots, u_{p'}, \xi_1, \ldots, \xi_q, \sigma_1, \ldots, \sigma_{q'}$$

И

$$y_1, \ldots, y_p, v_1, \ldots, v_{p'}, \eta_1, \ldots, \eta_q, \zeta_1, \ldots, \zeta_{q'}.$$

Пусть эти образующие связаны соотношением специального вида

$$x_i = x_i(y, v, \eta, \zeta), \quad \xi_j = \xi_j(y, v, \eta, \zeta),$$

 $u_i = v_i, \quad \sigma_j = \zeta_j.$ (2.2.14)

Матрицы A, B, C, D в этом случае равны:

$$A = \begin{pmatrix} A_1 & A_2 \\ 0 & I \end{pmatrix}, B = \begin{pmatrix} B_1 & B_2 \\ 0 & 0 \end{pmatrix}, C = \begin{pmatrix} C_1 & C_2 \\ 0 & 0 \end{pmatrix}, D = \begin{pmatrix} D_1 & D_2 \\ 0 & I \end{pmatrix},$$

где

$$A_{1,ik} = \frac{\partial x_i}{\partial y_k}, \ A_{2,ik} = \frac{\partial x_i}{\partial v_k}, \ B_{1,ik} = x_i \frac{\overleftarrow{\partial}}{\partial \eta_k}, \ B_{2,ik} = x_i \frac{\overleftarrow{\partial}}{\partial \zeta_k},$$

$$C_{1,ik} = \frac{\partial \xi_i}{\partial u_k}, \ C_{2,ik} = \frac{\partial \xi_i}{\partial v_k}, \ D_{1,ik} = \frac{\partial \xi_i}{\partial u_k}, \ D_{2,ik} = \frac{\partial \xi_i}{\partial t_k}.$$

Специфика матриц A, B, C, D приводит к тому, что

$$\Delta(x, u, \xi, \sigma/y, v, \eta, \zeta) = \det(A_1 - B_1 D_1^{-1} C_1) \det D_1^{-1} = \Delta(x, \xi/y, \eta).$$

Разумеется, $\Delta(x, \xi/y, \eta) \in \Lambda_{p+p', q+q'}(U)$ и, вообще говоря, зависит от всех образующих y, η, v, ζ .

Пусть $f = f(x, \xi)$ зависит только от образующих $x_1, ..., x_p$, $\xi_1, ..., \xi_q$, $g = g(u, \sigma)$ зависит только от образующих $u_1, ..., u_p$, $\sigma_1, ..., \sigma_{q'}$. Применяя общую формулу (2.2.12) и учитывая, что $u_i = v_i$, $\sigma_i = \zeta_i$, имеем

$$\int f(x, \, \xi) \, g(u, \, \sigma) \, dx du \overline{d} \xi \overline{d} \sigma =$$

$$= \int f(x(y, \, u, \, \eta, \, \sigma), \, \xi(y, \, u, \, \eta, \, \sigma)) \, g(u, \, \sigma) \, \Delta(x, \, \xi/y, \, \eta) \, dy du \overline{d} \eta \overline{d} \sigma.$$

Так как это тождество справедливо при любом $g = g(u, \sigma)$, то, следовательно.

$$\int f(x(y, u, \eta, \sigma), \xi(y, u, \eta, \sigma)) \Delta(x, \xi/y, \eta) dy d\eta = \int f(x, \xi) dx d\xi.$$
(2.2.15)

Формула (2.2.15) отличается от (2.2.14) тем, что в (2.2.15) замена переменных и якобиан зависят от образующих u_i , σ_j , которые играют роль параметров. В качестве первой иллюстрации формулы (2.2.15) рассмотрим преобразование антикоммутирующих переменных, аналогичное параллельному переносу:

$$\xi_i = \eta_i + \sigma_i$$
, $x_i = y_i + r_i(\sigma)$, $m(r_i) = 0$.

Из формулы (2.2.15) следует

$$\int f(x+r,\,\xi+\sigma)\,dxd\xi = \int f(x,\,\xi)\,dxd\xi. \tag{2.2.16}$$

Докажем эту формулу непосредственно. Заметим, что $r_i^n = 0$ при некотором n. Это следует из условия $m(r_i) = 0$. Поэтому

$$\int f(x+r, \xi+\sigma) dx d\xi = \int f(x, \xi+\sigma) dx \overline{d}\xi + \sum_{\sum_{k>0} \frac{r_1^{k_1} \dots r_p^{k_p}}{k_1! \dots k_p!} \int \frac{\partial^{k_1+\dots+k_p}}{\partial x_1^{k_1} \dots \partial x_p^{k_p}} f(x, \xi+\sigma) dx \overline{d}\xi.$$

Каждый интеграл по dx, входящий во второе слагаемое, равен интегралу от некоторой производной f по границе Γ и, следовательно, обращается в нуль благодаря финитности f. Далее,

$$\int f(x, \xi + \sigma) dx d\xi = \int f(x, \xi) dx \overline{d}\xi +$$

$$+ \sum_{\sum k_i > 0} \sigma_1^{k_1} \dots \sigma_q^{k_q} \int \frac{\partial^{k_1 + \dots + k_q}}{\partial \xi_1^{k_1} \dots \partial \xi_q^{k_q}} f(x, \xi) dx \overline{d}\xi.$$

Поскольку при $k_1+...+k_q>0$ функция $\frac{\partial^{k_1+...+k_q}}{\partial \xi_1^{k_1}...\partial \xi_q^{k_q}}f(x,\xi)$ не за-

висит хотя бы от одной образующей ξ_i , интеграл от нее по $\bar{d}\xi$ обращается в нуль непосредственно в силу определения (2.2.1).

В качестве второй иллюстрации рассмотрим линейную замену переменных общего вида:

$$x_i = \sum A_{ik} y_k + \sum B_{is} \eta_s,$$

$$\xi_j = \sum C_{jk} y_k + \sum D_{js} \eta_s,$$
(2.2.17)

где A_{ik} , D_{js} — четные элементы $\Lambda_{p+p',\,q+q'}(U)$, не зависящие от y_i , η_j , C_{jk} , B_{is} — нечетные элементы $\Lambda_{p+p',\,q+q'}(U)$, не зависящие от y_i , η_j , $\det A \neq 0$, $\det D \neq 0$. (Последнее требование служит необходимым и достаточным условием обратимости преобразования (2.2.17).)

Вначале рассмотрим частный случай, когда B_{is} , $C_{jk}=0$. В результате получается преобразование, отличающееся от (2.2.13) тем, что теперь A_{ik} , D_{js} не числа, но элементы $\Lambda_{p+p',q+q'}(U)$, не зависящие от y_k , η_s . Так же как в случае (2.2.13), формула (2.2.15) в этих условиях легко следует из основных определений.

Перейдем к общему случаю. Преобразуем интеграл, пользуясь попеременно однородными линейными преобразованиями, аналогичными (2.2.13) и параллельными переносами:

$$\int f(Ay + B\eta, Cy + D\eta) \, dy \, d\eta =$$

$$= \det A^{-1} \det D \int f(y + BD^{-1}\eta, CA^{-1}y + \eta) \, dy \, d\eta =$$

$$= \det A^{-1} \det D \int f(y + BD^{-1}(\eta - CA^{-1}y), \eta) \, dy \, d\eta =$$

$$= \det A^{-1} \det D \det (1 - BD^{-1}CA^{-1})^{-1} \int f(y + BD^{-1}\eta, \eta) \, dy \, d\eta =$$

$$= \det D \det (A - BD^{-1}C)^{-1} \int f(y, \eta) \, dy \, d\eta. \qquad (2.2.18)$$

На этом мы разбор примеров, иллюстрирующих теорему 2.1, закончим. Отметим в заключение, что из формулы (2.2.18) вытекает важное следствие.

Обозначим через $G''Mat(p,q|\Lambda)$ множество матриц вида

$$\mathcal{A} = \begin{pmatrix} P & A \\ A & B \\ C & D \end{pmatrix} p, \qquad (2.2.19)$$

где A, D — квадратные матрицы, состоящие из четных элементов грассмановой алгебры Λ , причем матрица D обратима, B, C — прямоугольные матрицы, состоящие из нечетных элементов той же алгебры, p и q указывают на число строк и столбцов. Число образующих алгебры Λ никак не связано с p и q.

Сопоставим матрице вида (2.2.19) функцию, которую назовем супердетерминантом: ¹

sdet
$$\mathcal{A} = \det(A - BD^{-1}C) \det D^{-1}$$
. (2.2.20)

(Супердетерминант определен только в случае, если D^{-1} существует.)

Теорема 2.2. Супердетерминант мультипликативен:

$$\operatorname{sdet}(\mathcal{A}_{1}\mathcal{A}_{2}) = \operatorname{sdet}\mathcal{A}_{1} \cdot \operatorname{sdet}\mathcal{A}_{2}. \tag{2.2.21}$$

Доказательство. Пусть $\mathcal{A} = \mathcal{A}_1 \mathcal{A}_2$; $A, B, ..., A_i, B_i, ...$ — блоки, из которых состоят матрицы \mathcal{A} , \mathcal{A}_i , i = 1, 2, соответственно. Применяя (2.2.18), получаем

$$\int f(Ay + B\eta, Cy + D\eta) dy d\eta = \operatorname{sdet} (\mathcal{A}_1 \mathcal{A}_2) \int f(y, \eta) dy d\overline{\eta}, \quad (2.2.22)$$

Положим $f_1(y,\eta) = f(A_1y + B_1\eta, C_1y + D_1\eta)$. Очевидно, что $f(Ay + B\eta, Cy + D\eta) = f_1(A_2y + B_2\eta, C_2y + D_2\eta)$. Используя это тождество, имеем

$$\int f(Ay + B\eta, Cy + D\eta) \, dy \overline{d}\eta = \int f_1(A_2y + B_2\eta, C_2y + D_2\eta) \, dy \overline{d}\eta =$$

$$= \operatorname{sdet} \mathcal{A}_2 \int f_1(y, \eta) \, dy \overline{d}\eta = \operatorname{sdet} \mathcal{A}_2 \int f(A_2y + B_1\eta, C_1y +$$

$$+ D_1\eta) \, dy \overline{d}\eta = \operatorname{sdet} \mathcal{A}_2 \cdot \operatorname{sdet} \mathcal{A}_1 \int f(y, \eta) \, dy \overline{d}\eta. \tag{2.2.23}$$

Сравнивая (2.2.22) и (2.2.23), устанавливаем справедливость тождества (2.2.21) для случая, когда элементы матриц \mathcal{A}_i принадлежат $\Lambda_{p+p',\,q+q'}(U)$. Ввиду произвольности $p',\,q',\,U$ это тождество остается справедливым в случае, если элементы матриц \mathcal{A}_i принадлежат Λ .

Супердетерминант является одним из важнейших понятий линейной алгебры в Z_2 -градуированных пространствах. В следующей главе приведено два других доказательства его мультипликативности, не использующее понятие интеграла.

4. Доказательство теоремы 2.1. Из определения (2.2.10) матрицы $R(x, \xi/y, \eta)$ очевидным образом следует соотношение мультипликативности

$$R(x, \xi/y, \eta) R(y, \eta/u, \zeta) = R(x, \xi/u, \zeta).$$
 (2.2.24)

В силу теоремы 2.2 аналогичным свойством обладает супердетерминант матрицы $R(x, \xi/y, \eta)$:

$$\Delta(x, \xi/y, \eta) \Delta(y, \eta/u, \zeta) = \Delta(x, \xi/u, \zeta). \tag{2.2.25}$$

Эти соотношения позволяют свести теорему 2.1 к частным случаям.

¹ Сейчас наряду с термином «супердетерминант» и обозначением sdet используется термин «березиниан» и обозначение Вег.— Прим. ред.

Вначале рассмотрим замены переменных вида

$$x_i = x_i(y), \quad \xi_j = \eta_j$$
 (2.2.26)

И

$$x_i = y_i, \quad \xi_j = \xi_j(\eta).$$
 (2.2.27)

(В случае (2.2.26) $x_i(y)$ не зависит от η_j , в случае (2.2.27) $\xi_j(\eta)$ не зависит от y_i .) Случай (2.2.26) очевидным образом сводится к хорошо известной из обычного анализа теореме.

Перейдем к случаю (2.2.27). Заметим, что в рассматривае-

мом случае

$$R = R\left(\xi/\eta\right) = \left\|\frac{\partial \xi_{i}}{\xi \eta_{k}}\right\|, \ \Delta\left(\xi/\eta\right) = \det R^{-1}\left(\xi/\eta\right).$$

Рассмотрим вначале преобразование T, которое можно включить в однопараметрическую группу T_t преобразований вида (2.2.27). Введем обозначения

$$\xi_{i}(t) = T_{t}\eta_{i}$$

$$g(t) = \int f(\xi_{1}(t), \ldots, \xi_{q}(t)) \Delta(\xi(t)/\eta) \overline{d}\eta_{q} \ldots \overline{d}\eta_{1}.$$

Ввиду того что преобразование T_t действует на образующие x_i тождественным образом, аргумент x у $f(x,\xi)$ опущен.

Из общей теории групп Ли следует, что g(t) — аналитическая функция параметра t. Используя (2.2.25), запишем g(t+s) в виде

$$g(t+s) = \int f(\xi_1(t+s), \dots, \xi_q(t+s)) \Delta(\xi(t+s)/\xi(t)) \Delta(\xi(t)/\eta) \overline{d} \eta =$$

$$= \int f(\zeta_1(s), \dots, \zeta_q(s)) \Delta(s) \Delta(\xi(t)/\eta) \overline{d} \eta, \qquad (2.2.28)$$

где для краткости мы положили $\xi_j(s) = \xi_j(t+s)$, $\Delta(s) = \Delta(\xi(t+s)/\xi(t))$. Из (2.2.28) следует, что

$$g'(t) = \frac{d}{ds} g(t+s)|_{s=0} =$$

$$= \int \left[\sum \frac{d\zeta_i}{ds} \left(\frac{\partial}{\partial \zeta_i} f \right) \Delta(s) + f \frac{d}{ds} \Delta(s) \right]_{s=0} \Delta(\xi(t)/\eta) \, \overline{d} \eta. \quad (2.2.29)$$

Заметим теперь, что

$$\Delta(s) = \det R^{-1}(s) = \exp\left(-\operatorname{sp}\ln R(s)\right),\,$$

где $R(s) = R(\zeta(s)/\xi(t))$. Поэтому

$$\frac{d}{ds} \Delta(s)|_{s=0} = - sp(R'(s)R^{-1}(s)) \exp(-sp \ln R(s))|_{s=0} =$$

$$= -\operatorname{sp} R'(0) = -\sum_{i} \frac{d}{ds} \frac{\partial \zeta_{i}}{\partial \xi_{i}} \Big|_{s=0}.$$

Следовательно, выражение в квадратных скобках под знаком интеграла в правой части (2.2.29) преобразуется к виду

$$\sum_{i} \left(\zeta'_{i} \frac{\overrightarrow{\partial}}{\partial \xi_{i}} f - f \frac{\overrightarrow{\partial}}{\partial \xi_{i}} \zeta'_{i} \right) = - \sum_{i} \frac{\partial}{\partial \xi_{i}} (\zeta'_{i} f),$$

где $\xi_{j} = \xi_{j}(t)$, $\zeta_{j}' = \frac{d}{ds} \zeta_{j}|_{s=0} = \xi_{j}'(t)$.

Вспомним еще раз, что $T_t\eta_j=\xi_j(t)$ — однопараметрическая группа преобразований. С помощью стандартных рассуждений устанавливается, что $\xi_j(t)=\xi_j(t|\eta_1,...,\eta_q)$ удовлетворяют автономной системе дифференциальных уравнений

$$\xi_i'(t) = -\Phi_i(\xi_1, ..., \xi_q).$$

Учитывая это, находим окончательно, что

$$g'(t) = \int \sum \frac{\partial}{\partial \xi_i} (\Phi_i f) \, \Delta \left(\xi(t) / \eta \right) \, \tilde{d} \eta. \tag{2.2.30}$$

Из (2.2.30) следует два важных вывода. Во-первых, что функция g'(t) имеет тот же вид, что g(t), разница состоит лишь в замене f на $\sum \frac{\partial}{\partial \xi_j} (\Phi_j f)$. Во-вторых, что g'(0) = 0. В самом деле, при t = 0 имеем $\xi_j = \eta_j$, $\Delta(\xi(t)/\eta) = 1$. Поэтому

$$g'(0) = \int \sum_{i} \left(\frac{\partial}{\partial \eta_{i}} \psi_{i}(\eta) \right) \overline{d} \eta, \ \psi_{i} = \xi_{i}'(0) f(\eta). \tag{2.2.31}$$

Из (2.2.31) и определения интеграла очевидным образом следует, что g'(0) = 0.

Так как функция g'(t) имеет тот же вид, что g(t), то, следовательно, g''(0) = 0. Продолжая это рассуждение дальще, находим, что $g^{(n)}(0) = 0$ при любом n > 0.

Выше было отмечено, что g(t) — аналитическая функция t. Поэтому из равенств $g^{(n)}(0)=0$ при n>0 следует, что g(t)= = const. Учитывая, что fg(0)dx равен левой части (2.2.12), получаем, что равенство (2.2.12) справедливо для преобразований вида (2.2.27), включающихся в однопараметрическую группу.

Из теории групп Ли следует, что произвольное преобразование T вида (2.2.27) можно представить в виде произведения конечного числа преобразований $T = T_1...T_r$, каждое из которых

включается в однопараметрическую группу.

С помощью этого разложения равенство (2.2.12) распространяется на случай произвольного преобразования вида (2.2.27).

Рассмотрим теперь преобразования более общего вида:

$$x_i = x_i(y, \eta), \quad \xi_i = \eta_i,$$
 (2.2.32)

$$x_i = y_i, \quad \xi_i = \xi_i(y, \eta).$$
 (2.2.33)

Случай (2.2.33) легко сводится к случаю (2.2.27).

В самом деле, интеграл (2.2.2) можно рассматривать как повторный, имеющий в качестве внутреннего интеграл по ξ_i , в качестве внешнего — интеграл по x_i . Преобразование (2.2.33) является заменой переменных вида (2.2.27) во внутреннем интеграле. Применяя во внутреннем интеграле формулу (2.2.12), мы устанавливаем ее справедливость для преобразований вида (2.2.33).

Сложнее обстоит дело с преобразованиями (2.2.32). Рассмотрим вначале частный случай

$$x_{i} = y_{i} + t f_{t_{1} \dots t_{2k}}(y) \, \eta_{t_{1}} \dots \eta_{t_{2k}}, \qquad (2.2.34)$$

$$\xi_{i} = \eta_{i}.$$

Преобразования (2.2.34) образуют однопараметрическую группу по t. Повторяя во всех деталях рассуждения, использованные при доказательстве формулы (2.2.12) в случае (2.2.27), мы приходим к равенству

$$g'(t) = \int \sum_{\partial y_i} \frac{\partial}{\partial y_i} (\Phi_i f) \Delta(x/y) dy, \qquad (2.2.35)$$

где g, Φ_i имеют тот же смысл, что выше, $\Delta\left(x/y\right) = \det \left\| \frac{\partial x_i}{\partial y_k} \right\|$

Интегрируя по частям и вспоминая, что f=0, на границе области находим, что g'(0)=0. Поскольку g'(t) имеет вид, аналогичный g(t), то $g^{(n)}(0)=0$ при любом n>0. В силу аналитичности g(t) отсюда следует, что g(t) =const = g(0).

Заметим теперь, что суперпозицией жонечного числа преобразований вида (2.2.34) можно получить любое преобразование вида

$$x_i = y_i + \sum_k \sum_{i} f_{i_1...i_k}(y) \eta_{i_1} \dots \eta_{i_{2k}},$$
 (2.2.36)

$$\xi_i = \eta_i$$

Наконец, суперпозицией преобразований (2.2.36) и (2.2.26) можно получить любое преобразование вида (2.2.32).

Вспомним теперь, что согласно замечанию, сделанному после доказательства теоремы 1.7, замена переменных общего вида может быть получена суперпозицией преобразований (2.2.32) и (2.2.33). Используя мультипликативное свойство супердетерминанта, получаем отсюда утверждение теоремы 2.1 в общем виде.

5. Замена переменных в случае нефинитных функций. В случае, если элемент $f(x, \xi) \in \Lambda_{p,q}(U)$ не является финитным, формула (2.2.12) не верна: появляются траничные члены. Чтобы разобраться в них, поступим следующим образом. Предположим, что область U выделяется неравенством u(x) > 0. Соответственно, ее граница — уравнением u(x) = 0.

Рассмотрим функцию $\theta(u(x))$, где

$$\theta (u) = \left\{ \begin{array}{l} 1 \text{ при } u > 0, \\ 0 \text{ при } u < 0. \end{array} \right.$$

Аппроксимируем функцию $\theta(u(x))$ бесконечно дифференцируемыми финитными функциями $\theta_{\alpha}(x)$ в смысле интегральной нормы:

$$\lim_{\alpha \to 0} \int_{x \in U} |\theta_{\alpha}(x) - \theta(u(x))| dx = 0.$$
 (2.2.37)

Предположим теперь, что коэффициентные функции элемента $f(x, \xi)$ допускают продолжение до бесконечно дифференцируемых функций в \mathbb{R}^p . Рассмотрим элементы $f_{\alpha}(x, \xi) = f(x, \xi)\theta_{\alpha}(x) \in \Lambda_{p,q}(U)$. Ввиду финитности элементов $f_{\alpha}(x, \xi)$ для них справедлива формула (2.2.12):

$$\int f(x, \xi) \,\theta_{\alpha}(x) \, dx d\xi =$$

$$= \int f(x(y, \eta), \, \xi(y, \eta)) \,\theta_{\alpha}(x(y, \eta)) \, \Delta(x, \, \xi/y, \, \eta) \, dy \overline{d\eta}.$$

Из (2.2.37) вытекает возможность предельного перехода при $\alpha \rightarrow 0$:

$$\int f(x, \xi) dx d\xi = \int f(x(y, \eta), \xi(y, \eta)) \theta(u(x(y, \eta))) \Delta(x, \xi/y, \eta) dy d\eta.$$
(2.2.38)

Формула (2.2.38) является искомой.

Покажем, как возникают поправки к формуле (2.2.12). Разложение $x(y, \eta)$ по η приводит к аналогичному разложению $u(x(y, \eta))$ и $\theta(u(x(y, \eta)))$. Ограничиваясь первым неисчезающим членом, имеем

$$x_{i}(y, \eta) = x_{i}(y) + x_{i,kl}(y) \eta_{k} \eta_{l} + \dots,$$

$$u(x(y)) + \sum_{i} \frac{\partial u(x(y))}{\partial x_{i}} x_{i,kl}(y) \eta_{k} \eta_{l} + \dots =$$

$$= v(y) + \sum_{i} v_{kl}(y) \eta_{k} \eta_{i} + \dots,$$

$$\theta(u(x(y, \eta))) = \theta(v(y)) + \theta'(v(y)) (\sum_{i} v_{kl}(y) \eta_{k} \eta_{l} + \dots) + \dots =$$

$$= \theta(v(y)) + \delta(v(y)) (v(y, \eta) - v(y)) + \dots,$$

The $v(y) = u(x(y)), v_{kl}(y) = \sum \frac{\partial u(x(y))}{\partial x_l} x_{i,kl}(y),$

многоточие в правой части последнего равенства означает сумму слагаемых, содержащих производные δ -функции. Учитывая определение интеграла, образующие y_i можно считать жоординатами в \mathbb{R}^p . В этих координатах область U выделяется нера-

венством v(y)>0, а граница — уравнением v(y)=0. Таким образом, правая часть (2.2.38) имеет вид

$$\int f(x(y, \eta), \xi(y, \eta)) \Delta(x, \xi/y, \eta) dy d\eta +$$

$$\int f(x(y, \eta), \xi(y, \eta)) \Delta(x, \xi/y, \eta) dy d\eta +$$

+
$$\int f(x(y,\eta), \xi(y,\eta)) \, \delta(v(y)) \, (v(y,\eta) - v(y)) \, \Delta(x,\xi/y,\eta) \, dy \bar{d}\eta + ...,$$
 (2.2.39) где многоточие означает сумму слагаемых, каждое из которых

где многоточие означает сумму слагаемых, каждое из которых содержит $\delta^{(k)}(v(y))$, $k \gg 1$, под знаком интеграла. Первое слагаемое в (2.2.39) имеет тот же вид, что левая часть (2.2.12), остальные содержат граничные члены благодаря наличию $\delta(v(y))$ и производных $\delta(v(y))$ под знаком интеграла.

Глава 3. ЛИНЕЙНАЯ АЛГЕБРА В Z₀-ГРАДУИРОВАННЫХ ПРОСТРАНСТВАХ

§ 1. ЛИНЕЙНЫЕ ОПЕРАТОРЫ

1. Грассманова оболочка Z_2 -градуированного линейного пространства. Напомним, что линейное пространство L называется Z_2 -градуированным, если оно представлено в виде прямой суммы двух подпространств

$$L = {}^{0}L \bigoplus {}^{1}L. \tag{3.1.1}$$

Элементы пространств ${}^{0}L$ и ${}^{1}L$ называются однородными. В градуированном пространстве задана четность, если дополнительно сказано, что элементы одного из этих пространств называются четными, другого — нечетными.

В Z_2 -градуированном линейном пространстве с фиксированной четностью определяется стандартным образом функция

четности $\alpha(x)$ (см. (1.2.49)), и оператор четности A.

В случае, если пространство L не имеет другой структуры кроме линейности и Z_2 -градуировки, четность в нем может быть введена двумя способами, так как пространства 0L и 1L равноправны. При наличии дополнительной структуры, например, если L является ассоциативной алгеброй или супералгеброй \mathcal{J} и (см. ниже), мы всегда будем требовать, что оператор четности был автоморфизмом этой структуры. Такое требование может нарушить равноправие пространств 0L и 1L и сделать введение четности однозначным.

Размерностью Z_2 -градуированного пространства называется пара чисел $p,\ q,\$ где p — размерность четного и q — размер-

ность нечетного подпространства: $\dim L = (p, q)$.

В случае, если подобно тому, как это сделано в (3.1.1), одно из однородных подпространств Z_2 -градуированного линейного пространства помечено индексом «0», другое индексом — «1», всегда в дальнейшем будет предполагаться, что индекс «0» присвоен четному подпространству, индекс «1» — нечетному.

В дальнейшем мы, как правило, рассматриваем только Z_2 -градуированные пространства с фиксированной четностью, не оговаривая этого специально, Z_2 -градуированное линейное пространство размерности p, q удобно обозначать $\mathbf{K}^{p,q}$, где, как обычно, $\mathbf{K} = \mathbf{R}$ в случае вещественного пространства и $\mathbf{K} = \mathbf{C} - \mathbf{B}$ случае комплексного пространства. (Это обозначение аналогично обычному обозначению n-мерного линейного пространства над \mathbf{K} в виде \mathbf{K}^n .)

Четное и нечетное подпространства пространства $\mathbf{K}^{p,q}$ будем обозначать соответственно $\mathbf{K}^{p,0}$ и $K^{0,q}$, $\mathbf{K}^{p,q} = \mathbf{K}^{p,0} \otimes \mathbf{K}^{0,q}$. Каждый линейный оператор в пространстве $\mathbf{K}^{p,q}$ имеет естественное матричное представление:

$$A = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix}, \quad Ax = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}, \quad x_1 \in \mathbb{K}^{p,0}, \quad x_2 \in \mathbb{K}^{0,q},$$

где A_{11} — оператор в $\mathbf{K}^{p,0}$, A_{22} — оператор в $\mathbf{K}^{0,q}$, A_{12} — оператор из $\mathbf{K}^{0,q}$ в $\mathbf{K}^{p,0}$, A_{21} — оператор из $\mathbf{K}^{p,0}$ в $\mathbf{K}^{0,q}$. В частности, автоморфизм четности в $\mathbf{K}^{p,q}$ имеет вид

$$\mathbf{A} = \begin{pmatrix} I_p & 0 \\ 0 & -I_q \end{pmatrix},\tag{3.1.2}$$

где I_p , I_q — единичные операторы соответственно в $\mathbf{K}^{p,0}$ и $\mathbf{K}^{0,q}$. (При перемене четности в $\mathbf{K}^{p,q}$ автоморфизм четности меняет знак $\mathbf{A}_1 = -\mathbf{A}$.)

Пусть $\{e_i\}$ — однородный базис в $\mathbf{K}^{p,q}$. Нумерацию векторов будем называть стандартной, если $e_i \in \mathbf{K}^{p,0}$ при $1 \le i \le p$, $e_i \in \mathbf{K}^{0,q}$ при $p+1 \le i \le p+q$. Однородный базис в $\mathbf{K}^{p,q}$ со стандартной нумерацией будем коротко называть стандартным базисом.

Рассмотрим наряду с Z_2 -градуированным пространством $K^{p,q}$ грассманову алгебру Λ . Единственная связь между $K^{p,q}$ и Λ состоит в том, что алгебра Λ вещественна в случае, если K=R, и комплексна, если K=C. Никакой связи между числами p,q и числом канонических образующих алгебры Λ не предполагается.

Рассмотрим следующую конструкцию. Пусть $\{e_i\}$ — стандартный базис в $\mathbf{K}^{p,q}$. Обозначим через $\mathbf{K}^{p,q}(\Lambda)$ множество всевозможных формальных линейных комбинаций вида

$$x = \sum_{i=1}^{p} a_{i} e_{i} + \sum_{p+1}^{p+q} a_{i} e_{j}, \qquad (3.1.3)$$

где a_i , a_j — соответственно четные и нечетные элементы Λ .

В (3.1.3) элементы г. а. Λ стоят слева от элементов $K^{p,q}$. Нет математической необходимости определять умножение элементов $K^{p,q}$ справа на элементы Λ . Однако возможность умножать элементы $K^{p,q}$ справа на элементы Λ является большим удобством, от которого не следует отказываться. При этом возникает необходимость связать между собой левое и правое умножения. Мы будем пользоваться двумя вариантами такой связи:

1)
$$a_i e_i = e_i a_i$$
; $\alpha_j e_j = e_j \alpha_j$;

2)
$$a_i e_i = e_i a_i$$
, $a_j e_j = -e_j a_j$.

В первом случае пространство $K^{p,q}(\Lambda)$ мы будем называть грассмановой оболочкой 1-го рода пространства $K^{p,q}$, во втором случае — грассмановой оболочкой 2-го рода 1 .

Для рода грассмановой оболочки мы не будем вводить спе-

циального знака, отмечая его в нужных местах словами.

В тех случаях, когда изложение относится к обоим родам грассмановой оболочки, мы будем опускать упоминание о роде.

Отметим некоторые простые свойства грассмановых обо-

лочек:

1) хотя пространство $K^{p,q}(\Lambda)$ построено с помощью однородного базиса e_i в $K^{p,q}$, в действительности оно от этого базиса не зависит: при разных выборах базиса получается одно и то же пространство $K^{p,q}(\Lambda)$;

2) $K^{p,q}(\Lambda)$ является не только линейным пространством над K, но и двусторонним модулем над $^0\Lambda$ (т. е. элементы $K^{p,q}(\Lambda)$ можно умножать слева и справа не только на числа,

но и на элементы ${}^{0}\Lambda$);

3) размерность $\hat{\mathbf{K}}^{p,q}(\Lambda)$ как линейного пространства равна

 $2^{N-1}(p+q)$, где N — число образующих г. а. Λ ;

4) пространство $\mathbf{K}^{p,q}(\Lambda)$ наследует Z_2 -градуировку пространства $\mathbf{K}^{p,q}:\mathbf{K}^{p,q}(\Lambda) = \mathbf{K}^{p,0}(\Lambda) \oplus \mathbf{K}^{0,q}(\Lambda)$, где через $\mathbf{K}^{p,0}(\Lambda)$ обозначено подпространство, состоящее из векторов вида (3.1.3) с равными нулю коэффициентами α_i , через $\mathbf{K}^{0,q}(\Lambda)$ — подпространство, состоящее из векторов вида (3.1.3) с равными нулю коэффициентами α_i .

Пространства $K^{p,0}(\Lambda)$ и $K^{0,q}(\Lambda)$ мы будем называть грассмановыми оболочками пространств $K^{p,0}$ и $K^{0,q}$ соответственно;

5) в $K^{p,q}(\Lambda)$ существует подпространство, естественным образом изоморфное $K^{p,0}$: оно состоит из векторов (3.1.3) специального вида $x = \sum_{i=1}^{p} x_i e_i$, $x_i \in K$. Подпространства, столь же

естественно связанного с $K^{0,q}$, в $K^{p,q}(\Lambda)$ нет.

Важную роль в дальнейшем играет отображение $m: \mathsf{K}^{p,q}(\Lambda) \to \mathsf{K}^{p,0}$, определяемое следующим образом: если $x \in \mathsf{K}^{p,q}(\Lambda)$ имеет вид (3.1.3), то

$$m(x) = \sum_{i=1}^{p} m(a_i) e_i \in \mathbf{K}^{p,0},$$
 (3.1.4)

єде $m(a_i)$ гомоморфизм г. а. Λ в алгебру чисел K, определяемый формулой (1.2.47) 2 .

¹ В случае, если $K^{p,q}(\Lambda)$ является грассмановой оболочкой 1-го рода, $K^{p,q}(\Lambda) = (\Lambda^E)^{p,q}$, где E — множество, состоящее из одной точки. (Определение модуля $(\Lambda^E)^{p,q}$ см. в гл. 1, § 3, п. 1.)

² Г. а. А, рассматриваемая как линейное пространство, является грассмановой оболочкой градунрованного пространства $K^{1,1}$. Очевидно, что отображение (3.1.4) пространства $K^{1,1}$ (Λ) совпадает с гомоморфизмом (1.2.47). Поэтому обозначение этого гомоморфизма и отображения (3.1.4) одним и тем же символом не должно вызывать путаницы.

В дальнейшем нам удобно будет элементы стандартного

базиса в
$$\mathbf{K}^{p,q}$$
 изображать столбиками: $e_i = \begin{bmatrix} 0 \\ \vdots \\ 1 \\ \vdots \\ 0 \end{bmatrix}$ (1 на i -м

месте сверху). Элементы $K^{p,q}$ и $K^{p,q}(\Lambda)$ в этом базисе также являются столбиками, $x = \begin{pmatrix} x_1 \\ \vdots \\ x_{p+q} \end{pmatrix}$, причем $x_i \in K$, если $x \in K^{p,q}$.

$$x_{i} \Subset \left\{ \begin{array}{ll} {}^{0}\Lambda & 1 \leqslant i \leqslant p \\ {}^{1}\Lambda & p+1 \leqslant i \leqslant p+q \end{array} \right., \text{ если } x \Subset \mathbb{K}^{p,q} \left(\Lambda \right).$$

Действие линейного оператора на вектор в этом базисе состоит в матричном умножении: $x \to Ax$, где $x \in \mathbb{K}^{p,q}$ или $\mathbb{K}^{p,q}(\Lambda)$ является одностолбцовой матрицей.

2. Линейные операторы в Z_2 -градуированных пространства х. Z_2 -градуировка пространства $\mathbf{K}^{p,q}$ влечет за собой Z_2 -градуировку пространства линейных операторов в $\mathbf{K}^{p,q}$. Оператор A называется четным, если $A\mathbf{K}^{p,0} \subset \mathbf{K}^{p,0}$, $A\mathbf{K}^{0,q} \subset \mathbf{K}^{0,q}$, и нечетным, если $A\mathbf{K}^{p,0} \subset \mathbf{K}^{0,q}$, $A\mathbf{K}^{0,q} \subset \mathbf{K}^{p,0}$. Другими словами оператор A четен, если он не меняет четность однородного вектора, и нечетен, если меняет.

Алгебру всех линейных операторов в $\mathbf{K}^{p,q}$ будем обозначать L(p,q), подпространство четных операторов — ${}^0L(p,q)$, нечетных — ${}^1L(p,q)$. В соответствии с разбиением пространства $\mathbf{K}^{p,q}$ в прямую сумму подпространств $\mathbf{K}^{p,q} = \mathbf{K}^{p,0} \bigoplus \mathbf{K}^{0,q}$, каждый оператор $A \!\! \equiv \!\! L(p,q)$ записывается в виде клеточной операторной матрицы

$$A = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix} = \begin{pmatrix} A_{11} & 0 \\ 0 & A_{22} \end{pmatrix} + \begin{pmatrix} 0 & A_{12} \\ A_{21} & 0 \end{pmatrix}, \tag{3.1.5}$$

где A_{11} ч A_{22} — операторы, действующие соответственно в пространствах $\mathbf{K}^{p,0}$ и $\mathbf{K}^{0,q}$, A_{12} отображает $\mathbf{K}^{0,q}$ в $\mathbf{K}^{p,0}$, A_{21} отобра-

жает $\mathbf{K}^{p,0}$ в $\mathbf{K}^{0,q}$. Первое слагаемое в (3.1.5) является четной составляющей оператора A, второе — нечетной. Легко видеть, что автоморфизм четности действует в L(p,q) согласно формуле

$$T \rightarrow ATA^{-1}$$
, (3.1.6)

где A = L(p, q) имеет вид (3.1.2).

Очевидно, что автоморфизм четности (3.1.6) является автоморфизмом L(p, q) не только как линейного пространства, но и как ассоциативной алгебры. Отметим, что четность в L(p, q) не зависит от выбора четности в $\mathbf{K}^{p,q}$: при перемене

четности в $K^{p,q}$ оператор **A** заменяется на $A_1 = -A$, автоморфизм (3.1.6) не меняется.

Грассманову оболочку первого рода алгебры L(p, q) обозначим $L(p, q|\Lambda)$. Очевидно, что $L(p, q|\Lambda)$, подобно L(p, q), является не только линейным пространством, но также и ассо-

циативной алгеброй.

В стандартном базисе элементы $L(p, q \mid \Lambda)$, подобно элементам L(p, q), записываются матрицами вида (3.1.5); матричные элементы a_{ij} блоков в случае L(p, q) являются числами, в случае $L(p, q \mid \Lambda)$ — элементами г. а. Λ : четными в случае блоков A_{11} , A_{22} и нечетными в случае блоков A_{12} , A_{21} . Элементы $L(p, q \mid \Lambda)$ являются операторами в $\mathbf{K}^{p,q}(\Lambda)$. Действие оператора $A \!\! \in \!\! L(p, q \mid \Lambda)$ на $x \!\! \in \!\! \mathbf{K}^{p,q}(\Lambda)$ состоит в матричном умножении:

$$x \to A \, x, \ x = \left(\frac{x_1}{x_2}\right), \ x_1 \in \mathsf{K}^{p, |0|}(\Lambda), \ x_2 \in \mathsf{K}^{0, q}(\Lambda).$$

Совокупность обратимых элементов алгебры $L(p, q|\Lambda)$ образует, очевидно, группу. Эту группу будем обозначать $GL(p, q|\Lambda)$.

Мы увидим в дальнейшем, что оператор $A \!\! \in \!\! L(p, q | \Lambda)$ вида (3.1.5) обратим тогда и только тогда, когда обратимы опе-

раторы A_{11} и A_{22} .

Обозначим через $G'L(p, q|\Lambda)$ множество элементов $A \in L(p, q|\Lambda)$ вида (3.1.5) с обратимым оператором A_{11} и через $G''L(p, q|\Lambda)$ — множество элементов $A \in L(p, q|\Lambda)$ вида (3.1.5) с обратимым оператором A_{22} . Мы увидим ниже, что $G'L(p, q|\Lambda)$ и $G''L(p, q|\Lambda)$ являются полугруппами. Из сформулированного выше критерия обратимости операторов $A \in GL(p, q|\Lambda)$ следует, что $GL(p, q|\Lambda) = G'L(p, q|\Lambda)$ $\cap G''L(p, q|\Lambda)$.

Поскольку $L(p, q|\Lambda)$ служит грассмановой оболочкой алгебры L(p, q), существует линейное отображение $m:L(p, q|\Lambda) \rightarrow {}^{0}L(p, q)$, определяемое согласно общей формуле (3.1.4). Очевидно, что отображение m является гомоморфизмом алгебр. Алгебру ${}^{0}L(p, q)$ удобно считать вложенной в $L(p, q|\Lambda)$ в соответствии с общим правилом вложения четного подпространства в грассманову оболочку (см. выше). Очевидно, что при вложении ${}^{0}L(p, q)$ оказывается подалгеброй $L(p, q|\Lambda)$, состоящей из операторов, имеющих в стандартном базисе клеточно-диагональные матрицы с численными коэффи-

циентами: $A = \begin{pmatrix} A_{11} & 0 \\ 0 & A_{22} \end{pmatrix}$.

3. Алгебры $\mathrm{Mat}(p,q)$ и $\mathrm{Mat}(p,q|\Lambda)$. Фиксируем в $\mathbf{K}^{p,q}$ стандартный базис. Запишем в этом базисе каждый оператор $A{\in}L(p,q)$ и каждый оператор $A{\in}L(p,q|\Lambda)$. Полученные множества матриц обозначим через $\mathrm{Mat}(p,q)$ и $\mathrm{Mat}(p,q|\Lambda)$ соответственно. Таким образом, $\mathrm{Mat}(p,q)$ состоит из всевоз-

можных матриц вида (3.1.5) с элементами из K, $Mat(p, q|\Lambda)$ — из аналогичных матриц, но с элементами из г. а. Λ : матричные элементы блоков A_{11} и A_{22} являются четными элементами Λ ,

матричные элементы блоков A_{12} и A_{21} — нечетными.

Введем в Mat(p, q) четность, по аналогии с четностью в L(p, q): четными назовем клеточно-диагональные матрицы $A = \begin{pmatrix} A_{11} & 0 \\ 0 & A_{22} \end{pmatrix}$, нечетными — матрицы вида $\begin{pmatrix} 0 & A_{12} \\ A_{21} & 0 \end{pmatrix}$.

Следующие утверждения очевидны: отображения $\mathcal{A} \to A$, где $\mathcal{A} \in L(p, q)$, $A \in Mat(p, q)$ или $\mathcal{A} \in L(p, q|\Lambda)$, $A \in Mat(p, q|\Lambda)$, являются градуированными изоморфизмами соответствующих алгебр; алгебра $Mat(p, q|\Lambda)$ является грассмановой оболочкой алгебры Mat(p, q).

В соответствии с общими соображениями, справедливыми для всех Z_2 -градуированных линейных пространств и их грассмановых оболочек, определим линейный оператор $m: \operatorname{Mat}(p, q | \Lambda) \to {}^{\circ}\operatorname{Mat}(p, q) = \operatorname{Mat}(p) \bigoplus \operatorname{Mat}(q)$ и вложение алгебры ${}^{\circ}\operatorname{Mat}(p, q)$ в качестве подалгебры в $\operatorname{Mat}(p, q | \Lambda)$. Оператор m является гомоморфизмом алгебр.

Группу, состоящую из обратимых элементов $Mat(p, q|\Lambda)$, обозначим $GMat(p, q|\Lambda)$. $GMat(p, q|\Lambda)$ состоит из матриц операторов $\mathcal{A} \subseteq GL(p, q|\Lambda)$, записанных в стандартном базисе.

Подмножество $Mat(p, q|\Lambda)$, состоящее из матриц $A = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix}$ с обратимым блоком A_{11} , обозначим

G' $Mat(p, q|\Lambda)$, подмножество, состоящее из матриц с обратимым блоком A_{22} , обозначим G'' $Mat(p, q|\Lambda)$. G' $Mat(p, q|\Lambda)$ и G'' $Mat(p, q|\Lambda)$ состоят из матриц операторов $G'L(p, q|\Lambda)$ и $G''L(p, q|\Lambda)$ соответственно, записанных в стандартном базисе. Алгебра $Mat(p, q|\Lambda)$ является важным вспомогательным средством для изучения алгебры операторов $L(p, q|\Lambda)$. Отметим, однако, что, несмотря на изоморфизм между этими алгебрами не каждое свойство алгебры $Mat(p, q|\Lambda)$ переносится на $L(p, q|\Lambda)$. Дело в том, что в различных стандартных базисах одному и тому же оператору отвечают различные матрицы. Очевидно, что матрицы A, A одного оператора, соответствующие различным каноническим базисам в $K^{p,q}$, связаны соотношением

$$A = B \tilde{A} B^{-1}, \ B = \begin{pmatrix} B_1 & 0 \\ 0 & B_2 \end{pmatrix},$$
 (3.1.7)

где B_1 , B_2 — численные матрицы. Таким образом, те и только те свойства алгебры $\mathrm{Mat}(p,\,q\,|\,\Lambda)$ являются одновременно свойствами алгебры $L(p,\,q\,|\,\Lambda)$, которые инварианты относительно преобразований (3.1.7).

^{&#}x27; Имеется в виду отображение, которое оператору $\mathcal A$ ставит в соответствие его матрицу A. Изоморфизм, задаваемый этим отображением, фактически уже использовался в предыдущем пункте.— Прим. ред.

Установим критерий обратимости матриц $A \in Mat(p, q | \Lambda)$. Теорема 3.1. 1) Матрица $A \in Mat(p, q | \Lambda)$ вида (3.1.5) обратима тогда и только тогда, когда обратимы матрицы A_{11}

и A_{22} .
2) Матрица $A \in \operatorname{Mat}(p, q \mid \Lambda)$ обратима тогда и только тог-

да, когда обратима матрица

$$mA = \begin{pmatrix} mA_{11} & 0 \\ 0 & mA_{22} \end{pmatrix} \iff \operatorname{Mat}(p) \bigoplus \operatorname{Mat}(q).$$

Доказательство. Разложим матрицу A по образующим алгебры Λ и отделим слагаемое нулевой степени по совокупности образующих: $A=A_0+T$. Предположим, что существует A^{-1} , и поступим с A^{-1} аналогичным образом: $A^{-1}=\tilde{A}_0+\tilde{T}$. Из равенства $AA^{-1}=I$ вытекает, что $A_0\tilde{A}_0=I$, следовательно, матрица A_0 обратима. Предположим теперь, что матрица A_0 обратима, и представим A в виде $A=A_0(I+A_0^{-1}T)$. Матрица $A_0^{-1}T$ очевидным образом нильпотентна, поэтому A^{-1} существует:

$$A^{-1} = \left(\sum_{0}^{\infty} (-1)^n \ (A_0^{-1} \ T)^n \right) A_0^{-1}$$
. (Ряд в скобках конечен ввиду нильпотентности $A_0^{-1}T$.) Таким образом, обратимость A равносильна обратимости A_0 . Заметим теперь, что $A_0 = \begin{pmatrix} A_{0,11} & 0 \\ 0 & A_{0,22} \end{pmatrix}$.

где $A_{0,11}$, $A_{0,22}$ — нулевые члены в разложении матриц A_{11} и A_{22} по образующим Λ . Повторяя прежние рассуждения, находим, что обратимость A_{11} равносильна обратимости $A_{0,11}$, обратимость A_{22} равносильна обратимости $A_{0,22}$.

Следствие. Онератор $\mathcal{A} \in L(p, q | \Lambda)$ вида (3.1.5) обратим тогда и только тогда, когда обратимы операторы \mathcal{A}_{11} и \mathcal{A}_{22} , операторы \mathcal{A}_{11} и \mathcal{A}_{22} обратимы тогда и только тогда, когда об-

ратимы операторы $m\mathcal{A}_{11}$ и $m\mathcal{A}_{22}$.

В заключение этого пункта укажем операции в $Mat(p, q | \Lambda)$, являющиеся аналогами транспонирования, эрмитовского и комплексного сопряжения.

Пусть $A = \|a_{ik}\| \in \text{Mat } (p, q \mid \Lambda)$. Положим

$$A^{T} = \|a_{ki}(-1)^{\alpha(i)(\alpha(k)+1)}\|,$$

где $\alpha(i) = \alpha(e_i)$. Другими словами,

$$\begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix}^{T} = \begin{pmatrix} A_{11} & A_{21} \\ -A_{12} & A_{22} \end{pmatrix}, \tag{3.1.8}$$

где штрих означает обычное транспонирование. В случае, если г. а. Λ обладает инволюцией, в $Mat(p, q|\Lambda)$ могут быть определены операции * и $\overline{\ }$, аналогичные эрмитовскому и комплексному сопряжению: если

$$A = \|a_{ik}\|$$
, to $A^{\bullet} = \|a_{ki}^{\bullet}\|$, $\widetilde{A} = \|a_{ik}(-1)^{\alpha(i)(\alpha(k)+1)}\|$.

Другими словами

$$\begin{pmatrix}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{pmatrix}^{*} = \begin{pmatrix}
A_{11}^{*} & A_{21}^{*} \\
A_{12}^{*} & A_{22}^{*}
\end{pmatrix},$$

$$\overline{\begin{pmatrix}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{pmatrix}} = \begin{pmatrix}
\overline{A}_{11} & -\overline{A}_{12} \\
\overline{A}_{21} & \overline{A}_{22}
\end{pmatrix},$$
(3.1.9)

где * в применении к a_{ik} означает инволюцию в Λ , в применении к A_{ik} — то же, что в применении к A, черта в применении к A_{ik} означает замену всех элементов матрицы A_{ik} на инволютивные: если $A_{ik} = ||a_{ik,ee'}||$, то $\overline{A_{ik}} = ||a_{ik,ee'}||$, i,k = 1,2.

Укажем ряд свойств этих операций

$$(AB)^{T} = B^{T} A^{T}, \quad (AB)^{*} = B^{*} A^{*}, \quad \overline{AB} = \overline{A} \, \overline{B},$$

$$(3.1.10)$$

$$(A^T)^T = \mathbf{A} A \mathbf{A}, \ (\overline{A})^T = \mathbf{A} \overline{A^T} \mathbf{A} = A^*.$$

В случае, если * является инволюцией 1-го рода в г. а. Λ , то $\overline{}$

$$(A^*)^* = A, \quad (\overline{\overline{A}}) = A.$$

В случае, если * является инволюцией 2-го рода в г. а. Λ , то

$$(A^*)^* = \mathbf{A} A \mathbf{A}, \ (\overline{\overline{A}}) = \mathbf{A} A \mathbf{A}.$$

Все эти свойства устанавливаются непосредственной проверкой. При проверке первых двух соотношений (3.1.10) используется легко проверяемое тождество, справедливое для матриц с антикоммутирующими элементами:

$$(UV)' = -V'U', \tag{3.1.11}$$

где ' означает обычное транспонирование.

Сопоставим вектору-столбику
$$x = \begin{pmatrix} x_1 \\ \vdots \\ x_{p+q} \end{pmatrix} \in \mathbb{R}^{p,q} (\Lambda)$$
 вектор-

строчку $x' = (x_1, ..., x_{p+q})$. Если г. а. А обладает инволюцией, то помимо x' сопоставим x также вектор-строчку $x^* = (x_1^*, ..., x_{p+q}^*)$. Введенные ранее операции над матрицами связаны с этими операциями с помощью соотношений, аналогичных обычным:

$$(Ax)' = x' A^T, (Ax)^* = x^* A^*.$$

4. Матрицы с антикоммутирующими элементами. В дальнейшем нам часто будут встречаться прямоугольные матрицы, элементы которых суть нечетные элементы некоторой грассмановой алгебры. Элементы этих матриц поларно антикоммутируют. Лемма 3.1. Пусть V, W — прямоугольные матрицы с антикоммутирующими элементами, причем V имеет m строк и nстолбцов, W имеет n строк и m столбцов. Тогда

$$\operatorname{tr} WV = -\operatorname{tr} VW, \tag{3.1.12}$$

$$\det(I + WV) = \det(I + VW)^{-1}.$$
 (3.1.13)

Прежде чем доказывать эту лемму отметим, что для матриц с коммутирующими элементами хорошо известны аналогичные тождества, однако без знака «—» в правой части (3.1.12) и без степени «—1» в (3.1.13).

 \mathcal{L} оказательство. Обозначим через v_{ik} , w_{ik} элементы матриц V и W соответственно. Имеем

$$\operatorname{tr} WV = \sum w_{ik}v_{ki} = \sum v_{ki}w_{ik} = -\operatorname{tr} VW.$$

Далее, используя (3.1.12), находим

$$\ln \det (I + WV) = \operatorname{tr} \ln (I + WV) = \sum \frac{(-1)^{n+1}}{n} \operatorname{tr} ((WV)^{n-1} WV) =$$

$$= -\sum \frac{(-1)^{n+1}}{n} \left(\operatorname{tr} (V(WV)^{n-1} W) \right) =$$

$$= -\sum \frac{(-1)^{n+1}}{n} \operatorname{tr} (VW)^{n} = -\ln \det (I + VW).$$

Экспоненцируя, получаем нужное утверждение.

5. Суперслед и супердетерминант. Пусть

$$A = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix} \in \operatorname{Mat}(p, q \mid \Lambda).$$

Суперследом называется функция на $Mat(p, q|\Lambda)$, равная $str A = tr A_{11} - tr A_{22}$. (3.1.14)

Супердетерминантом называется функция на G Mat(p, $q \mid \Lambda$), равная

$$sdet A = det (A_{11} - A_{12}A_{22}^{-1}A_{21}) det A_{22}^{-1}. (3.1.15)$$

От обычного следа суперслед отличает знак «—» в правой части (3.1.14), от обычного детерминанта супердетерминант отличает показатель «—1» у второго сомножителя в (3.1.15) 1.

1
 Пусть $A=egin{pmatrix} A_{11}&A_{12}\ A_{21}&A_{22} \end{pmatrix}$ — обычная клеточная матрица, $M=egin{pmatrix} I&0\ -A_{22}^{-1}A_{21}&I \end{pmatrix}.$

Тогда

 $\det A = \det AM = \det \begin{pmatrix} A_{11} - A_{12} A_{22}^{-1} A_{21} & A_{12} \\ 0 & A_{22} \end{pmatrix} = \det (A_{11} - A_{12} A_{22}^{-1} A_{21}) \det A_{22}.$

Отметим, что некоторые элементы матрицы А∈Маt(p, q\Λ) являются нечетными и поэтому некоммутирующими между собой. Поэтому определить ее детерминант обычным образом затруднительно. В то же время матрицы, стоящие под знаком детерминанта в (3.1.15), состоят лишь из четных, следовательно, коммутирующих между собой элементов. Поэтому детерминанты этих матриц определяются обычным образом и обладают обычными свойствами.

Суперслед и супердетерминант очевидным образом инвариантны относительно преобразований (3.1.7). Это дает возможность определить корректным образом суперслед и супердетерминант для операторов из $L(p, q|\Lambda)$ и $GL(p, q|\Lambda)$ соответственно: str $\mathcal{A} = \operatorname{str} A$, sdet $\mathcal{A} = \operatorname{sdet} A$, где A — матрица оператора \mathcal{A} в стандартном базисе.

Укажем простейшие свойства суперследа и супердетерми-

нанта.

Теорема 3.2. Пусть
$$A$$
, $B \in Mat(p, q | \Lambda)$. Тогда $str AB = str BA$. (3.1.16)

Доказательство. Пусть

$$A = \begin{pmatrix} A_{11} & A_{12} \\ A_{24} & A_{22} \end{pmatrix}, \quad B = \begin{pmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{pmatrix}.$$

Применяя лемму 3.1 и пользуясь обычным свойством следа матриц с коммутирующими элементами, находим

$$str AB = tr (A_{11}B_{11} + A_{12}B_{21}) - tr (A_{21}B_{12} + A_{22}B_{22}) =
= tr (B_{11}A_{11} - B_{21}A_{12}) - tr (-B_{12}A_{21} + B_{22}A_{22}) = str BA.$$

Супердетерминант обладает свойством, аналогичным обычному детерминанту.

Теорема 3.3. Супердетерминант мультипликативен:

$$sdet(AB) = sdet A \cdot sdet B.$$
 (3.1.17)

Доказательство теоремы основано на леммах, которые будут использоваться также и в дальнейшем.

Лемма 3.2. Пусть $A = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix}$ — произвольная клеточная обратимая матрица с квадратными обратимыми блоками A_{11} и A_{22} . Тогда обратная матрица A^{-1} имеет вид

$$\begin{pmatrix}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{pmatrix}^{-1} \equiv \begin{pmatrix}
\widetilde{A}_{11} & \widetilde{A}_{12} \\
\widetilde{A}_{21} & \widetilde{A}_{22}
\end{pmatrix} = \\
= \begin{pmatrix}
(A_{11} - A_{12} A_{22}^{-1} A_{21})^{-1} & -A_{11}^{-1} A_{12} (A_{22} - A_{21} A_{11}^{-1} A_{12})^{-1} \\
-A_{22}^{-1} A_{21} (A_{11} - A_{12} A_{22}^{-1} A_{21})^{-1} & (A_{22} - A_{21} A_{11}^{-1} A_{12})^{-1}
\end{pmatrix}.$$
(3.1.18)

Доказательство состоит в непосредственной проверке тождества $AA^{-1}=I$. (Существование матриц $(A_{11}-A_{12}A_{22}^{-1}A_{21})^{-1}$ и $(A_{22}-A_{21}A_{11}^{-1}A_{12})^{-1}$ следует из тождества

$$\begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix} \begin{pmatrix} A_{11}^{-1} & 0 \\ 0 & A_{22}^{-1} \end{pmatrix} \begin{pmatrix} I & 0 \\ 0 & -I \end{pmatrix} \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix} \begin{pmatrix} I & 0 \\ 0 & -I \end{pmatrix} = \\ = \begin{pmatrix} A_{11} - A_{12} & A_{22}^{-1} & A_{21} & 0 \\ 0 & A_{22} - A_{21} & A_{11}^{-1} & A_{12} \end{pmatrix},$$

так как в его левой части стоит произведение обратимых матриц.)

Формула (3.1.18) справедлива, в частности, когда $A = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix} \in G$ Mat $(p, q \mid \Lambda)$. В этом случае обратимость A_{11}

и A_{22} следует из теоремы 3.1.

Пусть г. а. Λ , используемая для построения $\operatorname{Mat}(p, q \mid \Lambda)$, имеет N образующих $\Lambda = \Lambda_N$. Рассмотрим ее как подалгебру грассмановой алгебры Λ_{N+M} , порожденную N каноническими образующими этой алгебры. Обозначим через Z прямоугольную матрицу с p строками и q столбцами, элементы которой z_{ij} суть нечетные элементы Λ_{N+M} . Множество всех таких матриц обозначим через Z. В множестве Z действует группа G $\operatorname{Mat}(p, q \mid \Lambda_N)$, согласно формуле

$$Z \rightarrow G \cdot Z = (AZ + B) (CZ + D)^{-1}, G = \begin{pmatrix} A & B \\ C & D \end{pmatrix}.$$
 (3.1.19)

Легко проверяется, что элемент $G \cdot Z$ представим также в виде $G_i \cdot Z = (\widetilde{A} - Z \, \widetilde{C})^{-1} \, (Z \widetilde{D} - \widetilde{B}),$ (3.1.20)

где \widetilde{A} , \widetilde{B} , \widetilde{C} , \widetilde{D} — блоки матрицы g^{-1} — определяются из (3.1.18). Положим

$$f_1(G, Z) = (CZ + D)^{-1}, f_2(G, Z) = \tilde{A} - Z\tilde{C}.$$
 (3.1.21)

Лемма 3.3. Матричные функции $f_1(G, Z)$, $f_2(G, Z)$ удовлетворяют функциональному уравнению

$$f_{1,2}(G_2G_1, Z) = f_{1,2}(G_1, Z)f_{1,2}(G_2, G_1 \cdot Z).$$
 (3.1.22)

Доказательство. Согласно (3.1.20)

$$f_{2}(G_{2}G_{1}, Z) = \widetilde{A}_{1}\widetilde{A}_{2} + \widetilde{B}_{1}\widetilde{C}_{2} - Z(\widetilde{C}_{1}\widetilde{A}_{2} + \widetilde{D}_{1}\widetilde{C}_{2}) =$$

$$= (\widetilde{A}_{1} - Z\widetilde{C}_{1})\widetilde{A}_{2} + (\widetilde{B}_{1} - Z\widehat{D}_{1})\widetilde{C}_{2} =$$

$$= (\widetilde{A}_1 - Z \widetilde{C}_1)(\widetilde{A}_2 + (\widetilde{A}_1 - Z\widetilde{C}_1)^{-1} (\widetilde{B}_1 - Z\widetilde{D}_1)\widetilde{C}_2) = f_2(G_1, Z) f_2(G_2, G_1 \cdot Z)$$

Аналогично исходя из (3.1.19) проверяется, что $f_1(G, Z)$ удовлетворяет соотношению (3.1.22),

Заметим, что элементы матриц f_i являются четными, следовательно, они коммутируют между собой. Поэтому детерминанты матриц f_i могут быть определены обычным образом и обладают обычными свойствами. Положим $f(G, Z) = \det f_1(G, Z) \cdot \det f_2^{-1}(G, Z)$. Из (3.1.22) следует, что

$$f(G_2G_1, Z) = f(G_1, Z) \cdot f(G_2, G_1 \cdot Z)$$
.

Доказательство теоремы 3.3 завершает лемма 3.4. **Лемма 3.4.** $f(G, Z) = s \det G$ и в действительности не зависит от Z.

Доказательство. Используя (3.1.18), получаем

$$f^{-1}(G, Z) = \det(CZ + D) \det(\widetilde{A} - Z\widetilde{C}) =$$

$$= \det(CZ + D) \det((A - BD^{-1}C)^{-1} + ZD^{-1}C(A - BD^{-1}C)^{-1}) =$$

$$\det(CZ + D) \det(I + ZD^{-1}C) \det(A - BD^{-1}C)^{-1} =$$

$$= \det(CZ + D) \det(I + CZD^{-1}) \det(A - BD^{-1}C)^{-1} =$$

$$= \det(CZ + D) \det(D + CZ)^{-1} \det D \det(A - BD^{-1}C)^{-1} =$$

$$= \det D \det(A - BD^{-1}C)^{-1}.$$

Отсюда $f(G, Z) = \det(A - BD^{-1}C) \det D^{-1} = \operatorname{s} \det G$. (В процессе преобразования использовано тождество (3.1.13), согласно которому $\det(I + ZD^{-1}C) = \det(I + CZD^{-1})^{-1}$.) Замечание 1. Пусть

$$A = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix} \longleftarrow G \operatorname{Mat}(p, q \mid \Lambda), \quad A^{-1} = \begin{pmatrix} \widetilde{A}_{11} & \widetilde{A}_{12} \\ \widetilde{A}_{21} & \widetilde{A}_{22} \end{pmatrix}.$$

Из теоремы 3.3 и тождества (3.1.18) вытекают различные представления для супердетерминанта в виде произведения обычных детерминантов

$$\operatorname{sdet} A = \det (A_{11} - A_{12} A_{22}^{-1} A_{21}) \det A_{22}^{-1} = \det \widetilde{A}_{11}^{-1} \det A_{22}^{-1} =$$

$$= (\operatorname{sdet} A^{-1})^{-1} = \det A_{11}^{-1} \det \widetilde{A}_{22}^{-1} = \det A_{11}^{-1} \det (A_{22} - A_{21} A_{11}^{-1} A_{12}).$$
(3.1,23)

Замечание 2. Обозначим через G' $Mat(p, q | \Lambda)$, G'' $Mat(p, q | \Lambda)$ подмножества $Mat(p, q | \Lambda)$, состоящие из матриц $\begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix}$ с обратимыми клетками A_{11} и A_{22} соответственно. Формула (3.1.15), определяющая супердетерминант, может быть очевидным образом распространена на G'' $Mat(p, q | \Lambda)$: для того чтобы она имела смысл, необходима обратимость A_{22} , но не A_{11} . Очевидно, что каждый элемент G'' $Mat(p, q | \Lambda)$ служит пределом последовательности элемен-

тов из G Mat $(p, q | \Lambda)$. Отсюда следует, что G'' Mat $(p, q | \Lambda)$

является полугруппой и что супердетерминант на G'' Mat $(p, q | \Lambda)$ сохраняет свойство мультипликативности. Аналогичным образом исходя из (3.1.23) находим,

 $(\operatorname{sdet} A)^{-1}$ распространяется с сохранением мультипликативности на G' $Mat(p, q|\Lambda)$ и что G' $Mat(p, q|\Lambda)$ также является полугруппой.

В отличие от обычного детерминанта супердетерминант не

может быть распространен на всю алгебру $Mat(p, q|\Lambda)$. В конце п. 2 были определены множества операторов

 $G'L(p, q|\Lambda)$ и $G''L(p, q|\Lambda)$. Очевидно, что эти множества состоят из операторов, матрицы которых в стандартном базисе принадлежат G' $Mat(p, q|\Lambda)$ и G'' $Mat(p, q|\Lambda)$ соответственно. Поэтому $G'L(p, q|\Lambda)$ и $G''L(p, q|\Lambda)$ являются полугруппами.

6. Вычисление суперследа и супердетерминанта в нестандартном базисе. Пусть $\{e_i\}$ — однородный, но нестандартный базис в $K^{p,q}$, $\mathcal{A} \in L(p, q | \Lambda)$ — некоторый оператор в $K^{p,q}(\Lambda)$ и A — его матрица в базисе $\{e_i\}$. Положим по определению str $A = \text{str } \mathcal{A}$, sdet $A = \text{sdet } \mathcal{A}$. Задача состоит в том, чтобы вычислять $str \mathcal{A}$ и $sdet \mathcal{A}$, используя непосредственно матрицу А, без перехода к стандартному базису.

Поскольку e_i — однородные векторы, базис $\{e_i\}$ отличается от стандартного лишь нумерацией. Обозначим через U матрицу перестановки, превращающую базис $\{e_i\}$ в стандартный:

$$f_i = \sum e_k u_{ki},$$

где $\{f_i\}$ — стандартный базис в $\mathbf{K}^{p,q}$, u_{ki} — элементы матрицы \tilde{U} .

Обозначим через B матрицу оператора \mathcal{A} в базисе $\{f_i\}$. Очевидно, что $B = U^{-1}AU$. Согласно определению $str A = str \mathcal{A} =$ = str B sdet A = sdet \mathscr{A} = sdet B. Благодаря тому, что U являетматрицей перестановки базисных векторов, $B \in$ \in Mat $(p, q \mid \Lambda)$, матрица A обладает характерным свойством:

$$a(b_{ij}) = a(i) + a(j),$$
 (3.1.24)

где a_{ii} — элементы матрицы A и для краткости положено $\alpha(i) = \alpha(e_i)$.

Теорема 3.4. Пусть A — матрица некоторого оператора

 $\mathscr{A} \in GL(p, |q|\Lambda)$ в однородном базисе. Разобьем матрицу в A

на клетки: $A = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix}$, где A_{11} , A_{22} — матрицы порядков m и n соответственно, A_{12} и A_{21} прямоугольные m imes n- и n imes

 $\times m$ -матрицы, m, n — произвольные числа, удовлетворяющие условию m+n=p+q. Тогда $str A = str A_{11} + str A_{22}$. (3.1.25)

В случае, если матрица A_{22} обратима, то

 $sdet A = sdet (A_{11} - A_{12}A_{22}^{-1}A_{21}) sdet A_{22}^{-1}$. (3.1.26) Прежде чем доказывать теорему, заметим, что матрицы A_{11} , A_{22} и $A_{12}A_{22}^{-1}A_{21}$ обладают свойством (3.1.24). Поэтому они служат матрицами некоторых операторов в пространствах $\mathbf{K}^{p',q'}(\Lambda)$, $\mathbf{K}^{p'',q''}(\Lambda)$, где p', p'' — количества четных элементов среди e_i при 1 < i < m и m+1 < i < m+n соответственно, q', q'' — количества нечетных элементов среди e_i , m=p'+q', n=p''+q''. Следовательно, суперслед и супердетерминант матриц A_{11} , A_{22} A_{11} — $A_{12}A_{22}^{-1}A_{21}$ определены.

Доказательство теоремы 3.4. Ввиду того что U является матрицей перестановки, диагональные элементы a_{ii} матрицы $A = UBU^{-1}$ отличаются от диагональных элементов b_{ii} матрицы $B \in Mat(p, q | \Lambda)$ перестановкой. Поэтому

$$\operatorname{str} A = \operatorname{str} B = \sum_{1}^{p+q} b_{\ell\ell} (-1)^{\alpha(\ell)} = \sum_{1}^{p+q} a_{\ell\ell}^{\cdot} (-1)^{\alpha(\ell)}.$$

Точно так же

$$\operatorname{str} A_{11} = \sum_{i=1}^{m} a_{ii} (-1)^{\alpha(i)}, \quad \operatorname{str} A_{22} = \sum_{m=1}^{m+n} a_{ii}^{(-1)} (-1)^{i}$$

и, таким образом, str $A = \operatorname{str} A_{11} + \operatorname{str} A_{22}$.

Перейдем к супердетерминанту. Пусть $\mathbf{K}^{p',q'}$ и $\mathbf{K}^{p'',q''}$ —подпространства $\mathbf{K}^{p,q}$, порожденные векторами e_i с номерами 1 < < i < m и m+1 < i < p+q соответственно, p'+q'=m, p''+q''=n. Заметим, что если формула (3.1.26) справедлива при какомнибудь одном однородном базисе в $\mathbf{K}^{p,q}$, являющемся объединением базисов $\mathbf{K}^{p'',q''}$ и $\mathbf{K}^{p'',q''}$, то она справедлива и при любом другом таком базисе. В самом деле, пусть $\{\tilde{e}_i\}$ — базис,

аналогичный
$$\{e_i\}$$
 и $\widetilde{A}=egin{pmatrix}\widetilde{A}_{11}&\widetilde{A}_{12}\ \widetilde{A}_{21}&\widetilde{A}_{22}\end{pmatrix}$ — матрица оператора $\mathscr A$ в

этом базисе. Очевидно, что матрица перехода от базиса $\{e_i\}$ к

базису
$$\{ ilde{e}_i\}$$
 имеет вид $V=egin{pmatrix} V_1 & 0 \ 0 & V_2 \end{pmatrix}$. Поэтому из условия $A=$

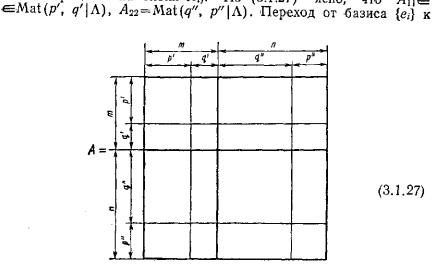
 $=V\tilde{A}V^{-1}$ следует, что

$$\begin{split} A_{22} &= V_2 \widetilde{A}_{22} V_2^{-1}, \\ A_{11} &- A_{12} A_{22}^{-1} A_{21} = V_1 (\widetilde{A}_{11} - \widetilde{A}_{12} \widetilde{A}_{22}^{-1} A_{21}) V_1^{-1}. \end{split}$$

Следовательно, sdet $A = \operatorname{sdet} \tilde{A}$.

Из сделанного замечания следует, что без ограничения общности базис $\{e_i\}$ можно считать занумерованным так, что $\alpha(e_i)=0$ при $1\leqslant i\leqslant p'$, $\alpha(e_i)=1$ при $p'+1\leqslant i\leqslant p'+q$, $\alpha(e_i)=0$ при $p'+q+1\leqslant i\leqslant p+q$.

В таком базисе блоки A_{ii} матрицы A_i в свою очередь, естественно разбиваются на клетки. Получаемое в результате более детальное клеточное разбиение матрицы A изобразим в виде схемы. Жирные линии в (3.1.27) соответствуют разбиению матрицы A на блоки A_{ij} . Из (3.1.27) ясно, что A_{1i}



(3.1.27)

(3.1.28)

стандартному может быть осуществлен циклической перестановкой с матрицей U вида

 $U = \|u_{ki}\|, \ u_{ki} = \begin{cases} \delta_{k,i+p'+q} & 1 \leq i \leq p-p' \\ \delta_{k,i+p'-p} & p-p'+1 \leq i \leq p+q, \end{cases}$

где $\delta_{s,l}$ — символ Кронекера. Рассмотрим частные случаи.

1) $A_{12}=A_{21}=0$, $A_{22}=I$. Используя матрицу (3.1.28), находим матрицу $B = U^{-1}AU$ оператора $\mathscr A$ в стандартном базисе

$$B = \begin{pmatrix} I_{p''} & 0 \\ A_{11} \\ 0 & A_{22} \end{pmatrix}.$$

Разобьем матрицу A_{11} \in $Mat(p, q|\Lambda)$ на клетки стандартным образом $A_{11} = \begin{pmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{pmatrix}$. В соответствии с этим стандартное

клеточное разбиение B имеет вид $B = \begin{pmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{pmatrix}$, где $B_{11} = \begin{pmatrix} I & 0 \\ 0 & C_{11} \end{pmatrix}, \quad B_{12} = \begin{pmatrix} 0 & 0 \\ C_{12} & 0 \end{pmatrix}, \quad B_{21} = \begin{pmatrix} 0 & C_{21} \\ 0 & 0 \end{pmatrix},$

 $B_{22} = \begin{pmatrix} C_{22} & 0 \\ 0 & I \end{pmatrix}.$

99

Согласно определению sdet A = sdet B. Учитывая (3.1.29), находим: $\operatorname{sdet} B = \det (B_{11} - B_{12} B_{22}^{-1} B_{21}) \det B_{22}^{-1} =$

$$=\det\left(C_{11}-C_{12}C_{22}^{-1}C_{21}\right)\det C_{22}^{-1}=\operatorname{sdet} A_{11}.$$
 2) $A_{12}=A_{21}=0,\ A_{11}=I.$ Пусть стандартное разбиен

2) $A_{12}=A_{21}=0$, $A_{11}=I$. Пусть стандартное разбиение матрицы A_{22} на клетки имеет вид $A_{22}=\begin{pmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{pmatrix}$. Тогда матрица

$$B=U^{-1}AU$$
 равна $B=\begin{pmatrix} C_{22} & 0 & C_{21} \\ 0 & I & 0 \\ C_{12} & 0 & C_{11} \end{pmatrix}$, т. е. при стандартном кле-

точном разбиении этой матриц

$$B_{11} = \begin{pmatrix} C_{22} & 0 \\ 0 & I \end{pmatrix}, \quad B_{12} = \begin{pmatrix} 0 & C_{21} \\ 0 & 0 \end{pmatrix}, \quad B_{21} = \begin{pmatrix} 0 & 0 \\ C_{12} & 0 \end{pmatrix}, \quad B_{22} = \begin{pmatrix} I & 0 \\ 0 & C_{11} \end{pmatrix},$$
 Отсюда согласно (3.1.23)
$$\operatorname{sdet} B = \det \left(C_{22} - C_{21} C_{11}^{-1} C_{12} \right) \det C_{11}^{-1} = \operatorname{sdet} A_{22}^{-1}.$$

3) $A_{11}=A_{22}=I$, $A_{21}=0$. Разобьем матрицу A_{12} на клетки в соответствии со схемой (3.1.27) $A_{12}=\begin{pmatrix} C_{13} & C_{14} \\ C_{23} & C_{24} \end{pmatrix}$. Легко видеть, что стандартные блоки матрицы $B=U^{-1}AU$ имеют вид

$$B_{11} = \begin{pmatrix} I & 0 \\ C_{14} & I \end{pmatrix}, \quad B_{12} = \begin{pmatrix} 0 & 0 \\ 0 & C_{13} \end{pmatrix}, \quad B_{21} = \begin{pmatrix} C_{24} & 0 \\ 0 & 0 \end{pmatrix}, \quad B_{22} = \begin{pmatrix} I & C_{23} \\ 0 & I \end{pmatrix}.$$

 $\operatorname{sdet} B = \operatorname{det} \left(\begin{pmatrix} I & 0 \\ C_{-1} & I \end{pmatrix} - \begin{pmatrix} 0 & 0 \\ 0 & C_{-2} \end{pmatrix} \begin{pmatrix} I & -C_{23} \\ 0 & I \end{pmatrix} \begin{pmatrix} C_{24} & 0 \\ 0 & 0 \end{pmatrix} \right) =$ $=\det\begin{pmatrix}I&0\\C&I\end{pmatrix}=1.$

4)
$$A_{11}=A_{22}=I$$
, $A_{12}=0$. Этот случай рассматривается аналогично предыдущему, результат прежний: $sdet B=1$. Таким образом, во всех случаях формула (3.1.26) оказы-

вается справедливой.

Перейдем к общему случаю. Рассмотрим оператор 🖋 🧲 $\in GL(p, q|\Lambda)$, имеющий в базисе $\{e_i\}$ матрицу

$$M = \begin{pmatrix} I & 0 \\ -A_{22}^{-1}A_{21} & I \end{pmatrix}.$$

Cогласно 4) sdet $\mathcal{M} = 1$.

Отсюда

Далее, пусть $\mathbf{x} = \mathbf{A} \mathbf{M}$. \mathbf{x} имеет в базисе $\{e_i\}$ матрицу

$$C = AM = \begin{pmatrix} A_{11} - A_{12} & A_{22}^{-1} & A_{21} & A_{12} \\ 0 & A_{22} \end{pmatrix} =$$

$$= \begin{pmatrix} A_{11} - A_{12} & A_{22}^{-1} & A_{21} & 0 \\ 0 & I \end{pmatrix} \begin{pmatrix} I & 0 \\ 0 & A_{22} \end{pmatrix} \begin{pmatrix} I & Y \\ 0 & I \end{pmatrix},$$

где У — некоторая матрица, явный вид которой не существен. Используя мультипликативность супердетерминанта и опираясь на разобранные частные случаи, получаем (3.1.26).

7. Теорема Лиувилля. **Теорема 3.5.** Пусть $A(t) \in Mat(p, q | \Lambda), t$ — вещественный параметр. Пусть, далее, X(t) \leftrightharpoons $Mat(p, |q|\Lambda)$ удовлетворяет дифференциальному уравнению с начальным условием

(3.1.30)

(3.1,32)

$$\frac{dX}{dt} = AX, \ X(0) = I.$$

Тогда $X(t) \in G \operatorname{Mat}(p, q | \Lambda)$ при всех t ч

$$\operatorname{sdet} X = \exp\left\{\int_{s}^{t} \operatorname{str} A(s) \ ds\right\}. \tag{3.1.31}$$

дифференциального уравнения с начальным условием $\frac{d\widetilde{X}}{dt} = -\widetilde{X}A, \ \widetilde{X}(0) = I.$

$$\frac{d}{dt}(\widetilde{X}X) = \frac{d\widetilde{X}}{dt}X + \widetilde{X}\frac{dX}{dt} = -\widetilde{X}AX + \widetilde{X}AX = 0.$$

 ${f y}$ читывая начальные условия, находим что ${f ilde{X}}{f x}{=}{f I}$, откуда ${f X}{f \in}$ \in G Mat $(p, q | \Lambda)$. Пусть

 $A = \begin{pmatrix} A_{11} & A_{12} \\ A_{01} & A_{02} \end{pmatrix}, \quad X = \begin{pmatrix} X_{11} & X_{12} \\ X_{12} & X_{22} \end{pmatrix}.$

Положим
$$Y = X_{11} - X_{12} X_{22}^{-1} X_{21}$$
, $Z = X_{22}^{-1}$. Из (3.1.30) следует,

OTP $\frac{dY}{dt} = (A_{11} - X_{12} X_{22}^{-1} A_{21}) Y,$

$$\frac{dZ}{dt} = -Z(A_{21}X_{12}X_{22}^{-1} + A_{22}).$$

Используя классическую теорему Лиувилля, получаем отсюда, что

$$\frac{d}{dt} \det Y = \operatorname{tr} (A_{11} - X_{12} X_{22}^{-1} A_{21}) \det Y,$$

$$\frac{d}{dt} \det Z = -\operatorname{tr} (A_{21} X_{12} X_{22}^{-1} + A_{22}) \det Z.$$

Далее, согласно лемме 3.1

$$\operatorname{tr}(A_{11}-X_{12}X_{22}^{-1}A_{21}) = \operatorname{tr}(A_{11}+A_{21}X_{12}X_{22}^{-1}).$$

Поэтому

$$\frac{d}{dt} \operatorname{sdet} X = \left(\frac{d}{dt} \det Y\right) \cdot \det Z + \det Y \cdot \frac{d}{dt} \det Z =$$

$$= \operatorname{tr} (A_{11} - A_{22}) \det Y \cdot \det Z = \operatorname{str} A \operatorname{sdet} X.$$

Учитывая начальное условие X(0) = I, получаем отсюда (3.1.31). Замечание 1. Пусть V удовлетворяет уравнению, аналогич-

HOMY (3.1.30):
$$\frac{dV}{t} = VA, \qquad (3.1.33)$$

и начальному условию V(0)=I. Тогда $V \in G \operatorname{Mat}(p, q | \Lambda)$ и

$$\operatorname{sdet} V(t) = \exp\left\{\int_{0}^{t} \operatorname{str} A(s) \, ds\right\}.$$

Доказательство вытекает из того, что если X(t) удовлетворяет условиям (3.1.30), то $X = X^{-1}$ — условиям (3.1.32).

Замечание 2. Мультипликативность супердетерминанта может быть выведена из теоремы Лиувилля. Пусть X, $Y \subseteq Mat(p, q | \Lambda)$. Соединим их гладкими кривыми X(t), Y(t) с единичной матрицей:

$$X(0) = Y(0) = I$$
, $X(1) = X$, $Y(1) = Y$,

Положим

$$A(t) = \frac{dX(t)}{dt} X^{-1}(t),$$

$$B(t) = \frac{dY(t)}{dt} Y^{-1}(t).$$

Тогда

$$\frac{d}{dt}(XY) = (A + B_1)XY, B_1 = XBX^{-1}.$$

Отсюда

$$\operatorname{sdet}(XY) = \exp\left\{\int_{0}^{1} \operatorname{str}(A + B_{\lambda}) dt\right\} = \exp\left\{\int_{0}^{1} \operatorname{str} A dt + \int_{0}^{1} \operatorname{str} B dt\right\} =$$

$$= \operatorname{sdet} X \cdot \operatorname{sdet} Y.$$

8. Дальнейшие свойства суперследа и супердетерминанта. Прежде всего выясним связь между супердетерминантом и суперследом матрицы и ее транспонирований. Теорема 3.6.

$$\operatorname{str} A = \operatorname{str} A^T$$
, $\operatorname{sdet} A = \operatorname{sdet} A^T$. (3.1.34)

Доказательство. Согласно определению, если

$$A = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix} \in \text{Mat}(p, q \mid \Lambda), \text{ to } A^{r} = \begin{pmatrix} A_{11}^{'} & A_{21}^{'} \\ -A_{12}^{'} & A_{22}^{'} \end{pmatrix}.$$

Отсюда $\operatorname{str} A^{\tau} = \operatorname{tr} A_{11}' - \operatorname{tr} A_{22}' = \operatorname{tr} A_{11} - \operatorname{tr} A_{22} = \operatorname{str} A$. Далее, соглаено тождеству (3.1.11) и равенству $\det U = \det U'$, справедливому для матриц с коммутирующими элементами,

sdet
$$A^T = \det (A'_{11} + A'_{21} A'_{22}^{-1} A'_{12}) \det A'_{22}^{-1} =$$

= det $(A_{11} - A_{12} A_{22}^{-1} A_{21}) \det A_{22}^{-1} = \operatorname{sdet} A$.

Попутно с доказательством теоремы 3.3 была установлена важная лемма 3.4. Перенесем ее на случай более общего разбиения матриц. Предварительно обобщим лемму 3.1.

Лемма 3.5. Пусть U, V — прямоугольные блочные матрицы; составленные из элементов \mathbf{r} . \mathbf{a} .:

$$U = \begin{pmatrix} m' & m'' \\ U_{11} & U_{12} \\ U_{21} & U_{22} \end{pmatrix} n', \quad V = \begin{pmatrix} n' & n'' \\ V_{11} & V_{12} \\ V_{21} & V_{22} \end{pmatrix} m'.$$

(Числа, стоящие сверху и справа, указывают соответственно количество столбцов и строк.) Если диагональные блоки U_{tt} , V_{tt} состоят из четных элементов Λ , а внедиагональные U_{tt} , V_{tt} , $i \neq j$, — из нечетных, то $UV \in Mat(n', n''|\Lambda)$, $VU \in Mat(m', m''|\Lambda)$,

$$str UV = str VU, (3.1.35)$$

$$sdet(I+UV) = sdet(I+VU). \tag{3.1.36}$$

Если, наоборот, диагональные блоки состоят из нечетных элементов, а внедиагональные — из четных, то по-прежнему

$$UV \in Mat(n', n'' | \Lambda), VU \in Mat(m', m'' | \Lambda), (3.1.37)$$

$$\operatorname{sdet}(I+UV) = \operatorname{sdet}(I+VU)^{-1}$$
.

(равенства (3.1.36) и (3.1.38) справедливы при условии суще-

ствования входящих в них супердетерминантов).

Доказательство. Включения $UV \in Mat(n', n''|\Lambda)$, $VU \in Mat(m', m''|\Lambda)$ в обоих случаях очевидны. Используя лемму 3.1 и обычные свойства следа для матриц с коммутирующими элементами, находим: в первом случае

$$str UV = tr (U_{11}V_{11} + U_{12}V_{21}) - tr (U_{21}V_{12} + U_{22}V_{22}) =
= tr (V_{11}U_{11} + V_{21}U_{12}) - tr (V_{12}U_{21} + V_{22}U_{22}) = str VU,$$

во втором случае

$$str UV = tr (U_{11}V_{11} + U_{12}V_{21}) - tr (U_{21}V_{12} + U_{22}V_{22}) =
= tr (-V_{11}U_{11} + V_{12}U_{21}) + tr (V_{12}U_{21} + V_{22}U_{22}) = - str VU.$$

Используя теорему Лиувилля, получаем при достаточно малом а, обеспечивающем сходимость необходимых рядов,

In s det
$$(I - \alpha UV)$$
 = str ln $(I - \alpha UV)$ =
$$= -\sum \frac{\alpha^n}{n} \operatorname{str} ((UV)^{n-1} UV) =$$

$$= \begin{cases} -\sum \frac{\alpha^n}{n} \operatorname{str} (V(UV)^{n-1} U) = -\sum \frac{\alpha^n}{n} \operatorname{str} (VU)^n = \\ = \ln \operatorname{s} \det (I - \alpha VU) \text{ в первом случае,} \\ \sum \frac{\alpha^n}{n} \operatorname{str} (V(UV)^{n-1} U) = \sum \frac{\alpha^n}{n} \operatorname{str} (VU)^n = \\ = -\ln \operatorname{s} \det (I - \alpha VU) \text{ во втором случае.} \end{cases}$$

Отсюда

$$s \det (I - \alpha UV) = \begin{cases} s \det (I - \alpha VU) \text{ в первом случае,} \\ s \det (I - \alpha VU)^{-1} \text{ во втором случае.} \end{cases}$$
 (3.1.39)

Тождества (3.1.39), будучи справедливыми при достаточно малых α , остаются справедливыми при всех α в силу аналитичности по α левой и правой части. В частности, они справедливы при $\alpha = -1$. Пусть $A = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix}$ — клеточная матрица того же типа, что в п. 6. Каждый блок A_{ij} матрицы A, в свою очередь, разбивается на клетки в соответствии со схемой (3.1.27). Пусть Λ_{N+M} — г. а., первые N образующих которой

порождают г. а. $\Lambda_N \subset \Lambda_{N+M}$, используемую для построения $GL(p, q \mid \Lambda_N)$. Рассмотрим множество ${\bf Z}$ прямоугольных клеточных матриц того же типа, какой предписывается матрице A_{12} схемой (3.1.27). Матричными элементами матриц ${\bf Z} \subset {\bf Z}$ служат элементы г. а. Λ_{N+M} .

Теорема 3.7.

$$s \det A = \det (A_{21}Z + A_{22})^{-1} \det (\tilde{A}_{11} - Z\tilde{A}_{21})^{-1}, \qquad (3.1.40)$$

в частности, правая часть (3.1.40) не зависит от Z.

Доказательство состоит в дословном воспроизведении доказательства леммы 3.4 с заменой ссылки на тождество (3.1.13) ссылкой на более общее тождество (3.1.38).

9. Суперслед и супердетерминант второго рода. Обозначим через $\mathrm{Mat}(p|\Lambda)$ подалгебру $(\mathrm{Mat}(p,\,p|\Lambda),\,\mathrm{со-стоящую}$ из матриц вида

$$A = \begin{pmatrix} A_1 & A_2 \\ A_2 & A_1 \end{pmatrix}. \tag{3.1.41}$$

Через G $Mat(p|\Lambda)$ обозначим множество обратимых элементов $Mat(p|\Lambda)$. Легко видеть, что str A=0 для любого $A \in M(p|\Lambda)$ и sdet A=1 для любого $A \in G$ $Mat(p|\Lambda)$. Однако на $Mat(p|\Lambda)$ существует также нетривиальная функция, обладающая свойствами следа, и на G $Mat(p|\Lambda)$ — нетривиальная функция, обладающая свойствами детерминанта. Будем называть их соответственно суперследом и супердетерминантом 2-го рода. Они определяются с помощью равенств

$$\operatorname{\tilde{s}tr} \begin{pmatrix} A_1 & A_2 \\ A_2 & A_1 \end{pmatrix} = \operatorname{tr} A_2, \tag{3.1.42}$$

$$\widetilde{s} \det \begin{pmatrix} A_1 & A_2 \\ A_2 & A_1 \end{pmatrix} = 1 + \operatorname{tr} \ln (I + A_1^{-1} A_2).$$
 (3.1.43)

В связи с определением супердетерминанта 2-го рода напомним, что согласно теореме 3.1 $\binom{A_1}{A_2}\stackrel{A_2}{=} \mathbb{E} \operatorname{GMat}(p,p|\Lambda)$, если и только если A_1 — невырожденная матрица. Отметим, что в то время как обычный суперслед является четным элементом г. а. Λ , суперслед 2-го рода является нечетным элементом Λ .

Нечетным элементом является также $\operatorname{tr}\ln(I+A_1^{-1}A_2)^{-1}$. Поэтому $[\operatorname{tr}\ln(I+A_1^{-1}A_2)]^2=0$ и правая часть (3.1.43) может быть записана также в виде

$$1 + \operatorname{tr} \ln (I + A_1^{-1} A_2) = \exp \operatorname{tr} \ln (I + A_1^{-1} A_2). \tag{3.1.44}$$

$$\operatorname{tr} \ln (1+Z) = \sum \operatorname{tr} (-1)^{n+1} \frac{Z^n}{n} = \sum \frac{1}{2n+1} \operatorname{tr} Z^{2n+1}$$

является нечетным элементом г. а. Λ .

 $^{^1}$ Если квадратная матрица Z состоит из нечетных элементов г. а. Л, то согласно лемме 3.1 ${\rm tr} Z^{2n} = {\rm tr} Z^{2n-1} \cdot Z = -{\rm tr} Z \cdot Z^{2n-1} = -{\rm tr} Z^{2n}$. Следовательно, ${\rm tr} Z^{2n} = 0$. Поэтому в этом случае

Установим основные свойства суперследа и супердетерминанта 2-го рода.

Теорема 3.8. 1) Пусть A, $B \in Mat(p|\Lambda)$. Тогда

$$\widetilde{\operatorname{str}} AB = \widetilde{\operatorname{str}} BA. \tag{3.1.45}$$

2) Пусть A, $B \in GMat(p|\Lambda)$. Тогда

$$\widetilde{\operatorname{s}}\det\left(AB\right) = \widetilde{\operatorname{s}}\det A \cdot \widetilde{\operatorname{s}}\det B.$$
 (3.1.46)

3) Пусть t — вещественный параметр — $\infty < t < \infty$, $A(t) \in \text{Mat}(p \mid \Lambda)$ при всех t и X(t) удовлетворяет дифференциальному уравнению и начальному условию

$$\frac{dX}{dt} = A(t)X, \ X(0) = I. \tag{3.1.47}$$

Тогда X(t) \in G Mat $(p|\Lambda)$ при всех t, и справедлива теорема Лиувилля

$$\ln \widetilde{s} \det X(t) = \int_{s}^{t} \widetilde{s} \operatorname{tr} A(s) ds. \tag{3.1.48}$$

Доказательство. Первое утверждение проверяется непосредственно очевидным образом. Докажем третье утверждение, затем выведем из него второе.

Доказательство включения $X(t) \in GMat(\rho|\Lambda)$ дословно повторяет доказательство аналогичного утверждения в теореме 3.5 и поэтому может быть опущено.

Перейдем к доказательству формулы (3.1.48). Пусть A(t) имеет вид (3.1.41) и X(t) — аналогичный вид. Положим $Z(t) = X_1^{-1}(t)X_2(t)$. Исходя из (3.1.47) получаем для Z(t) уравнение

$$\frac{dZ}{dt} = -X_1^{-1} (A_1 X_1 + A_2 X_2) X_1^{-1} X_2 + X_1^{-1} (A_1 X_2 + A_2 X_1) =$$

$$= X_1^{-1} A_2 X_1 (I - Z^2). \tag{3.1.49}$$

Далее матрица Z состоит из нечетных элементов, поэтому в силу леммы 3.1 tr $Z^{2k}=0$. Кроме того, обычным образом устанавливается, что $\frac{d}{dt}$ tr $Z^{2k+1}=(2k+1)$ tr $\left(\frac{dZ}{dt}Z^{2k}\right)$. Поэтому согласно (3.1.49)

$$\frac{d}{dt}\operatorname{tr}\ln\left(I+Z\right) = \operatorname{tr}\left[\frac{dZ}{dt}\left(I+Z^{2}+\ldots\right)\right] =$$

$$= \operatorname{tr}\left(\frac{dZ}{dt}\left(I-Z^{2}\right)^{-1}\right) = \operatorname{tr}A_{2}, \qquad (3.1.50)$$

что в совокупности с начальным условием Z(0)=0, следующему из (3.1.47), эквивалентно (3.1.48).

Перейдем ко второму утверждению. Пусть X, $Y \in GMat(p|\Lambda)$. Соединим эти матрицы гладкими кривыми с еди-

ницей: X(0)=I, Y(0)=I, X(1)=X, Y(1)=Y. Положим $A(t)=\frac{dX}{dt}X^{-1}$, $B(t)=\frac{dY}{dt}Y^{-1}$, W=XY, $U(t)=X_1^{-1}X_2$, $V(t)=Y_1^{-1}Y_2$, $Z(t)=W_1^{-1}W_2$. Заметим, что

$$\frac{d}{dt}(XY) = \frac{dX}{dt} \cdot Y + X \frac{dY}{dt} = (A + XBX^{-1})XY.$$

Отсюда в силу (3.1.50)

$$\frac{d}{dt}\operatorname{tr}\ln\left(I+Z\right)=\operatorname{tr}\left(A+XBX^{-1}\right)=\operatorname{tr}A+\operatorname{tr}B.$$

Следовательно,

$$\ln \widetilde{\operatorname{sdet}}(XY) = \int_0^1 \operatorname{tr} A(t) dt + \int_0^1 \operatorname{tr} B(t) dt = \ln \widetilde{\operatorname{sdet}} X + \ln \widetilde{\operatorname{sdet}} Y,$$

и тем самым $\widetilde{\operatorname{sdet}}(XY) = \widetilde{\operatorname{sdet}} X \cdot \widetilde{\operatorname{sdet}} Y$.

Замечание. Обозначим через $Mat_{\Lambda}(p)$ алгебру всех матриц порядка p с элементами из г. а. Λ . Алгебра $Mat(p|\Lambda)$ изоморфна $Mat_{\Lambda}(p)$, изоморфизм $\phi:Mat(p|\Lambda) \to Mat_{\Lambda}(p)$ действует согласно формуле

$$\varphi(A) = A_1 + A_2, \tag{3.1.51}$$

где $A \in Mat(p|\Lambda)$ имеет вид (3.1.41).

Обратный изоморфизм. Пусть $B = B_1 + B_2 \in Mat_{\Lambda}(p)$, B_1 состоит из четных элементов Λ , B_2 — из нечетных. Тогда

$$\varphi^{-1}(B) = \begin{pmatrix} B_1 & B_2 \\ B_2 & B_1 \end{pmatrix}.$$

10. Канонический вид матрицы общего положения. Пусть

$$A = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix} \subseteq \text{Mat}(p, q | \Lambda), \ A_0 = mA = \begin{pmatrix} A_{11}^0 & 0 \\ 0 & A_{22}^0 \end{pmatrix},$$

где $m: \operatorname{Mat}(p, q | \Lambda) \to \operatorname{Mat}(p) \oplus \operatorname{Mat}(q)$ — гомоморфизм, описанный в п. 3.

Матрицу $A \in Mat(p, q | \Lambda)$ назовем матрицей общего положения, если все собственные числа матрицы A_0 попарно раз-

Теорема 3.9. Пусть $A \in Mat(C \parallel p, q \mid \Lambda)$ — матрица общего положения. Тогда существует такая матрица $X \in GMat(C \parallel p, q \mid \Lambda)$, что матрица $E = XAX^{-1}$ является диагональной.

Доказательство. Введем в алгебру Λ образующие ξ_i . Разложим матрицы A, X, E по ξ_i , однородные слагаемые обозначим через A_i , X_i , E_i соответственно. Запишем соотношение между матрицами A, X, E в виде

$$(E_0 + E_1 + ...) (X_0 + X_1 + ...) =$$

= $(X_0 + X_1 + ...) (A_0 + A_1 + ...).$ (3.1.52)

Соотношение (3.1.52) является уравнением для определения E_{i} , X_{i} . Приравнивая в (3.1.52) однородные слагаемые одинаковой степени по д., получаем из (3.1.52) серию уравнений:

$$E_0X_n + E_1X_{n-1} + \dots + E_nX_0 = X_0A_n + X_1A_{n-1} + \dots + X_nA_0.$$
 (3.1.53)

Разрешимость уравнений (3.1.53) устанавливается с помощью индукции

Начало индукции, n=0. Уравнение (3.1.53) при n=0 имеет вид

$$E_0 X_0 = X_0 A_0. (3.1.54)$$

 $E_0 X_0 = X_0 A_0.$ Согласно предположению матрица $A_0 = \begin{pmatrix} A_{11}^0 & 0 \\ 0 & A_{22}^0 \end{pmatrix}$ имеет попарно различные собственные числа. Следовательно, тем же свойством обладают матрицы A_{11}^0 и A_{22}^0 . Поэтому согласно классическим теоремам линейной алгебры они приводятся к диагональному виду: $A_{11}^0 = X_{11}^{0-1} E_1^0 X_{11}^0$, $A_{22}^0 = X_{22}^{0-1} E_2^0 X_{22}^0$. образом, уравнение (3.1.54) разрешимо, причем матрица X необразом, уравнение (5.1.54) разрешимо, при сел при $X_0 = \begin{pmatrix} X_{11}^0 & 0 \\ 0 & X_{22}^0 \end{pmatrix}$.

Общий случай. Пусть уравнения (3.1.53) разрешимы при k < n, причем $X_k \in Mat(C \parallel p, q \mid \Lambda)$. Покажем, что они разрешимы при k=n и $X_n \in Mat(C||p, q|\Lambda)$. Умножая (3.1.53) справа на X_0^{-1} и учитывая (3.1.54), приводим уравнение (3.1.53) к виду

$$E_0 X_n X_0^{-1} - X_n X_0^{-1} E_0 + E_n = K_n, (3.1.55)$$

тде

$$K_n = X_0 A_n X_0^{-1} + \dots + X_{n-1} A_1 X_0^{-1} - E_1 X_{n-1} X_0^{-1} - \dots - E_{n-1} X_1 X_0^{-1}$$

Матрица K_n известна согласно предположению индукции, причем $K_n = \text{Mat}(p, q | \Lambda)$. Уравнение (3.1.55) в матричных элементах имеет вид

$$(\lambda_i^{(0)} - \lambda_j^{(0)}) (X_n X_0^{-1})_{ij} + \lambda_i^{(n)} \delta_{ij} = (K_n)_{ij}.$$

Оно однозначно разрешимо ввиду того, что $\lambda_i^0 \neq \lambda_j^0$:

$$\lambda_i^{(n)} = (K_n)_{ii}, \ (X_n X_0^{-1})_{ii} = \frac{(K_n)_{ij}}{\lambda_i^{(0)} - \lambda_i^{(0)}}$$
 при $i \neq j$.

Очевидно, что X и $X_0^{-1} \subseteq Mat(C \| p, q \| \Lambda)$. Следовательно, матрицы X_n и $X = \Sigma X_n$ обладают тем же свойством. Из обратимости X_0 следует обратимость X, и таким образом, X \in \in GMat(C||p, q| Λ).

Очевидно, никакая матрица $A \in Mat(p|\Lambda)$, рассматриваемая как элемент $Mat(p, p|\Lambda)$, не является матрицей общего положения. Однако для алгебры $Mat(p|\Lambda)$ может быть дано свое определение элемента общего положения.

Матрица $A = \begin{pmatrix} A_1 & A_2 \\ A_2 & A_1 \end{pmatrix} \in \operatorname{Mat}(p \mid \Lambda)$ называется матрицей общего положения, если численная матрица $A^1_0 = m(A_1)$ имеет попарно различимые собственные числа.

Для алгебры $\mathrm{Mat}(\mathbf{C}\|p\|\Lambda)$ справедлива теорема, аналогич-

ная 3.9.

Теорема 3.10. Пусть $Mat(C\|p\|\Lambda)$ — элемент общего положения. Тогда существует такая матрица $A \in Mat(C\|p\|\Lambda)$, что матрица $E = XAX^{-1}$ имеет следующий специальный вид

$$E = \begin{pmatrix} E_0 & E_1 \\ E_1 & E_0 \end{pmatrix}, \tag{3.1.56}$$

где E_0 , E_1 — диагональные матрицы.

Доказательство этой теоремы повторяет дословно доказательство предыдущей и поэтому может быть опущено.

§ 2. АЛГЕБРЫ И ГРУППЫ ОПЕРАТОРОВ В ПРОСТРАНСТВАХ $K^{p,q}$ и $K^{p,q}(\Lambda)$

1. Общие замечания. В этом параграфе изучаются некоторые подалгебры алгебр L(p, q) и $L(p, q|\Lambda)$ и подгруппы групп GL(p, q) и $GL(p, q|\Lambda)$. Все рассматриваемые подалгебры и подгруппы предполагаются инвариантными относительно автоморфизма четности (3.1.6).

Это свойство эквивалентно тому, что каждая рассматриваемая подалгебра как линейное пространство распадается в прямую сумму $\mathfrak{A} = {}^{\mathfrak{A}}\mathfrak{A} \oplus {}^{\mathfrak{A}}\mathfrak{A}$, причем ${}^{\mathfrak{A}}\mathfrak{A}$ состоит из элементов, инвариантных относительно автоморфизма четности A, ${}^{\mathfrak{A}}\mathfrak{A} - \mathfrak{A}$ элементов, у которых автоморфизм четности меняет знак: A(T) = T, если и только если $T \in {}^{\mathfrak{A}}\mathfrak{A}$, A(T) = T, если и только если $T \in {}^{\mathfrak{A}}\mathfrak{A}$, A(T) = T, если и только если $T \in {}^{\mathfrak{A}}\mathfrak{A}$. Очевидно, что ${}^{\mathfrak{A}}\mathfrak{A} = {}^{\mathfrak{A}}\mathfrak{A}$, если $A \in {}^{\mathfrak{A}}\mathfrak{A}$, то $AB \in {}^{\mathfrak{A}}\mathfrak{A}$, то $AB \in {}^{\mathfrak{A}}\mathfrak{A}$, если $A \in {}^{\mathfrak{A}}\mathfrak{A}$, то $AB \in {}^{\mathfrak{A}}\mathfrak{A}$, $BA \in {}^{\mathfrak{A}}\mathfrak{A}$.

Свойства ассоциативных алгебр операторов, которые обсуждаются в этом параграфе, переносятся на произвольные множества операторов и в дальнейшем часто используются в применении к совокупностям операторов, отличным от ассоциативных алгебр (например к супералгебрам Ли; см. ниже).

Такое перенесение производится по следующему правилу. Пусть \mathfrak{A} — некоторое семейство операторов и \mathfrak{A} — порожденная этим семейством ассоциативная алгебра. Пусть, далее, для ассоциативных алгебр определено некоторое свойство X. Мы будем товорить, что семейство \mathfrak{A} обладает свойством X, если алгебра \mathfrak{A} обладает этим свойством, и не обладает свойством X, если им не обладает алгебра \mathfrak{A} . Например, семейство \mathfrak{A} неприводимо тогда и только тогда, когда алгебра \mathfrak{A} не-приводима.

2. Неприводимость. Пусть $\mathfrak{A} \subset L(p, q)$ — некоторая ассоциативная алгебра в пространстве $K^{p,q}$. Алгебра \mathfrak{A} называется неприводимой, или градуированно неприводимой, если в $K^{p,q}$ нет собственного градуированного подпространства, инвариантного относительно всех операторов из \mathfrak{A} .

Алгебра \mathfrak{A} называется абсолютно неприводимой, если в $\mathbf{K}^{p,q}$ нет никакого собственного подпространства, инвариантно-

го относительно 91.

Теорема 3.11. Пусть алгебра $\mathfrak{A} \subset L(\mathsf{K}|p,q)$ чинвариантна относительно автоморфизма четности и градуированно неприводима в $\mathsf{K}^{p,q}$. Тогда:

1) если $p \neq q$, то алгебра $\mathfrak A$ абсолютно неприводима в $\mathsf K^{p,q}$; 2) если p=q и алгебра $\mathfrak A$ не является абсолютно неприво-

2) если p=q и алгебра ${\mathfrak A}$ не является абсолютно неприводимой, то существует стандартный базис, в котором матрицы операторов ${\mathscr A}$ ${\mathfrak S}$ имеют вид

$$A = \begin{pmatrix} A_1 * A_2 \\ A_2 & A_1 \end{pmatrix}, \tag{3.2.1}$$

Базис, в котором матрицы операторов $\mathcal{A} \in \mathfrak{A}$ имеют вид (3.2.1), будем в дальнейшем называть специальным.

Показательство. Пусть R—собственное инвариантное подпространство, ${}^{0}\tilde{R} = \mathbf{K}^{p,0} \cap R$. Воспользуемся инвариантностью алгебры \mathfrak{A} относительно автоморфизма четности и представим \mathfrak{A} в виде $\mathfrak{A} = {}^{0}\mathfrak{A} \oplus {}^{1}\mathfrak{A}$, ${}^{0}\mathfrak{A} \subseteq {}^{0}L(p,q)$, ${}^{1}\mathfrak{A} \subseteq {}^{1}L(p,q)$. Заметим, что если $x \in {}^{0}\tilde{R}$, $\mathcal{A} \in {}^{0}\mathfrak{A}$, то $\mathcal{A}x \in {}^{0}\tilde{R}$, если $\mathcal{A} \in {}^{1}\mathfrak{A}$, то $\mathcal{A}x \in {}^{0}\tilde{R}$. Множество всех $y \in R$, представимых в виде $y = \mathcal{A}x$, $x \in {}^{0}\tilde{R}$, $\mathcal{A} \in {}^{1}\mathfrak{A}$ обозначим ${}^{1}\tilde{R}$. Очевидно, что $\tilde{R} = {}^{0}\tilde{R} \oplus {}^{1}\tilde{R} \subset R$ — инвариантное относительно алгебры \mathfrak{A} градуированное подпространство. Следовательно, либо $\tilde{R} = \mathbf{K}^{p,q}$, либо $\tilde{R} = \mathbf{0}$. В первом случае также $R = \mathbf{K}^{p,q}$, что противоречит предположению о том, что подпространство это собственное.

Проанализируем случай, когда $\tilde{R}=0$. Обозначим через P_0 и P_1 проекторы на подпространства $\mathbf{K}^{p,0}$ и $\mathbf{K}^{0,q}:P_0=\frac{1+\mathbf{A}}{2}$, $P_1=$

$$=rac{1-\mathbf{A}}{2}$$
, где \mathbf{A} — оператор четности в $L(p,q)$. Положим,

далее, $R_0 = P_0 R$, $R_1 = P_1 R$. Заметим, что ни один вектор $y \in R$ не аннулируется ни оператором P_0 , ни оператором P_1 , если $P_0 y = 0$, то $y = -Ay \in K^{0,q}$, следовательно, y = 0, поскольку, как было установлено, $0 = R \cap K^{0,q}$, если $P_1 y = 0$, то $y = Ay \in K^{p,0}$ и y = 0 по аналогичной причине.

Таким образом, $\dim R_0 = \dim R_1 = \dim R$. С другой стороны, очевидно, что пространство $R_0 \bigoplus R_1$ инвариантно относительно алгебры \mathfrak{A} . Следовательно, либо R=0, либо $p=q=\dim R$. Таким образом, при $p\neq q$ не существует никаких несобственных

инвариантных подпространств.

 $^{^{1}}$ Подпространство пространства L называется собственным, если оно отлично от всего L и от 0.

В случае p=q проделанный анализ показывает, что собственное инвариантное подпространство должно обладать свойствами: $\mathbf{K}^{p,0} = P_0 R$, $\mathbf{K}^{0,q} = P_1 R$, $\dim R = p$. Пусть $\{e_i\}$ — базис в R, $\{e_i^0 = P_0 e_i\}$ — базис в $\mathbf{K}^{p,0}$, $\{e_i^{-1} = P_1 e_i\}$ — базис в $\mathbf{K}^{0,q}$.

Пусть $\mathcal{A} \in \mathfrak{A}$, \mathscr{C} — сужение оператора \mathcal{A} на пространство R, $\|c_{ij}\|$ — матрица оператора \mathscr{C} в базисе $\{e_i\}$. Очевидно, что

$$\mathcal{A}e_i^{\alpha} = P_{\alpha}\mathcal{A}e_i = P_{\alpha}\mathcal{E}e_i = P_{\alpha}\sum c_{ik}e_k = \sum c_{ik}P_{\alpha}e_k = \sum c_{ik}e_k^{(\alpha)}, \ \alpha = 0, 1.$$

Аналогично, если $\mathcal{A} \in \mathfrak{A}$, \mathscr{C} — сужение оператора \mathscr{A} на R, то $\mathcal{A}e_i^{\alpha} = P_{1+\alpha}\mathscr{E}e_i = P_{1+\alpha}\Sigma\,c_{ik}e_k = \Sigma\,c_{ik}e_k^{1+\alpha}$,

где $\alpha = 1,2$ и $1 + \alpha$ понимается как всегда по mod 2. Таким образом, матрица каждого оператора из $\mathfrak A$ в базисе $\{e_i^{\alpha}\}$ имеет вид (3.2.1).

Замечание. Пусть p=q, алгебра $\mathfrak A$ не является абсолютно неприводимой и R — инвариантное подпространство относительно $\mathfrak A$, построенное при доказательстве теоремы.

1) R не содержит собственных инвариантных подпро-

странств.

2) В $K^{p,p}$ существует дополнительное к R инвариантное подпространство R = AR, где A — оператор четности в $K^{p,p}$.

Доказательство очевидно.

В стандартном базисе, в котором операторы из $\mathfrak A$ задаются матрицами вида (3.2.1), элементы пространств R и R выглядят следующим образом:

$$x = \begin{pmatrix} u \\ u \end{pmatrix} \in R$$
, $x = \begin{pmatrix} u \\ -u \end{pmatrix} \in \widehat{R}$, где $u = \begin{pmatrix} u_1 \\ \vdots \\ u_p \end{pmatrix}$.

 $u_i \in K$ — произвольные числа. Сужения оператора $\mathcal{A} \in \mathfrak{A}$ на пространства R и R задаются в этом базисе формулами $u \to (A_1 + A_2) u$ и $u \to (A_1 - A_2) u$ соответственно, где A_1 , A_2 — те же, что в (3.2.1).

3. Лемма Шура.

Теорема 3.12. Пусть \mathfrak{A}_1 — градуированно неприводимая инвариантная относительно автоморфизма четности ассоциативная алгебра операторов в пространстве K^{p_1,q_1} , \mathfrak{A}_2 — изоморфная ей градуированно неприводимая инвариантная относительно оператора четности алгебра в пространстве K^{p_2,q_2} и $T:K^{p_1,q_2}\to K^{p_2,q_2}$ —линейный оператор со свойствами:

$$\varphi(B) T = TB, \quad B = \mathfrak{A}_1, \tag{3.2.2}$$

$$\mathbf{A}_2 T = \varepsilon T \mathbf{A}_1, \tag{3.2.3}$$

где A_1 , A_2 — операторы четности в пространствах K^{p_1,q_1} и $K^{p_2,q}$ соответственно, ϵ — число, равное 1 или — 1, $\phi:\mathfrak{A}_1\to\mathfrak{A}_2$ — изоморфизм алгебр.

Тогда либо $T\!=\!0$, либо оператор T является взаимно-однозначным. Во втором случае $p_1\!=\!p_2$, $q_1\!=\!q_2$ при $\varepsilon\!=\!1$ и $p_1\!=\!q_2$,

 $q_1 = p_2$ при $\epsilon = -1$.

Показательство. Из (3.2.2), (3.2.3) следует, что Кег T является инвариантным подпространством относительно алгебры \mathfrak{A}_1 и оператора четности \mathbf{A}_1 , $\operatorname{Im} T$ — инвариантным пространством относительно алгебры \mathfrak{A}_2 и оператора четности \mathbf{A}_2 . Следовательно, либо Кег $T=\mathbf{K}^{p_1,q_2}$, либо Кег T=0. В первом случае, T=0, во втором случае используем аналогичную альтернативу относительно $\operatorname{Im} T$, либо $\operatorname{Im} T=0$, что эквивалентно T=0, либо $\operatorname{Im} T=\mathbf{K}^{p_2,q_2}$, что в совокупности с Кег T=0 эквивалентно взаимной однозначности отображения T. При $\varepsilon=1$ из (3.2.3) следует, что $T\mathbf{K}^{p_1,0}=\mathbf{K}^{p_2,0}$, $T\mathbf{K}^{0,q_1}=\mathbf{K}^{0,q_2}$, при $\varepsilon=-1$, что $T\mathbf{K}^{p_1,0}=\mathbf{K}^{p_2,0}$. Следовательно, в первом случае $p_1=p_2$, $q_1=q_2$, во втором случае $p_1=q_2$, $p_2=q_1$.

Следствие. Пусть K = C, алгебра $\mathfrak A$ градуированно неприводима в $C^{p,q}$ и инвариантна относительно автоморфизма четности, T — оператор, перестановочный со всеми $\mathscr A = \mathfrak A$ и с оператором четности, тогда $T = \lambda I$, где $\lambda = C$ и I — единичный оператором четности.

ратор.

В самом деле, при любом $\mu \in \mathbb{C}$ оператор μI обладает теми же свойствами перестановочности, что T, следовательно, теми же свойствами при любом $\mu \in \mathbb{C}$ обладает оператор $T_{\mu} = T - \mu I$. Пусть λ — собственное число оператора T. В таком случае оператор $T_{\lambda} = T - \lambda I$ не может осуществлять взаимно-однозначное отображение $\mathbb{C}^{p,q}$ на себя, поэтому согласно теореме 3.12 $T_{\lambda} = 0$.

Отметим, что при $p \neq q$ в формулировке следствия можно опустить требование, чтобы оператор T был перестановочен с оператором четности: $T = \lambda I$ в силу теоремы 3.11 и классиче-

ской леммы Шура.

При p=q в случае, если алтебра $\mathfrak A$ градуированно неприводима, но не абсолютно неприводима, оператор общего вида, перестановочный со всеми элементами $\mathfrak A$, имеет вид $\lambda I + \mu \mathcal I$, где I — единичный оператор и $\mathcal I$ — оператор, имеющий в специальном базисе матрицу $\begin{pmatrix} 0 & I \\ 1 & 0 \end{pmatrix}$.

4. Теорема Бернсайда.

Теорема 3.13. Пусть \mathfrak{A} — градуированно неприводимая ассоциативная алгебра операторов в $\mathbb{C}^{p,q}$. Тогда, если $p\neq q$, то $\mathfrak{A}=L(\mathbb{C}|p,q)$, если p=q и алгебра \mathfrak{A} не абсолютно неприводима, то $\mathfrak{A}=L(\mathbb{C}|p)$.

Доказательство. Первое утверждение есть, очевидно, след-

ствие теоремы 3.11 и классической теоремы Бернсайда.

Перейдем ко второму утверждению. Пусть \mathfrak{B} — некоторая вполне приводимая алгебра операторов в \mathbb{C}^n . Через \mathfrak{B} обозначим алгебру, состоящую из всех операторов, коммутирующих с каждым $\mathfrak{B} = \mathfrak{B}$. Алгебра \mathfrak{B} называется коммутаторной по от-

ношению к **3**. Согласно класоической теореме Веддерберна $\overline{\bf 3} = {\bf 3}$.

В случае p=q и при отсутствии абсолютной неприводимости алгебра $\mathfrak A$ вполне приводима, и, как уже отмечалось, $\overline{\mathfrak A}=\lambda I+\mu \mathcal S$, где λ , μ \in C, I — единичный оператор, $\mathcal S$ — оператор, имеющий в специальном базисе матрицу $\begin{pmatrix} 0 & I \\ I & 0 \end{pmatrix}$. Очевидно, что $\overline{\mathfrak A}=L\left(\mathbf C\|p\right)$. Поэтому, в силу теоремы Веддерберна $\mathfrak A=\overline{\mathfrak A}=L\left(\mathbf C\|p\right)$.

5. Грассмановские оболочки неприводимых алгебр. Пусть \mathfrak{A} — градуированно неприводимая алгебра операторов в $\mathbb{C}^{p,q}$, \mathfrak{A} (Λ) — грассмановская оболочка \mathfrak{A} . \mathfrak{A} (Λ) является, очевидно, алгеброй операторов в $\mathbb{C}^{p,q}(\Lambda)$. Из результатов предыдущего пункта вытекает, что $\mathfrak{A}(\Lambda) = L(p, q | \Lambda)$ при $p \neq q$ и при p = q в случае абсолютной неприводимости. При p = q в случае отсутствия абсолютной неприводимости $\mathfrak{A}(\Lambda) = L(p | \Lambda)$.

Представляют интерес следующие вопросы. Пусть $\mathfrak{B} \subset L(p, q | \Lambda)$ — подалгебра $L(p, q | \Lambda)$. В каком случае \mathfrak{B} является грассмановой оболочкой подалгебры $\mathfrak{A} \subset L(p, q)$? В каком случае алгебра \mathfrak{B} , рассматриваемая как линейное пространство, является грассмановой оболочкой некоторого подпро-

странства $\mathfrak{A} \subset L(p, q)$?

Ответ состоит в следующем. Введем в г. а. Λ образующие ξ_i и разложим по ним произвольный элемент \mathfrak{B} :

$$\mathcal{A} = \mathcal{A}_0 + \Sigma \mathcal{A}_i \xi_i + \mathcal{B}, \text{ deg } \mathcal{B} \geqslant 2. \tag{3.2.4}$$

Очевидно, что \mathcal{A}_0 , $\mathcal{A}_i \in L(p,q)$, причем $\alpha(\mathcal{A}_0) = 0$; $\alpha(\mathcal{A}_i) = 1$. Обозначим через ${}^{0}\mathfrak{A}_1$, ${}^{1}\mathfrak{A}_1$ подпространства в L(p,q), порожденные всеми $\mathcal{A}_0 = \mathcal{A}_0(\mathcal{A})$ и $\mathcal{A}_i = \mathcal{A}_i(\mathcal{A})$ соответственно, когда \mathcal{A} пробегает \mathfrak{B} . (Очевидно, что ${}^{0}\mathfrak{A}_1$ является подалгеброй L(p,q).) Положим, далее, $\mathfrak{A} = {}^{0}\mathfrak{A} \oplus {}^{1}\mathfrak{A}_1$. Ясно, что если алгебра \mathfrak{B}_1 , рассматриваемая как линейное пространство, служит грассмановой оболочкой какого-нибудь подпространства L(p,q), то этим подпространством может быть только \mathfrak{A}_1 . В частности, если \mathfrak{B}_1 служит грассмановой оболочкой подалгебры, то \mathfrak{A}_2 является этой подалгеброй.

6. Аналоги классических групп. Очевидным аналогом GL(n) и SL(n) — полной линейной и линейной унимодулярной — служат группы $GL(p, q|\Lambda)$ и $SL(p, q|\Lambda)$, состоящие соответственно из всех обратимых операторов в $\mathbf{K}^{p,q}(\Lambda)$ и из всех операторов в $\mathbf{K}^{p,q}(\Lambda)$ с супердетерминантом, равным 1.

При p=q аналогом групп GL(n) и SL(n) можно считать также группы $GL(p|\Lambda)$ и $SL(p|\Lambda)$, где $GL(p|\Lambda)$ состоит из всех обратимых элементов алгебры $L(p|\Lambda)$, $SL(p|\Lambda)$ — подгруппа $GL(p|\Lambda)$, состоящая из всех операторов с супердетерминантом 2-го рода, равным 1. Ранее (в § 1 п. 9 этой главы)

отмечалось, что алгебра $L(p|\Lambda)$ изоморфна алгебре всех матриц порядка p, элементы которых суть произвольные элементы г. а. Λ . Это обстоятельство наводит на мысль, что группы $GL(p|\Lambda)$ служат даже более естественным аналогом классических групп GL(n), чем группы $GL(p,q|\Lambda)$. Однако, как мы увидим ниже, группы серии $GL(p|\Lambda)$ обладают рядом любопытных особенностей, не имеющих классического аналога и не встречающихся у групп серии $GL(p,q|\Lambda)$.

Пусть Λ — комплексная г. а. с инволюцией 1-го или 2-го рода. Введем в пространство $\mathbf{C}^{p,q}(\Lambda)$ эрмитово скалярное произведение со значениями в ${}^{0}\Lambda$. С этой целью рассмотрим в $\mathbf{C}^{p,q}$ однородный базис $\{e_i\}$ и положим для x, $y \in \mathbf{C}^{p,q}(\Lambda)$, $x \in \Sigma x_k e_k$, $y = \Sigma y_k e_k$,

$$(x, y) = \sum x_k * y_k,$$
 (3.2.5)

где * означает инволюцию в Λ . Ясно, что (x,y) \in $^0\Lambda$. Подгруппу $GL(p,q|\Lambda)$, состоящую из всех операторов, сохраняющих скалярное произведение (3.2.5) инвариантным, обозначим $U(p,q|\Lambda)$. Подгруппу $U(p,q|\Lambda)$, состоящую из операторов с супердетерминантом, равным 1, обозначим $SU(p,q|\Lambda)$. Группы $U(p,q|\Lambda)$ и $SU(p,q|\Lambda)$ являются супераналогами классических полной унитарной и унитарной унимодулярной групп U(n) и SU(n).

Сохранение скалярного произведения (3.2.5) эквивалентно матричному тождеству ¹

$$U^*U = I, \tag{3.2.6}$$

где * — операция над матрицами, описанная в этой главе в § 1 п. 3. Группы $U(p, q|\Lambda)$ и $SU(p, q|\Lambda)$ являются вещественными формами групп $GL(\mathbf{C}||p, q|\Lambda)$ и $SL(\mathbf{C}||p, q|\Lambda)$ соответственно 2 .

Предположим p четным числом и рассмотрим в $\mathbb{C}^{p,q}(\Lambda)$ скалярное произведение со значениями в ${}^0\!\Lambda$:

$$(x, y) = \frac{1}{i} \sum_{1}^{p/2} (x_i y_{p/2+t} - x_{p/2+i} y) + \sum_{p+1}^{p+q} x_k y_k.$$
 (3.2.7)

Сохранение скалярного произведения (3.2.7) эквивалентно матричному тождеству

$$B^{T}JB = J, J = \begin{pmatrix} -i\tau & 0 \\ 0 & I \end{pmatrix}, \tau = \begin{pmatrix} 0 & I \\ -I & 0 \end{pmatrix}.$$
 (3.2.8)

¹ Обратим внимание на то, что, в отличие от обычного случая, если скалярное произведение (3.2.5) записать в виде $(x,y) = \sum x_k y_k^*$, то условие унитарности изменится: оно будет иметь вид $U^*AU = A$, где A — оператор четности.

 $^{^2}$ Вещественная матричная группа G называется вещественной формой комплексной матричной группы G_1 , если матричные элементы G_1 получаются из матричных элементов G аналитическим продолжением по параметрам. G обычно состоит из всех элементов G_1 , удовлетворяющих неаналитическому уравнению вида $AKA^* = K$ или A = A, где K — фиксированная матрица.

где $B \hookrightarrow B^T$ — операция транспонирования, введенная в § 1, п. 3 этой главы.

Подгруппа $GL(\mathbf{C}||p, q|\Lambda)$, состоящая из всех операторов, сохраняющих скалярное произведение (3.2.7), называется (комплексной) ортогонально-симплектической. Она является супераналогом одновременно ортогональной и симплектической классических групп и обозначается обычно $OSp(\mathbf{C}||p, q|\Lambda)$.

Эта пруппа представляет особый интерес для физических приложений, так как обладает вещественной формой, которая может быть интерпретирована, как группа суперканонических преобразований, перемешивающих ферми и бозе-операторы рождения и уничтожения. Поясним это.

Рассмотрим Z_2 -градуированную ассоциативную алгебру $\mathfrak A$ с единицей и с однородными образующими

 $\widehat{p}_i, \widehat{q}_i, \widehat{\gamma}_i, 1 \leq i \leq p/2, 1 \leq j \leq q, \ \alpha(\widehat{p}_i) = \alpha(\widehat{q}_i) = 0, \ \alpha(\widehat{\gamma}_i) = 1,$

которые удовлетворяют соотношениям

$$[\widehat{p}_{k}, \widehat{p}_{k'}] = [\widehat{q}_{k}, \widehat{q}_{k'}] = 0,$$

$$[\widehat{p}_{k}, \widehat{q}_{k'}] = \frac{1}{i} \delta_{kk'},$$

$$[\widehat{p}_{k}, \widehat{\gamma}_{s}] = [\widehat{q}_{k}, \widehat{\gamma}_{s}] = 0,$$

$$(3.2.9)$$

$$\hat{\gamma}_s \hat{\gamma}_{s'} + \hat{\gamma}_{s'} \hat{\gamma}_s = \delta_{ss'}.$$

Уместно сделать небольшое отступление в сторону по поводу этой алгебры. Образующие p_k, q_k удовлетворяют перестановочным соотношениям, характерным для операторов импульса и координаты, далее мы рассматриваем образующие $a_{k,B}, a_{k,F}, a_{k,F},$ которые обладают перестановочными соотношениями, характерными для бозевских и фермиевских операторов уничтожения и рождения. Однако я воздерживаюсь от операторной реализации алгебры Я, и в связи с этим образующие p_k, q_k и т. п. не называю операторами. Причина этого следующая. У алгебры я существует естественная инволюция * , определяемая тем, что образующие p_k, q_k, γ_s являются относительно нее инвариантными: $\widehat{p}_k = \widehat{p}_k$, $\widehat{q}_k = \widehat{q}_k$, $\widehat{\gamma}_k = \widehat{\gamma}_s$. У алгебры $\mathfrak A$ существует также операторная реализация в гильбертовом пространстве, при которой инволюция переходит в эрмитовское сопряжение. Таким образом, при этой реализации p_k , q_k , γ_s являются самосопряженными операторами.

Однако далее нам приходится рассмотреть грассманову оболочку $\mathfrak{A}(\Lambda)$ алгебры \mathfrak{A} . Алгебра $\mathfrak{A}(\Lambda)$ обладает инволюцией, которая является продолжением инволюции, имеющейся \mathfrak{B} \mathfrak{A} . Однако из-за нильпотентности алгебры Λ алгебра $\mathfrak{A}(\Lambda)$ не может быть реализована операторами в гильбертовом простран-

стве так, чтобы инволюция переходила в эрмитово сопряжение. Это обстоятельство мне кажется очень существенным с точки эрения физических приложений.

Положим

$$\widehat{r}_{k} = \begin{cases} \widehat{p}_{k} & \text{при } 1 \leqslant k \leqslant p/2, \\ \widehat{q}_{k-p/2} & \text{при } p/2 + 1 \leqslant k \leqslant p, \\ \widehat{\gamma}_{k-p} & \text{при } p + 1 \leqslant k \leqslant p + q. \end{cases}$$
(3.2.10)

Соотношения (3.2.9) эквивалентны следующим соотношениям относительно \hat{r}_i :

$$\widehat{r_k}\widehat{r_l} - (-1)^{\alpha(k)\alpha(l)}\widehat{r_l}\widehat{r_k} = j_{kl}, \qquad (3.2.11)$$

где $J = ||j_{hl}||$ — та же матрица, что в (3.2.8).

Рассмотрим грассманову оболочку 2-го рода $\mathfrak{A}(\Lambda)$ алгебры \mathfrak{A} . Пусть g — линейный градуированный автоморфизм алгебры $\mathfrak{A}(\Lambda)$:

То обстоятельство, что $\mathfrak{A}(\Lambda)$ является грассмановой оболочкой

$$\widehat{r}_k \mapsto \widetilde{\widehat{r}}_k = g\widehat{r}_k = \sum b_{ks}\widehat{r}_s, \ b_{ks} \in \Lambda,$$
 (3.2.12)

второго рода, означает, что образующие \hat{r}_i обладают теми же перестановочными соотношениями по отношению к элементам г. а. Λ , что и компоненты векторов пространства $\mathbf{K}^{p,q}(\Lambda)$ в стандартном базисе: $\hat{r}_i a = (-1)^{\alpha(\hat{r}_i)\alpha(a)} a r_i$ для однородных $a \in \Lambda$. Кроме того, что g — градуированный автоморфизм, вытекает, что элементы \hat{r}_k однородны и что $\alpha(\hat{r}_k) = \alpha(\hat{r}_k)$. Отсюда, в свою очередь, следует, что элементы b_{ks} также однородны и что $\alpha(b_{ks}) = \alpha(\hat{r}_k) + \alpha(\hat{r}_s)$. Таким образом, $B = \|b_{ks}\| \in \operatorname{Mat}(p, q|\Lambda)$, и соотношение (3.2.12) можно записать в матричной форме

$$\tilde{\hat{r}} = B\hat{r}, \tag{3.2.13}$$

где $\hat{r}, \widetilde{\hat{r}}$ — столбики:

$$\widehat{r} = \begin{pmatrix} \widehat{r}_1 \\ \vdots \\ \widehat{r}_{p+q} \end{pmatrix}, \ \widetilde{r} = \begin{pmatrix} \widetilde{r}_1 \\ \vdots \\ \widetilde{r}_{n+q} \end{pmatrix}.$$

Заметим теперь, что левая часть соотношения (3.2.11) является матричным элементом матрицы

$$\hat{r}\hat{r}' - \mathbf{A}(\hat{r}\hat{r}')^T$$

где ' и T — операции над векторами и матрицами, введенные в § 1. Так как \widehat{r} обладают теми же коммутационными соотношениями, что \widehat{r}_k , то условие того, что B является матрицей гра-

дуированного автоморфизма алгебры $\mathfrak{A}(\Lambda)$, имеет следующий вид:

$$J = \widetilde{\hat{r}}\widetilde{\hat{r}'} - \mathbf{A}(\widetilde{\hat{r}}\widetilde{\hat{r}'})^T = B\widehat{r}\widehat{r}'B^T - \mathbf{A}(B\widehat{r}\widehat{r}'B^T)^T =$$

$$= B\widehat{r}\widehat{r}'B^T - B\mathbf{A}(\widehat{r}\widehat{r}')^TB^T = B(\widehat{r}\widehat{r}' - \mathbf{A}(\widehat{r}\widehat{r}')^T)B = BJB^T, \quad (3.2.14)$$

где J — та же матрица, что в (3.2.8). (При проведении преобразований использовано тождество (B^T) T = $\mathbf{A}B\mathbf{A}$; см. (3.1.10).) Соотношение J= BJB^T эквивалентно (3.2.8) ввиду того, что J^2 =I. Таким образом, группа градуированных линейных автоморфизмов алгебры $\mathfrak{A}(\Lambda)$ совпадает с $OSp(\mathbf{C}||p, q|\Lambda)$.

Алгебра $\mathfrak A$ обладает естественной инволюцией, относительно которой образующие $\widehat{\rho}_k$, \widehat{q}_k , $\widehat{\gamma}_s$ инвариантны. Пусть Λ — г. а. с инволюцией. В таком случае в $\mathfrak A(\Lambda)$ существует инволюция, порожденная инволюциями в $\mathfrak A$ и в Λ : $(aa)^* = a^*a^*$, где a, $a^* \in \mathfrak A$, a во всех случаях означает инволюцию. Ввиду того что $\widehat{r}_k = \widehat{r}_k$, условие перестановочности автоморфизма с инволюцией имеет вид

$$(\widehat{gr_k})^* = \Sigma \widehat{r_s} b_{ks}^* = \Sigma (-1)^{\alpha(s)(\alpha(k) + \alpha(s))} b_{ks}^* \widehat{r_s}^* = \Sigma b_{ks} \widehat{r_s}.$$

Отсюда $b_{ks}=(-1)^{(\alpha(k)+1)\alpha(s)}b_{ks}^*$, т. е. $B=\bar{B}$. Учитывая (3.2.8), это условие можно переписать в эквивалентной форме $\overline{B^T}JB=J$, откуда $AB^*A\bar{J}B=\bar{J}$. Учитывая, что $A\bar{J}=-J$, окончательно получаем

$$B*JB = J.$$
 (3.2.15)

Обозначим через $OSp_{R, \times}$ $(p, q | \Lambda)$ подгруппу $OSp(\mathbb{C} || p, q | \Lambda)$, перестановочную с инволюцией. До сих пор харажтер инволюции был безразличен.

Покажем теперь, что группа $OSp_{R,*}(p,q|\Lambda)$ является вещественной формой $OSp(\mathbf{C}\|p,q|\Lambda)$ только в случае, если является инволюцией первого рода в г. а. Л. Применим к обеим частям (3.2.15) инволюцию. Учитывая, что при инволюции любого рода $J^*=J$, получаем $B^*J(B^*)^*=J$. Это условие эквивалентно (3.2.15) только, если $(B^*)^*=B$, т. е. если * является инволюцией 1-го рода в г. а. Л. В этом случае при аналитическом продолжении параметров группы $OSp_{R,*}(p,q|\Lambda)$ в комплексную область условие (3.2.15) разрушается и группа $OSp_{R,*}(p,q|\Lambda)$ превращается в комплексную группу $OSp(\mathbf{C}\|p,q|\Lambda)$. В случае, если * является инволюцией 2-го рода, условие (3.2.15) дополняется условием $B^*AJB=AJ$. В совокупности с (3.2.15) оно приводит к тому, что матрица B является клеточно-диагональной: $B=\begin{pmatrix} B_{11} & 0 \\ 0 & B_{22} \end{pmatrix}$. Условия $B_{12}=B_{22}=0$ сохраняются при переходе в комплексную область. Поэтому в случае, если * явля-

ется инволюцией 2-го рода в г. а. Λ , группа $OSp_{R,*}(p, q|\Lambda)$ не может быть вещественной формой группы $OSp(C||p, q|\Lambda)$.

В случае, если * является инволюцией первого рода, группу $OSp_{\mathbb{R},*}(p,\ q|\Lambda)$ будем обозначать также $OSp(\mathbb{R}\|p,\ q|\Lambda)$. Рассмотрим в алгебре $\mathfrak A$ новые образующие

$$\widehat{a}_{k,B} = \frac{1}{\sqrt{2}} (\widehat{p}_k - i\widehat{q}_k), \ \widehat{a}_{k,B}^* = \frac{1}{\sqrt{2}} (\widehat{p}_k + i\widehat{q}_k), \ 1 \leqslant k \leqslant p/2,$$
(3.2.16)

 $\widehat{a}_{l,F} = \frac{1}{\sqrt{2}} (\gamma_{2l-1} - i\gamma_{2l}), \ \widehat{a}_{l,F}^{\bullet} = \frac{1}{\sqrt{2}} (\gamma_{2l-1} + i\gamma_{2l}), \ 1 \leqslant l \leqslant [q/2],$

где
$$\left[rac{q}{2}
ight] = \left\{egin{array}{c} rac{q}{2} & ext{при четном } q, \ rac{q-1}{2} & ext{при нечетном } q. \end{array}
ight.$$

При нечетном q для получения полной системы образующих в \mathfrak{A} к образующим (3.2.16) следует добавить γ_q . Образующие (3.2.16) обладают перестановочными соотношениями, характерными для бозевских и фермиевских операторов

ниями, характерными для бозевских и фермиевских о рождения и уничтожения:

 $[\widehat{a}_{k,B}, \widehat{a}_{k',B}^*] = \delta_{k,k'}, \ [\widehat{a}_{k,B}, \widehat{a}_{k',B}] = [\widehat{a}_{k,B}^*, \widehat{a}_{k',B}^*] = 0,$

$$\{\widehat{a}_{k,F}, \ \widehat{a}_{k',F}^{*,j}\} = \delta_{k,k'}, \ \{\widehat{a}_{k,F}, \ \widehat{a}_{k',F}\} = \{\widehat{a}_{k,F}^{*,j}, \ \widehat{a}_{k,F}^{*,j}\} = 0.$$

Запишем овязь между образующими $\widehat{a}_{k,B}, \ldots, \widehat{a}_{k,F}^{ullet}$ и $\widehat{r_k}$ в виде

$$\begin{pmatrix} \widehat{r_1} \\ \vdots \\ \widehat{r_{p+q}} \end{pmatrix} = L \begin{pmatrix} \widehat{a_{1,B}} \\ \vdots \\ \widehat{a_{\lfloor q/2,\rfloor,F}} \end{pmatrix}, \tag{3.2.17}$$

где $L=\begin{pmatrix} U_1 & 0 \\ 0 & U_2 \end{pmatrix}$ при четном q и $L=\begin{pmatrix} U_1 & 0 & 0 \\ 0 & U_2 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ при нечетном q,

$$U_{1} = \frac{1}{\sqrt{2}} \begin{pmatrix} I_{p/2|} & I_{p/2} \\ i I_{p/2} & -i I_{p/2} \end{pmatrix}, \ \ U_{2} = \frac{1}{\sqrt{2}} \begin{pmatrix} I_{[q/2]} & I_{[q/2]} \\ i I_{[q/2]} & -i I_{[q/2]} \end{pmatrix}.$$

Из (3.2.17) следует, что если матрица B сохраняет соотношения коммутации между \hat{r}_k , то матрица $B = L^{-1}BL$ сохраняет соотношения коммутации между $\widehat{a}_{k,B}$, $\widehat{a}_{k,B}^*$, $\widehat{a}_{k,F}^*$, $\widehat{a}_{k,F}^*$. Условие сохранения имеет вид

$$BJ_{\mathbf{1}}B^{T} = J_{\mathbf{1}}, \ J_{\mathbf{1}} = L^{-1}J(L^{T})^{-1} = \begin{cases} \begin{pmatrix} \tau & 0 \\ 0 & S_{q} \end{pmatrix} & \text{при четном } q, \\ \begin{pmatrix} \tau & 0 & 0 \\ 0 & S_{q} & 0 \\ 0 & 0 & 1 \end{pmatrix} & \text{при нечетном } q^{\mathbf{1}}. \end{cases}$$

¹ Определение S_q см. гл. 5, § 2, п. 5.— Прим. ред.

Условие перестановочности с инволюцией переписывается виле

$$B^*KB = K$$
, $K = L^*JL = \begin{pmatrix} \sigma & 0 \\ 0 & I \end{pmatrix}$, $\sigma = \begin{pmatrix} I & 0 \\ 0 & -I \end{pmatrix}$. (3.2.19)

Группу $OSp(\mathbf{R}||p, q|\Lambda)$ при четном q мы будем обозначать также $C(m, n|\Lambda)$, при нечетном $q-C_1(m, n|\Lambda)$, m=p/2, n=q/2. Такие обозначения призваны подчеркнуть, что эти группы являются суперобобщениями групп бозевских и фермиевских канонических преобразований.

У группы $OSp(\mathbf{C}||p, q|\Lambda)$ существует также интересная вещественная форма, связанная с инволюцией второго рода. Она

получается, если условие (3.2.19) заменить на

$$B^*\widetilde{K}B = \widetilde{K}, \ \widetilde{K} = \begin{pmatrix} \tau & 0 \\ 0 & -I \end{pmatrix}.$$

 \mathfrak{I} труппу обозначим $\widetilde{OSp}(\mathbb{R}\parallel p,q\mid \Lambda)$. Положим $C=V\widetilde{\mathbf{A}}BV\widetilde{\mathbf{Z}}^{-1}$, где $V\widetilde{\mathbf{A}}=\begin{pmatrix} I&0\\0&e^{-\pi i/2}\end{pmatrix}$, $B\subseteq\widetilde{O}sp(\mathbb{R}\parallel p,q\mid \Lambda)$. Матрицы удовлетворяют условиям

$$C^{T}\widetilde{J}C = \widetilde{J}, \ \widetilde{J} = \begin{pmatrix} \tau & 0 \\ 0 & I \end{pmatrix}, \ C^{*}\widetilde{K}C = \widetilde{K}.$$
 (3.2.20)

Второе условие (3.2.20) с учетом первого эквивалентно тому, что $C = \bar{C}$.

Покажем, что группа $\widetilde{OSp}(\mathbf{R}\|p, q|\Lambda)$ является вещественной формой $OSp(\mathbf{C}\|p, q|\Lambda)$ только, если * является инволюцией второго рода. Учитывая, что $\widetilde{K}^* = KA$ при инволюции любого рода, из второго условия (3.2.20) имеем

$$C^* \widetilde{K} \mathbf{A} (C^*)^* = \widetilde{K} \mathbf{A}. \tag{3.2.21}$$

Очевидно, что это равенство эквивалентно второму соотношению (3.2.20) только, если $(C^*)^* = ACA$, т. е. при инволюции второго рода. В этом случае аналитическое продолжение по параметрам разрушает второе соотношение (3.2.20), что же касается первого, то оно в комплексном случае очевидным образом эквивалентно (3.2.8).

При инволюций первого рода $(C^*)^* = C$ и соотношение (3.2.21) в совокупности со вторым соотношением (3.2.20) дает CA = AC. Следовательно, C является клеточно-диагональной матрицей. Это свойство матрицы C сохраняется при аналитическом продолжении по параметрам и не может быть выполнено, если $OSp(R||p, q|\Lambda)$ является вещественной формой $OSp(C||p, q|\Lambda)$. Так как матрица J в отличие от матрицы J из (3.2.8) вещественна, условия (3.2.20) показывают, что группа $OSp(R||p, q|\Lambda)$ является более непосредственным суперобобщением вещественных симплектической и ортогональной групп, чем $OSp(R||p, q|\Lambda)$

 $q \mid \Lambda$). Таким образом, эти группы имеют два различных, в равной степени естественных суперобобщения: группу $OSp(R \mid p, q \mid \Lambda)$, которая сохраняет их свойство быть линейными каноническими преобразованиями, и группу $OSp(R \mid p, q \mid \Lambda)$, которая, во всяком случае формально, более полно сохраняет их свойства вещественности.

В заключение отметим, что при p=q классическая унитарная, унитарная унимодулярная ортогональная и симплектическая группы имеют еще один супераналог: группы $U(p|\Lambda) = U(p, p|\Lambda) \cap GL(p|\Lambda)$, $SU(p|\Lambda) = SU(p, p|\Lambda) \cap SL(p|\Lambda)$ и $OSp(p|\Lambda) = OSp(p, p|\Lambda) \cap GL(2p|\Lambda)$ соответственно. Все оти группы обладают такими же особенностями строения, не имеющими классических аналогов, как и группа $GL(p|\Lambda)$.

Глава 4. СУПЕРМНОГООБРАЗИЯ В ЦЕЛОМ

введение

Понятие супермногообразия удобно и полезно возводить к более общему определению кольцованного пространства. Язык кольцованных пространств был предложен А. Гротендиком ради выработки единого подхода к различным геометрическим теориям: теории гладких многообразий, алгебраической, аналитической геометриям и т. д. Каждой из этих теорий соответствует некоторая категория кольцованных пространств. Теория супермногообразий также укладывается в эту схему с той лишь разницей, что они составляют подкласс (точнее подкатегорию) категории некоммутативных кольцованных пространств. Впрочем, степень «некоммутативности» супермногообразий невелика, и, как мы увидим, к их исследованию применимы методы «коммутативных» геометрических теорий.

Мы начнем с изложения понятия общего (не обязательно коммутативного) кольцованного пространства, для чего нам потребуется небольшое число определений и конструкций из теории пучков. Мы предполагаем у читателя знакомство с определениями (только с определениями!) категории и функтора, включая следующие примеры категорий: 1) категория открытых подмножеств данного топологического пространства, где морфизмами являются включения $U \subset V$; 2) категория жеств и их отображений; 3) категория абелевых (т. е. коммутативных) групп; 4) категория векторных пространств над заданным полем (Р или С) и 5) категория колец и категория алгебр над заданным полем К (алгебра над полем К есть кольцо с единицей, которое имеет также структуру векторного пространства над К; морфизмом алгебр является всякий К-линейный кольцевой гомоморфизм).

§ 1. ПУЧКИ

Имеется два определения пучка: пучок как предпучок, удовлетворяющий дополнительным аксиомам, и пучок как расслоенное пространство.

Определение предпучка. Пусть задано топологическое пространство X и некоторая категория C (можно считать, что это одна из категорий 3), 4) или 5)). Предпучок на X со значениями в C есть контравариантный функтор F, действую-

щий из категории открытых подмножеств X в категорию C. Иными словами, предлучок включает:

I) задание объекта F(U) категории C для всякого открыто-

ro $U \subset X$ и

II) задание морфизма $\rho_V^U: F(U) \to F(V)$ категории C для всякой пары $V \subset U$ открытых подмножеств X (мы будем иногда называть его структурным морфизмом данного предпучка). При этом должны выполняться следующие «естественные» условия:

II. a) $\rho_U^U = \mathbf{1} \, (F(U)) \, ($ тождественный морфизм)

II.б) для любых открытых множеств $W \subset V \subset U \subset X$

$$\rho_{W}^{V} \circ \rho_{V}^{U} = \rho_{W}^{U}.$$

Отображения предлучков. Если заданы предпучки F и G на одном пространстве X со значениями в C, то отображением $m: F \rightarrow G$ называется совокупность морфизмов $m(U): F(U) \rightarrow G(U)$ категории C, подчиненная единственному условию: для всякой пары $V \subset U$ коммутативна диаграмма

$$\begin{array}{c|c}
F(U) \xrightarrow{m(U)} G(U) \\
\downarrow \rho_V^U & & \downarrow \sigma_V^U, \\
F(V) \xrightarrow{m(V)} G(V)
\end{array}$$

где $\sigma_V{}^U$ — структурные морфизмы предпучка G. Понятным образом вводится определение тождественного отображения $F \to F$ и композиции отображений предпучков $F \to G \to H$.

Аксиомы пучка 1. Предпучок называется пучком, если он удовлетворяет следующим дополнительным требованиям: пусть $U=\bigcup\limits_A U_{\alpha}$, где U_{α} открытые подмножества X (мощность

множества A произвольна);

III.a) Элементы $f,\ g = F'(U)$ совпадают, если для всякого индекса $\alpha = A$

$$\rho^U_{U_{\alpha}}f = \rho^U_{U_{\alpha}}g.$$

III.6) Если для всякого α задан элемент $f_{\alpha} {\equiv} F(U_{\alpha})$ так, что выполнено условие «согласованности»

$$\forall_{\alpha,\beta} \in A \ \rho_{U_{\alpha} \cap U_{\beta}}^{U_{\alpha}} f_{\alpha} = \rho_{U_{\beta} \cup U_{\alpha}}^{U_{\beta}} f_{\beta},$$

то существует элемент $f{\in}F(U)$, такой, что $ho_{U_{m{lpha}}}^Uf=f_{m{lpha}}$ при всех $m{lpha}$.

На интуитивном уровне эти аксиомы означают, что элементы $f \in F(U)$ определяются своими «ограничениями» на областях

¹ Здесь и в дальнейшем мы предполагаем, что С есть подкатегория категории множеств, т. е. категории 2).

сколь-угодно мелкого покрытия U. Это ощущение приобретает точный смысл при обращении ко второму (эквивалентному) определению пучка.

Определение пучка как расслоенного пространства. Под расслоенным пространством с базой X (не путать с расслоением) мы понимаем всякое непрерывное отображение топологических пространств $p: E \to X$. Расслоенное пространство называется пучком на X со значениями в категории множеств, если p есть локальный гомеоморфизм, т. е. любая точка $e \in E$ обладает окрестностью E', которую p гомеоморфно отображает на ее образ p(E').

Следующие конструкции связывают эти определения.

I. Конструкция расслоенного пространства по предпучку F. Для произвольной точки $x \in X$ рассмотрим несвязное объединение $\bigcup \{F(U),\ U \ni x\}$ объектов категории C по всем открытым $U \ni x$. Введем в нем отношение эквивалентности \sim , полагая, что $a \sim b$, где $a \in F(U)$, $b \in F(V)$, если существует окрестность $W \subset C \cap V$ точки x, такая, что $\rho_W^V a = \rho_W^V b$. Указанное объединение разбивается на классы эквивалентности. Совокупность этих классов (т. е. фактормножество) обозначим через E_x . Положим $E = \bigcup E_x$, $p(E_x) = x$. Тем самым отображение p определено, причем E_x есть его слой над точкой x. Множество E_x называется слоем пучка F и может обозначаться также через F_x .

Введем топологию в E. Выберем произвольно $x \in X$ и элемент $e \in E_x$ и зададим некоторую совокупность множеств, содержащих e, которая будет служить базой окрестностей точки e в искомой топологии. По определению e есть класс смежности, состоящий из элементов множеств F(U), $U \ni x$. Выберем некоторого представителя $a \in F(U)$ этого класса. Класс называется ростком в точке x элемента a. Этот элемент имеет ростки во всех точках $y \in U$, которые принадлежат слоям E_y . Объединение этих ростков, содержащее исходный элемент e, есть по определению множество из указанной базы окрестностей. Легко проверить, что p действительно является локальным гомеоморфизмом.

Заметим, что если F — предпучок со значениями в категориях 3), 4) или 5), то множество E_x имеет структуру группы, соответственно векторного пространства или кольца (называемую индуктивным пределом групп, пространств и т. д. F(U) по фильтру окрестностей точки x).

II. Конструкция пучка по расслоенному пространству. Сечением расслоенного пространства $p: E \to X$ над открытым подмножеством $U \subset X$ называется любое отображение $s: U \to E$, такое, что $ps = \mathbf{1}(U)$. Обозначим через $\Gamma(U, E)$ множество всех непрерывных сечений (E, p) над U. Всякое сечение при ограничении на открытое подмножество $V \subset U$, естественно, остается сечением и сохраняет непрерывность. Поэтому определено отображение множеств $\rho_U^U: \Gamma(U, E) \to \Gamma(V, E)$. Легко видеть, что совокуп-

ность множеств $\Gamma(U,E)$ и отображений ρ_V^U является предпучком и удовлетворяет аксиомам III.а) и III.б), поскольку «локальность» элементов $\Gamma(U,E)$ задана с самого начала. Таким образом, мы получаем пучок $U \Rightarrow \Gamma(U,E)$ со значениями в категории множеств. Он называется пучком (ростков) сечений расслоенного пространства (E,p).

Нетрудно указать условия, при которых полученный пучок имеет дополнительную структуру, например является пучком групп, т. е. пучком со значениями в категории 3). Для этого необходимо, чтобы каждый слой E_x заданного расслоенного пространства имел структуру группы и чтобы групповые операции были непрерывны в топологии E, т. е. чтобы они переводили непрерывные сечения E в непрерывные сечения. Подобные условия обеспечивают наличие структуры пучка векторных пространств или колец.

III. Конструкция пучка по предпучку F. Применим к F первую конструкцию, а к полученному пространству (E, p) — вторую. В результате мы получим пучок \tilde{F} . Он называется пучком, построенным по предпучку F. Для всякого открытого множества $U \subset X$ имеет каноническое отображение множеств

$$\varphi(U):F(U)\to \tilde{F}(U)$$
,

которое преобразует элемент $a{\in}F(U)$ в сечение E над U, значение которого в точке x равно ростку a в этой точке. Непрерывность такого сечения следует из определения топологии в E. Y казанные отображения складываются в отображение предпучков, поскольку для всякой пары $V{\subset}U$ коммутативна диаграмма

$$\begin{array}{c|c}
F(U) \xrightarrow{\varphi(U)} & \widetilde{F}(U) \\
\downarrow^{U} & & \downarrow^{\widetilde{\rho}_{V}^{U}}, \\
F(V) \xrightarrow{\varphi(V)} & & \widetilde{F}(V)
\end{array}$$

где $\tilde{\rho}_{V}^{U}$ —отображение ограничения сечений.

На интуитивном уровне конструкцию III можно описать так: для всякого $U \subset X$ множество F(U) сначала расширяется так, чтобы удовлетворить аксиоме III.6), а затем в расширенном множестве проводится факторизация с тем, чтобы добиться выполнения III.a).

Если F есть пучок, то канонические отображения $\phi(U)$ суть изоморфизмы, следовательно, предпучки F и F изоморфны. Это и означает эквивалентность двух определений пучка.

Если F — произвольный предпучок со значениями в категориях 3), 4) чли 5), то согласно приведенным выше замечаниям F также принимает значения в этих категориях, а $\varphi(U)$ — морфизмы соответственно групп, векторных пространств и колец.

Отображения лучков. Пусть F и G — пучки на X. Под отображением $m:F\to G$ лонимается отображение соответствующих преднучков. Если же пучки заданы соответствующими расслоенными пространствами $(E,\ p)$ и $(E',\ p')$, то лод их отображением следует понимать непрерывное отображение топологических пространств $\mu:E\to E'$, такое, что $p'\cdot \mu=p$. Если в слоях этих пространств имеется дополнительная структура, то μ должно быть согласовано с этими структурами, т. е. для всякой точки $x \in X$, $\mu_x: E_x \to E_{x'}$ должно быть гомоморфизмом.

С помощью конструкции III определяется факторпучок. Пусть F есть пучок на X со значениями в категории коммутативных групп, а G — подпучок F, т. е. для всякого $U \subset X$ G(U) есть подгруппа F(U), причем $\rho_V^U(G(U)) \subset G(V)$ для всякой пары $V \subset U$. Факторгруппы F(U)/G(U) образуют предпучок, поскольку структурные отображения ρ_V^U порождают гомоморфизмы факторгрупп

$$F(U)/G(U) \rightarrow F(V)/G(V)$$
.

Этот предпучок, вообще говоря, не является лучком. Построенный по нему пучок называется факторпучком и обозначается F/G.

Обратный образ пучка. Пусть $f:Y\to X$ — мепрерывное отображение топологических пространств, а F — пучок на X. Образуем расслоенное пространство $p:E\to X$ с помощью конструкции I. Рассмотрим расслоенное произведение $Y\times xE$. Оно является подмножеством в прямом произведении $Y\times E$, которое выделяется уравнением f(y)=p(e), $(y,e)\in Y\times E$, а топология порождается топологией прямого произведения. Введем отображение $q:Y\times xE\to Y$, которое есть ограничение проекции $Y\times E$ на первый сомножитель. Легко видеть, что q есть локальный гомеоморфизм, т. е. является пучком на Y. Оно называется обратным образом пучка F при отображении f и обозначается $f^*(F)$. Если Y есть открытое подмножество X, а $f:Y\to X$ — тождественное вложение, то пучок $f^*(F)$ называется ограничением F на Y и имеет обозначение $F\mid Y$. Слой пучка $F\mid Y$ в точке $x\in Y$ можно отождествить со слоем F в той же точке.

Операция обратного образа сохраняет наличие структуры лучка групп, векторных пространств или колец.

Более полное изложение теории пучков можно найти в книге Р. Годемана «Алгебраическая топология и теория пучков».

§ 2. КОЛЬЦОВАННЫЕ ПРОСТРАНСТВА

Напомним сначала некоторые общие определения из теории колец. Кольцом называется абелева пруппа A (групповая операция записывается аддитивно, т. е. с помощью символов +, —), в которой имеется мультипликативная операция $A \times A \rightarrow A$, которая удовлетворяет условию ассоциативности и дистрибутивности по отношению к прупповой операции (правило раскры-

тия скобок). Эту операцию мы записываем обычным образом: $(a,b) \mapsto ab$. Таким образом, всякому элементу $a \in A$ отвечает гомоморфизм группы A в себя, действующий по формуле $c \mapsto ac$ (левое умножение), и гомоморфизм $c \mapsto ca$ (правое умножение). Левым идеалом в A называется всякая подгруппа I, инвариантная относительно левого умножения на любой элемент $a \in A$. Подобным образом определяется правый идеал. Левый идеал, который является и правым, называется двусторонним. Если I — двусторонний идеал в A, то в факторгруппе A/I можно корректно ввести мультипликативную операцию. Кольцо A/I называется факторкольцом.

Гомоморфизмом колец $A \to B$ называется гомоморфизм соответствующих групп $\varphi: A \to B$ такой, что $\varphi(a \cdot a') = \varphi(a) \cdot \varphi(a')$. Если I — двусторонний идеал A, то определен гомоморфизм колец $A \to A/I$, действующий по правилу $a \to a+I$. Он называется каноническим.

Левый идеал \mathfrak{M} кольца A называется максимальным, если он отличен от всего кольца и содержит любой левый идеал $I \subset \mathfrak{M}$, обладающий этим свойством. Кольцо A назовем локальным, если в нем имеется единственный левый максимальный идеал и единственный правый максимальный идеал и они совпадают. Нетрудно, впрочем, показать, что из требования единственности левого максимального идеала вытекает единственность правого и их совпадение. Этот двусторонний идеал называется максимальным и обычно обозначается \mathfrak{M} . Факторкольцо A/\mathfrak{M} является полем (поле вычетов).

Кольцо A называется алгеброй над полем K, если задан гомоморфизм колец $K \rightarrow A$. Алгебра является векторным пространством. Наконец, K-алгеброй называется алгебра A над полем K, снабженная гомоморфизмом колец $r:A \rightarrow K$, который является также линейным отображением K-векторных пространств. Ясно, что Ker r есть двусторонний максимальный идеал кольца A, а K изоморфно полю вычетов A/Ker r.

Гомоморфизмом K-алгебр A, B называется гомоморфизм колец, который является K-линейным отображением и порождает коммутативную диаграмму

где r_A и r_B — структурные гомоморфизмы.

Примеры. І. R-алгебра \mathcal{E}^p ростков гладких функций в точке $0 \in \mathbb{R}^p$. Она является индуктивным пределом алгебр гладких функций в области $U \subset \mathbb{R}^p$ по фильтру окрестностей точки x = 0. Это коммутативная локальная алгебра с максимальным идеалом \mathfrak{M} , образованным ростками, которые обращаются в нуль в точке x = 0. Структурный гомоморфизм $r : \mathcal{E}^p \to \mathbb{R}$ сопоставляет ростку его значение в этой точке.

II. Алгебра \mathcal{H}^p сходящихся степенных рядов от p переменных. Она коммутативна и локальна и является \mathbf{C} -алгеброй причем структурный морфизм $r:\mathcal{H}^p \to \mathbf{C}$ преобразует ряд в его свободный член.

III. R-алгебра $\mathfrak{A}^{p,q}$ ростков гладких функций в точке $0 \in \mathbb{R}^p$ со значениями в вещественной грассмановой алгебре Λ_q (см. гл. 1, § 2). Здесь структурный гомоморфизм $r: \mathfrak{A}^{p,q} \to \mathbb{R}$ действует по формуле

$$r(f) = f(0, 0),$$
 (4.2.1)

где $f(x, \xi)$ запись произвольного өлемента $f \in \mathfrak{A}^{p,q}$ в виде молинома от образующих ξ_1 , ..., ξ_q алгебры Λ_q с коэффициентами из \mathcal{E}^p . Идеал $\mathfrak{M} = \text{Кег } r$ порождается ксординатными функциями x_1 , ..., x_p пространства \mathcal{E}^p и образующими ξ_1 , ..., ξ_q . Покажем, что этот максимальный идеал единственный (как левый и как правый). Для этого достаточно показать, что если $f(0, 0) \neq 0$, то элемент f обратим. Запишем его в виде $f_0 + g$, где g — элемент идеала I в $\mathfrak{A}^{p,q}$, порожденного ξ_1 , ..., ξ_q , а $f_0 \in \mathcal{E}^p$. Так как росток f_0 обратим в \mathcal{E}^p , он обратим также и в $\mathfrak{A}^{p,q}$. Поэтому мы можем считать, что $f_0 = 1$. Легко также видеть, что $I^{q+1} = 0$, следовательно, ряд $h = 1 - g + g^2 - \dots$ конечен. Ясно, что h = fh = (1 + g) $(1 - g + g^2 - \dots) = 1$, что и завершает рассуждение.

IV. С-алгебра $\mathcal{H}^{p,q}$ сходящихся степенных рядов от p аргументов со значениями в грассмановой алгебре $\Lambda_q(C)$ с комплексными коэффициентами. Здесь структурный гомоморфизм действует по формуле (4.2.1). Так же как в предыдущем примере, доказывается локальность этой алгебры.

Определение. Кольцованное пространство есть топологическое пространство X вместе с пучком колец \mathcal{O}_X на X. Пространство X называется подстилающим, а пучок \mathcal{O}_X — структурным пучком данного кольцованного пространства, которое обозначается (X, \mathcal{O}_X) . Отображением (или морфизмом) кольцованного пространства (X, \mathcal{O}_X) в кольцованное пространство (Y, \mathcal{O}_Y) объявляется пара (f, φ) , состоящая из непрерывного отображения подстилающих пространств $f: X \rightarrow Y$ и отображения пучков колец $\varphi: f^*(\mathcal{O}_Y) \rightarrow \mathcal{O}_X$. (Характерно, что отображение пучков направлено в противоположную сторону, т. е. от Y к X, что есть проявление общей двойственности между пространствами и соответствующими пучками.) Отображение пучков φ порождает отображения слоев $\varphi_x: f^*(\mathcal{O}_Y)_x \rightarrow \mathcal{O}_{X,x}$ в любой точке $x \in X$. Согласно определению § 1 слой пучка $f^*(\mathcal{O}_Y)$ над точкой x изоморфен слою пучка \mathcal{O}_Y над f(x). Таким образом, для всякого $x \in X$ имеется гомоморфизм колец

$$\varphi_x: \mathcal{O}_{Y,f(x)} \to \mathcal{O}_{X,x}. \tag{4.2.2}$$

Обратно, если вместе с f задана совокупность гомоморфизмов (4.2.2), то определено отображение кольцованных пространств при условии, что семейство (4.2.2) непрерывно в следующем

смысле. Пусть E_X и E_Y — расслоенные пространства, отвечающие пучкам \mathcal{O}_X и \mathcal{O}_Y и $\Phi: E_Y \times_Y X \to E_X$ — отображение, которое в слоях над точкой $x \in X$ действует по формуле (4.2.2). Это отображение должно быть непрерывно ($(E_Y \times_Y X)$ наделено топологией, наведенной из $E_Y \times X$). Это условие можно выразить иначе: для всякого открытого $V \subset Y$ и сечения $s \in \mathcal{O}_Y(V)$ совожупность гомоморфизмов (4.2.2) преобразует s в сечение \mathcal{O}_X над $f^{-1}(V)$.

Открытым кольцованным подпространством пространства (X, \mathcal{O}) называется любое открытое подпространство $Y \subset X$, снабженное пучком $\mathcal{O} \mid Y$. С таким подпространством связано отображение $(f, \varphi): (Y, \mathcal{O} \mid Y) \to (X, \mathcal{O})$, где f есть вложение, а φ

тождественный изоморфизм, $f^*(\mathcal{O}) \cong \mathcal{O} | Y$.

Пучком идеалов \mathcal{F} в структурном пучке \mathcal{O} кольцованного пространства называется подпучок \mathcal{O} , такой, что для всякого открытого подмножества $U \subset X$ множество $\mathcal{I}(U)$ есть идеал кольце $\mathcal{O}(U)$ (мы имеем в виду двусторонние идеалы). Иначе ловоря, для всякой точки $x{\in}X$ слой ${\mathcal I}_x$ пучка ${\mathcal I}$ есть идеал слое \mathcal{O}_x структурного пучка и подмножество $\mathcal{J} \subset \mathcal{O}$ открыто. Множеством корней пучка идеалов ${\mathscr I}$ называется совокупность $Z=Z(\mathcal{F})$ точек $x\in X$, таких, что $\mathcal{F}_x\neq \mathcal{O}_x$. Таким образом, Z есть множество точек, в которых слой факторпучка \mathcal{O}/\mathcal{I} есть ненулевое кольцо. Будем предполагать, что структурный пучок унитарный, т. е. для всякого $U \subset X$ кольцо $\mathcal{O}(U)$ содержит единицу. Нетрудно показать, что в этом случае множество $Z(\mathcal{J})$ всегда замкнуто. Множество $Z(\mathcal{I})$, наделенное топологией наведенной из X, снабженное пучком колец \mathcal{O}/\mathcal{I} , называєтся замкнутым подпространством кольцованного пространства $(X, \mathcal{O}).$ С ним канонически связано отображение кольцованных пространств $(Z, \mathcal{O}/\mathcal{O}) \to (X, \mathcal{O})$, состоящее из вложения $Z \subseteq X$ и отображения, порожденного естественными гомоморфизмами колец.

$$\mathcal{O}_x \to \mathcal{O}_x/\mathcal{J}_x \cong (\mathcal{O}/\mathcal{J})_x, \ x \in \mathbb{Z}.$$
 (4.2.3)

Вообще же подпространством кольцованного пространства называется всякое замкнутое подпространство его открытого

подпространства.

Кольцованные пространства, изучаемые в различных геометрических теориях, включая и супермногообразия, относятся к классу локальных пространств, определение которых мы сейчас дадим. Пусть фиксировано поле K (в нашей теории это R или C). К-кольцованным пространством называется топологическое пространство X, снабженное пучком K-алгебр C. Таким образом, для всякого открытого $U \subset X$, C(U) есть K-алгебра с единией, а для любой пары $V \subset U$ открытых множеств морфизм ограничения $C(U) \to C(V)$ есть гомоморфизм K-алгебр. Предполагается также, что для всякой точки $x \in X$ фиксирован гомоморфизм K-алгебр $r_x : C_x \to K$ (называемый вычетом). Его ядро есть двусторонний максимальный идеал в C_x ; он обозначается \mathfrak{M}_x . Данное кольцованное пространство называется локальным,

если каждая алгебра \mathcal{O}_x локальна, т. е. \mathfrak{M}_x есть единственный

максимальный идеал.

Под морфизмом K-кольцованных пространств (f, φ) понимается отображение кольцованных пространств, подчиненное дополнительному условию: для всякой точки x (4.2.2) есть гомоморфизм K-алгебр, т. е. K-линейный гомоморфизм колец, образующий коммутативную диаграмму

с вычетами. Отсюда легко вывести, что $\phi_x^{-1}(\mathfrak{M}_x) = \mathfrak{M}_{f(x)}$.

Если эвристически понимать слой $\mathcal{O}_{X,x}$ как кольцо ростков некоторых «функций» на X, то отображение-вычет r_x есть вычисление значения этой «функции» в точке x. С такой точки зрения коммутативность (4.2.4) означает, что ϕ переводит «функции» в их обратные образы при отображении f. На самом деле, как мы увидим ниже, элементы кольца $\mathcal{O}_{X,x}$ нельзя отождествить, вообще говоря, с ростками функций, так как это кольцо может иметь нильпотенты. В таких случаях отображение ϕ не определяется однозначно по подстилающему отображению, однако в любом случае связано с f условием коммутативности (4.2.4).

Сейчас мы опишем ряд конкретных категорий кольцованных пространств, начиная с хорошо известной категории гладких многообразий и кончая категориями супермногообразий, на основе приема, обобщающего конструкцию гладкого атласа.

Пусть фиксирована некоторая категория **К**-кольцованных пространств, подчиненная единственному условию: вместе с пространством она содержит любое его открытое подпространство. Объекты и морфизмы этой категории будем называть модельными.

Определение. Если фиксирована категория \mathcal{M} модельных пространств, то категорией K-кольцованных пространств типа \mathcal{M} называется совокупность K-кольцованных пространств (X, \mathcal{O}) и их морфизмов, удовлетворяющих следующим условиям:

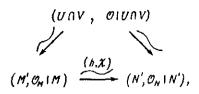
I. Всякая точка $x \in X$ обладает окрестностью U, такой, что

имеется изоморфизм К-кольцованных пространств

$$(f, \varphi): (U, \mathcal{O} \mid U) \cong (M, \mathcal{O}_M),$$

где (M, \mathcal{O}_M) — некоторое модельное пространство. Этот изоморфизм называется картой на X.

II. Пусть имеется еще одна карта $(g, \psi): (V, \mathcal{O}|V) \to (N, \mathcal{O}_N)$, причем ее область задания V пересекается с U. Рассмотрим диаграмму



где $M'=f(U\cap V)$, $N'=g(U\cap V)$, косые стрелки суть ограничения карт, а морфизм (h,χ) находится однозначно из условия коммутативности. Требуется, чтобы этот морфизм был модельным, т. е. принадлежал категории \mathcal{M} . Он называется склейкой карт.

Отображение $(F, \Phi): (X, \mathcal{O}_X) \to (Y, \mathcal{O}_Y)$ кольцованных пространств типа \mathcal{M} само называется морфизмом типа \mathcal{M} , если любое его изображение с помощью карт на X и Y является модельным. Пусть (f, Φ) — карта на $U \subset X$, а (g, Φ) — карта с областью задания $V \subset Y$. Под изображением (F, Φ) в этих картах мы понимаем морфизм (a, α) в следующей диаграмме, который определяется из условия ее коммутативности:

$$(U, \mathcal{O}_X | U) \xrightarrow{(F,\Phi) | U} (V, \mathcal{O}_Y | V)$$

$$(f, \varphi) \downarrow \qquad \qquad \downarrow (g, \psi)$$

$$(M, \mathcal{O}_M) \xrightarrow{(a, \alpha)} (N, \mathcal{O}_N)$$

Мы предполагаем, что $F(U) \subset V$; в противном случае следует

ограничить карту (f, φ) на $U' = U \cap F^{-1}(V)$.

Легко понять, что пространства и морфизмы типа \mathcal{M} образуют категорию, т. е. при композиции тип сохраняется. Очевидно также, что открытое подпространство пространства типа \mathcal{M} имеет тот же тип. Для замкнутых подпространств это уже не так.

Рассмотрим небольшое число примеров, приводящих к изве-

стным геометрическим теориям.

1) На \mathbb{R}^n рассмотрим пучок $\mathcal{E} = \mathcal{E}^n$, значение которого на открытом подмножестве U есть \mathbb{R} -алгебра всех вещественнозначных бесконечно дифференцируемых функций в U. Отображения ограничения действуют очевидным образом. Элементы слоя \mathcal{E}_x называются ростками в точке x гладких функций. Пара $(\mathbb{R}^n, \mathcal{E}^n)$ есть локальное \mathbb{R} -пространство, причем вычет $f_x \colon \mathcal{E}_x \to \mathbb{R}$ переводит росток гладкой функции в ее значение в точке x. Рассмотрим категорию \mathcal{M}_1 , объектами которой являются открытые подпространства \mathbb{R} -кольцованных пространств $(\mathbb{R}^n, \mathcal{E}^n)$, n=0,1,2,..., а морфизмами — пары $(f,\varphi)\colon (U,\mathcal{E}^n|U)\to (V,\mathcal{E}^m|V)$, в которых подстилающее отображение $f\colon U\to V$ бесконечно дифференцируемо как отображение подмножеств координатных пространств. Заметим, что отображение $\varphi\colon f^*(\mathcal{E}^m)\to \mathcal{E}^n|U$ находится однозначно из условия коммутативности (4.2.4): оно действует по правилу подстановки $b\to a=b(f(\cdot))$.

Категория пространств типа \mathcal{M}_1 — это категория (бесконечно) дифференцируемых многообразий и их гладких отображений.

2) Пусть \mathcal{H}^n — пучок ростков голоморфных функций в \mathbb{C}^n . Пара $(\mathbb{C}^n, \mathcal{H}^n)$ является локальным \mathbb{C} -пространством, причем вычеты устроены так же, как в случае 1). Подобным же образом введем категорию \mathcal{M}_2 : ее объектами являются открытые подпространства пространств $(\mathbb{C}^n, \mathcal{H}^n)$, n=0, 1, 2, ..., морфизмы суть пары (f, φ) , где подстилающее отображение f толоморфно, а φ действует по правилу подстановки. Пространства типа \mathcal{M}_2 — это комплексно-аналитические многообразия.

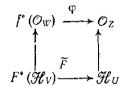
Отметим, что в примерах 1) и 2) не обязательно требовать заранее гладкости, соответственно аналитичности подстилающего отображения. Это свойство вытекает из того, что отображе-

ние сохраняет гладкость, соответственно аналитичность.

3) Категория модельных пространств \mathcal{M}_3 . Объект (Z, \mathcal{O}_Z) этой категории описывается следующим образом. Пусть на открытом подмножестве $U \subset \mathbb{C}^n$ заданы голоморфные функции $a_1, ..., a_k$, а \mathcal{H}_U — ограничение на U пучка \mathcal{H}^n . Z есть множество общих корней этих функций, а $\mathcal{O}_Z = \mathcal{H}_U/\mathcal{I} \mid Z$, где \mathcal{I} — пучок идеалов в \mathcal{H}_U , каждый слой которого порождается функциями $a_1, ..., a_k$. С-кольцованное пространство (Z, \mathcal{O}_Z) не зависит от выбора окрестности U множества Z в \mathbb{C}^n .

Пусть (W, C_W) другое модельное пространство. Модельный морфизм $(f, \varphi): (Z, C_Z) \rightarrow (W, C_W)$ по определению включает подстилающее отображение $f: Z \rightarrow W$, которое продолжается до голоморфного отображения $F: U \rightarrow V$ из некоторой окрестности $U \supset Z$ в \mathbf{C}^n в некоторую окрестность $V \supset W$ в \mathbf{C}^m ; отображение

ф должно замыкать коммутативную диаграмму



в которой вертикальные стрелки суть естественные отображения, а F действует по правилу подстановки. Читатель без труда проверит, что из коммутативности этой диаграммы вытекает коммутативность (4.2.4), так как максимальный идеал в $\mathcal{C}_{Z,Z}$ есть образ максимального идеала в $\mathcal{H}_{U,Z}$. Для существования такого отображения φ необходимо и достаточно, чтобы φ переводило подпучок φ в φ , где φ = ker $\{\mathscr{H}_V \to \mathcal{O}_W\}$. Отображение φ определяется единственным образом по φ , но не по φ . В этом состоит существенное отличие категории φ от категорий φ и φ в которых морфизмы однозначно задаются подстилающими отображениями.

Кольцованные пространства типа M_3 называются комплексно-аналитическими пространствами.

5*

Определение. Зафиксируем целые числа p > 0, q > 0. Пусть Λ^q — вещественная внешняя алгебра с q фиксированными образующими $\xi_1, ..., \xi_q$. Зададим в \mathbb{R}^p пучок $\mathfrak{A}^{p,q}$, значение котороro на открытом подмножестве $U \subset \mathbb{R}^p$ есть \mathbb{R} -алгебра $\mathfrak{A}^{p,q}(U)$ всех бесконечно дифференцируемых функций в U со значениями в Λ_q . Слой $\mathfrak{A}_x^{p,q}$ этого пучка есть алгебра ростков гладких функций со значениями в Λ_q . Зададим на ней отображение вычет $r_x:\mathfrak{A}_x^{p,q}\to \mathbb{R}$ по формуле $r_x(f)=f(x,0)$, где $f(\cdot,\xi)$ — запись произвольного элемента алгебры в виде полинома по образующим ξ_1, \ldots, ξ_q с коэффициентами из $\mathcal{E}_{x}{}^{p}$. Согласно $\S 2$ $\mathfrak{A}_x^{p,q}$ есть локальная R-алгебра, а $(\mathsf{R}^p,\ \mathfrak{A}^{p,q}) = \mathsf{R}$ -кольцованное пространство. Алгебры $\mathfrak{A}^{p,q}(U)$ обладают Z-градунровкой: элемент f имеет градуировку k, если он является полиномом по ξ степени k. Если различать не сами степени, а их четность или нечетность, то возникает (более грубая) Z_2 -градуировка $\mathfrak{A}^{p,q}(U)$ и, следовательно, во всяком слое $\mathfrak{A}_{\cdot,p,q}$

Введем категорию $C\dot{B}$, объектами которой являются открытые подпространства пространств $(\mathbf{R}^p,\mathfrak{A}^{p,q}),\ p,\ q=0,\ 1,\ 2,\ ...,$ а морфизмами — любые отображения этих \mathbf{R} -кольцованных пространств, сохраняющие Z_2 -градуировку. Последнее условие для отображения $(f,\ \phi)$ означает, что для всякой точки x отображение \mathbf{R} -алгебр

 $\varphi_x: \mathfrak{A}_{f(x)}^{p',q'} \to \mathfrak{A}_x^{p,q}$

переводит полиномы от антикоммутирующих образующих четной (нечетной) степени в полиномы, чья степень имеет ту же четность.

Гладким супермногообразием называется всякое R-кольцованное пространство типа CB. Иными словами, супермногообразие может быть получено в результате склеек модельных супермногообразий (U, $\mathfrak{A}^{p,q}|U$) (они называются также суперпространствами) с помощью отображений, которые совместны со структурами R-кольцованных пространств (коммутативность (4.2.4)) и сохраняют Z_2 -градуировку. Образ модельного супермногообразия при такой склейке есть карта на данном супермногообразии, а пара чисел (p, q) называется его размерностью, причем p — четная размерность, а q — нечетная.

Отображения склейки могут быть описаны более явным образом. Координатами или образующими на модельном супермногообразии назовем совокупность координат на подстилаю-

щем пространстве \mathbb{R}^p и образующих алгебры Λ^q .

Предложение 4.3.1. Пусть $(U, \mathfrak{A}^{p,q} \mid U)$ и $(U', \mathfrak{A}^{p',q'} \mid U')$ —модельные супермногообразия, x, ξ — координаты на первом из них, а

 $y_i(x,\xi),\,i=1,\,...,\,p',\,\eta_j(x,\xi),\,j=1,\,...,\,q',$ сечения пучка $\mathfrak{A}^{p,q}\,|\,U$ четной и нечетной степени такие, что образ отображения

$$f: U \Rightarrow x \mapsto (y_1(x, 0), \ldots, y_{n'}(x, 0)) \in \mathbb{R}^{p'}$$

принадлежит U'. Определен морфизм категории CB (f, φ) $(U, \mathfrak{A}^{p,q} | U) \rightarrow (U', \mathfrak{A}^{p',q'} | U')$, такой, что для всякой точки $x^0 \in U$ отображение φ_x° действует по правилу подстановки

$$b(y, \eta) \rightarrow a(x, \xi) = b(y(x, \xi), \eta(x, \xi))$$
 (4.3.1)

(см. (1.3.6)).

Обратно, всякий морфизм категории СВ записывается таким

образом.

Доказательство. Первое утверждение очевидно. Проверим второе. Пусть $y_1, \ldots, y_{p'}; \eta_1, \ldots, \eta_{q'}$ — четные и нечетные образующие в $\mathfrak{A}^{p',q'} | U'$. Положим

$$y_i(x, \xi) = \varphi(y_i), \ \eta_j(x, \xi) = \varphi(\eta_j).$$

В таком случае формула (4.3.1) справедлива для сечений $b=y_i$ и $b=\eta_i$ лучка $\mathfrak{A}^{p',q'}$. Поскольку по условию ϕ_x есть **R**-алгебр, формула (4.3.1) верна также для b=1 и, следовательно, также для любого полинома от y_i и η_j с вещественными коэффициентами. Докажем ее для произвольного ростка $b \in$ где x^0 — любая точка U. Пусть №′ -- максимальный идеал в $\mathfrak{A}_{f(x^0)}^{p',q'}$. Его образ $\varphi_{x^0}(\mathfrak{m}')$ принадлежит максимальному идеалу \mathfrak{M} алгебры $\mathfrak{A}_{x^0}^{p,q}$ (коммутативность (4.2.4)). Подберем многочлен δ от элементов y_i и η_j так, чтобы разность $b = \tilde{b}$ принадлежала $(\mathfrak{M}')^{q+1}$. Тогда $\varphi_{r_0}(b) = \varphi_{r_0}(\tilde{b}) \in \mathfrak{M}^{q+1}$. гласно примеру III § 2 идеал 🕦 порождается образами сечений $x_i - x_i^0$ и ξ_i , следовательно \mathfrak{M}^{q+1} порождается однородными полиномами степени q+1 от этих сечений. Так как любой полином такой степени от ξ_j равен нулю, отсюда следует, что \mathfrak{M}^{q+1} принадлежит идеалу, порожденному лишь сечениями $x_i - x_i^0$. Из сказанного следует, что

$$\varphi_{x^0}(b)(x^0, \xi) = \varphi_{x^0}(\widetilde{b})(x^0, \xi) = \widetilde{b}(y(x^0, \xi), \eta(x^0, \xi)).$$

С другой стороны, всякий однородный полином степени q+1 от $y_i(x, \xi)-y_i(x^0, \xi)$ и $\eta_j(x, \xi)$ обращается в нуль при $x=x^0$. Поэтому из включения $b-\widetilde{b} \in (\mathfrak{M}')^{q+1}$ вытекает, что

$$\delta(y(x^0, \xi), \eta(x^0, \xi)) = b(y(x^0, \xi), \eta(x^0, \xi)).$$

Два последних равенства доказывают (4.3.1).

В частности, мы вправе заключить, что всякое отображение склейки в структуре супермногообразия имеет вид (4.3.1). Обратно, при помощи таких отображений можно сконструировать супермногообразие.

Предложение 4.3.2. Пусть фиксировано некоторое множество A и для всякого элемента $\alpha \in A$ выбрано суперпространство

 X_{α} (т. е. объект категории CB). Пусть, далее, для всякой упорядоченной пары α , $\beta \in A$ выделено открытое подпространство $X_{\alpha\beta}$ пространства X_{α} и морфизм $\phi_{\beta\alpha}: X_{\alpha\beta} \to X_{\beta\alpha}$ категории CB так, что выполняются следующие условия:

1. $\varphi_{\alpha\beta} \varphi_{\beta\alpha} = 1 (X_{\alpha\beta});$

II. Для любых α , β , $\gamma \in A$, $\overline{\phi_{\beta\alpha}}(\overline{X_{\gamma\beta}}) \subset \overline{X_{\gamma\alpha}}$ (черта означает переход к подстилающему пространству или отображению) и на открытом подпространстве $X_{\alpha\beta\gamma}$ пространства X_{α} , таком, что $\overline{X_{\alpha\beta\gamma}} = \overline{\phi_{\beta\alpha}}(\overline{X_{\gamma\beta}})$, выполняется соотношение $\phi_{\gamma\beta}$ $\phi_{\beta\alpha} = \phi_{\gamma\alpha}$. Тогда существует и единственно с точностью до изоморфизма гладкое супермногообразие X, для которого некоторые отображения $\phi_{\alpha}: \to X_{\alpha}$ служат картами, а морфизмы $\phi_{\beta\alpha}$ — отображениями склейки.

Доказательство не требует ничего, кроме определений. Мы

оставляем его читателю.

Рассмотрим также комплексно-аналитический аналог поня-

тия гладкого супермногообразия.

Определение. Пусть p > 0, q > 0 — целые числа, а Λ_q — комплексная внешняя алгебра с фиксированными образующими $\xi_1,...$, ..., ξ_q . Введем пучок $\mathcal{H}^{p,q}$ на \mathbf{C}^p , значение которого на $U \subset \mathbf{C}^p$ есть \mathbf{C} -алгебра всех голоморфных функций на U со значениями в Λ_q . Согласно \S 2 слой $\mathcal{H}_z^{p,q}$ этого пучка есть локальная \mathbf{C} -алгебра с вычетом r_z , действующим по формуле $r_z(f) = f(z,0)$. Подобно предыдущему случаю в алгебрах $\mathcal{H}^{p,q}(U)$ вводится Z_2 -градуировка. Рассмотрим категорию CK, объектами которой являются открытые подпространства пространств ($\mathbf{C}^p, \mathcal{H}^{p,q}$), а морфизмами — любые отображения этих \mathbf{C} -кольцованных пространств, сохраняющие Z_2 -градуировку. Комплексно-аналитическим супермногообразием мы называем всякое \mathbf{C} -кольцованное пространство типа CK.

Формулировки и доказательство предложений 4.3.1 и 4.3.2 переносятся без изменений на категорию пространств типа СК.

В заключение сделаем некоторые общие замечания. Категория гладких супермногообразий содержит категорию гладких многообразий (пространства типа \mathcal{M}_1 , § 2): последние можно рассматривать как гладкие супермногообразия нулевой нечетной размерности. Подобно этому категория комплексно-аналитических многообразий может рассматриваться как часть категории комплексно-аналитических супермногообразий. Особенностью супермногообразия как гладкого, так и аналитического является наличие Z_2 -градуировки в структурном пучке C, т. е. Z_2 -градуировки в каждой алгебре сечений C(Y), совместной с отображениями ограничения.

Отметим также, что согласно общему подходу § 2 мы располагаем определениями морфизмов как в категории пространств типа CB, так и в категории пространств типа CK.

§ 4. КОНСТРУКЦИИ СУПЕРМНОГООБРАЗИЙ

Подпространство, заданное уравнениями. Пусть $(U, \mathfrak{A}^{p,q})$ — модельное гладкое супермногообразие, f_i , $i=1,\ldots,p'$, и ϕ_i , $j=1,\ldots,q'$, — наборы четных и нечетных сечений пучка $\mathfrak{A}^{p,q}$. Рассмотрим подмножество $\Phi \subset \mathfrak{A}^{p,q}$, такое, что всякой точки $x \in U$ пересечение $\Phi_x = \Phi \cap \mathfrak{A}^{p,q}_x$ есть идеал в алгебре $\mathfrak{A}^{p,q}_x$, порожденный ростками элементов f_i и ϕ_i . Очевидно, что это подмножество открыто в топологии пучка $\mathfrak{A}^{p,q}$ и, следовательно, является пучком. Оно называется пучком идеалов, порожденным указанными сечениями. Множество его корней X совпадает с множеством точек x, таких, что вычет $f_x: \mathfrak{A}^{p,q}_x \to \mathbb{R}$ обращается в нуль на Φ_x . Согласно § 2 (пример III) это множество задается уравнениями

$$f_i(x, 0) = 0, i = 1, ..., p'.$$

Рассмотрим факторпучок колец $\mathfrak{A}^{p,q}/\Phi$. В каждой точке $x \in X$ отображение r_x порождает вычет $\widetilde{r_x}: (\mathfrak{A}^{p,q}/\Phi)_x \cong \mathfrak{A}_x^{p,q}/\Phi_x \to \mathbb{R}$. Таким образом, $\mathfrak{A}^{p,q}/\Phi \mid X$ есть пучок \mathbb{R} -алгебр, а $(X, \mathfrak{A}^{p,q}/\Phi \mid X)$ есть \mathbb{R} -кольцованное подпространство пространства $(U, \mathfrak{A}^{p,q})$.

Введем в факторпучке Z_2 -градуировку таким образом, чтобы естественное отображение пучков $\mathfrak{A}^{p,q} \to \mathfrak{A}^{p,q}/\Phi$ было согласовано с градуировками. Для этого мы объявляем четным (нечетным) элементом факторпучка образ любого четного (нечетного) элемента $\mathfrak{A}^{p,q}$. Нужно лишь проверить непротиворечивость такой конструкции, т. е. показать, что ненулевой элемент факторпучка не может быть одновременно четным и нечетным. Предположим, что такой элемент имеется. Тогда существуют элементы a, $b \in \mathfrak{A}^{p,q}$ разной четности, такие, что $a-b \in \Phi_x$ при некотором $x \in U$, т. е.

$$a-b=\Sigma\alpha_if_i+\Sigma\beta_j\varphi_j.$$

Разлагая коэффициенты α_i , β_i на четные и нечетные компоненты, мы получим

$$a = \sum \alpha_i' f_i + \sum \beta_j'' \varphi_j,$$

откуда следует, что $a \in \Phi_x$ и, следовательно, c = 0, ч. и т. д.

Таким образом, $\mathfrak{A}^{p,q}/\Phi | X$ есть лучок \mathbb{Z}_2 -градуированных **R**-алгебр, но, вообще говоря, не является структурным пучком супермногообразия. Необходимые и достаточные условия для этого совпадают с условиями теоремы о неявной функции (4.1.3). Напомним, что эти условия заключаются в том, что при некотором способе нумерации четных и нечетных образующих алгебры сечений $\mathfrak{A}^{p,q}$ выполняются неравенства

$$\det \left\| \frac{\partial f_i(x, 0)}{\partial x_k} \right\|_{i,k=1}^{p'} \neq 0 \tag{4.4.1}$$

$$\det \left\| \frac{\partial \varphi_j(x,0)}{\partial \xi_I} \right\|_{I,I=1}^{q'} \neq 0, \tag{4.4.2}$$

где под $\frac{\partial \phi_{i}\left(x,\;0\right)}{\left(\partial \xi_{i}\right)}$ мы понимаем коэффициенты при нечетных

образующих в разложении сечений фі.

Теорема 4.4.1. Предположим, что в каждой точке $x \in X$ выполнены условия (4.4.1) и (4.4.2). Тогда кольцованное пространство

$$(X, \mathfrak{A}^{p,q}/\Phi \mid W) \tag{4.4.3}$$

является гладким супермногообразием.

Аналогичное утверждение справедливо также и в категории комплексно-аналитических супермногообразий.

Доказательство, которое мы приведем, применимо также к комплексно-аналитическим супермногообразиям. Мы покажем, что всякая точка $x_0 \in X$ обладает окрестностью X_0 , такой, что \mathbf{R} -кольцованное пространство $(X_0, \mathfrak{R}^{p,q}/\Phi \mid X_0)$ изоморфно модельному гладкому супермногообразию, причем соответствующий изоморфизм пучков сохраняет Z_2 -градуировку. Если, воспользовавшись этим изоморфизмом, заменить указанное кольцованное пространство модельным, то мы получим реализацию всего пространства (4.4.3) как результат склейки модельных пространств с помощью морфизмов, сохраняющих Z_2 -градуировки. Согласно § 3 это означает, что указанное пространство есть гладкое супермногообразие.

Итак, остается построить изоморфизм вида

$$s: (V, \mathfrak{A}^{\widetilde{p},\widetilde{q}}) \to (X_0, \mathfrak{A}^{p,q}/\Phi \mid X_0).$$

Запишем $\mathbf{R}^p \cong \mathbf{R}^{p'} \oplus \mathbf{R}^{\widetilde{p}}$, где $\mathbf{R}^{p'}$ — подпространство, содержащее p' первых координатных осей, а $\mathbf{R}^{\widetilde{p}}$ — все остальные. Пусть $\zeta: X_0 \to V = \zeta(X_0)$ — ограничение координатной проекции $\mathbf{R}^p \to \widetilde{\mathbf{R}}^{\widetilde{p}}$. В силу теоремы о неявной функции (гл. 1, § 3), если окрестность X_0 достаточно мала, то

существуют четные, соответственно нечетные, элементы g_i , $\psi_i \in \Gamma(V,\mathfrak{A}^{\widetilde{p},\;\widehat{q}})$, такие, что при подстановке

$$x_i = g_i(\widetilde{x}, \widetilde{\xi}), i = 1, \dots, p', \xi_i = \psi_i(\widetilde{x}, \widetilde{\xi}), j = 1, \dots, q'$$

$$(4.4.5)$$

обращаются в нуль все сечения f_i и ϕ_j ;

$$\widetilde{x}=(x_{p'+1},\ldots,x_p), \quad \widetilde{\xi}=(\xi_{q'+1},\ldots,\xi_q).$$

Расомотрим отображения лучков, заданных на X_0 ,

$$\xi^* (\mathfrak{A}^{\widetilde{p},\widetilde{q}}) \xrightarrow{t} \mathfrak{A}^{p,q} | X_0 \xrightarrow{\pi} \mathfrak{A}^{p,q} / \Phi | X_0,$$

где п — естественное отображение, а і задано формулой

$$i: a(y, \eta) \mapsto b(x, \xi) \equiv a(\widetilde{x}, \widetilde{\xi}).$$

Ясно, что они сохраняют Z_2 -традуировку и π есть морфизм R-алгебр. Проверим, что последним свойством обладает также i. Пусть $z \in X_0$, $\tilde{z} = \zeta(z)$. Тогда $\zeta^*(\mathfrak{A}^{\widetilde{p,q}}) \cong \mathfrak{A}^{p,q}_{\widetilde{z}}$ и для всяжого элемента a этой алгебры $r_z(a) = r_{\widetilde{z}}(a) = a(\tilde{z},0)$, где r означает вычет. В то время

$$r_z(i(a)) = r_z(b) = b(z, 0) = a(\tilde{z}, 0),$$

т. е. $r_z = r_z \cdot i$, что доказывает коммутативность (4.2.4).

Лемма 4.1. Отображение лі есть изоморфизм.

Отсюда будет следовать, что отображение $s=(\zeta, \pi i)$ есть изоморфизм R-кольцованных пространств с Z_2 -градуировкой и тем самым теорема будет доказана.

Лемма 4.2. Пусть $z \in X_0$ и $h \in \mathfrak{A}^{p,q}$, причем h обращается в нуль при подстановке $x_i = g_i(\tilde{x}, \tilde{\xi})$ и $\xi_j = \psi_j(\tilde{x}, \tilde{\xi})$. Существуют элементы $a^t, b^l \in \mathfrak{A}_2^{p,q}$ такие, что

$$h = \sum a^{i}(x_{i} - g_{i}) + \sum b^{j}(\xi_{j} - \psi_{j}). \tag{4.4.6}$$

Доказательство леммы 4.2. Будем писать $x=(x',\ \tilde{\chi})$ и $\xi=(\xi',\ \tilde{\xi})$, а указанные подстановки запишем в виде $x'=g,\ \xi'=\psi$. Рассмотрим элемент $\tilde{h}(x,\ \tilde{\xi})\equiv h(x;\ \psi,\ \hat{\xi})$ и покажем, что он имеет разложение

$$\bar{h} = \sum a^i (x_i - g_i). \tag{4.4.7}$$

Как элемент грассмановой алгебры $\mathfrak{A}_{z}^{p,q}$ он имеет вид

$$\widetilde{h}(x,\,\widetilde{\xi}) = \sum h_{i_1,\ldots,i_n}(x)\,\xi_{i_1}\ldots\,\xi_{i_n}$$

Пусть k — минимальный порядок отличных от нуля коэффициентов h_{i_1,\ldots,i_n} . Согласно условию $\widetilde{h}(g(\widetilde{x},\widetilde{\xi}),\widetilde{x},\widetilde{\xi})=0$, следовательно, $h_{i_1,\ldots,i_k}(g(\widetilde{x},0))=0$ для любых $i_1<\ldots< i_k$. Отсюда, как известно (лемма Адамара), вытекает, что

$$h_{l_1,\ldots,l_k}(x) = \sum_{i=1}^{p'} a_{i_1,\ldots,i_k}^l(x) (x_i - g_i(\widetilde{x}, 0)), \ a_{l_1,\ldots,l_k} \in \mathfrak{A}_z^{p,q}.$$

Поэтому полином

$$\widehat{h}\left(x,\ \widetilde{\xi}\right) = \widetilde{h}\left(x,\ \widetilde{\xi}\right) - \sum_{i,i_{1},\ldots,i_{k}} a_{i_{1},\ldots,i_{k}}^{i}\left(x\right)\left(x_{i} - g_{i}\left(\widetilde{x},\ \widetilde{\xi}\right)\right) \xi_{i_{1}}\ldots \xi_{i_{k}}$$

не содержит членов порядка, меньшего или равного k, причем снова $\hat{\kappa}(g, \tilde{x}, \tilde{\xi}) = 0$. С помощью индукции мы приходим к (4.4.7).

Далее, положим $\eta_i = \xi_i - \psi_i(\tilde{x}, \xi)$ или коротко $\eta = \xi' - \psi$. Разлагая по степеням η , мы найдем, что

$$h(x, \xi) = h(x; \eta + \psi, \widetilde{\xi}) = h(x; \psi, \widetilde{\xi}) + \Sigma \eta_i l_i(x, \xi) =$$

= $\widetilde{h}(x, \widetilde{\xi}) + \Sigma (\xi_i - \psi_i(\widetilde{x}, \widetilde{\xi})) l_i(x, \xi)$

с некоторыми $l_j = \mathfrak{A}_z^{p,q}$. В сочетании с (4.4.7) это влечет утверждение леммы.

Лемма 4.3. Элементы $x_i - g_i(\widetilde{x}, \widetilde{\xi})$ и $\xi_j - \psi_i(\widetilde{x}, \widetilde{\xi})$ суть

сечения пучка Φ на X_0 .

Достаточно показать, что во всякой точке $z{\in}X_0$ ростки этих элементов принадлежат Φ_z . Согласно (4.4.5) и лемме 4.2 имеются разложения

$$f_{i} = \sum a_{i}^{k} (x_{k} - g_{k}) + \sum b_{i}^{l} (\xi_{l} - \varphi_{l})$$

$$\varphi_{l} = \sum c_{i}^{k} (x_{k} - g_{k}) + \sum d_{i}^{l} (\xi_{l} - \psi_{l}),$$

$$(4.4.8)$$

коэффициенты которых принадлежат $\mathfrak{A}_z^{p,q}$. Из них мы находим, что

$$\frac{\partial f_i(x,0)}{\partial x_k} = a_i^k(x,0), \frac{\partial \varphi_j(x,0)}{\partial \xi_l} = d_i^l(x,0).$$

В силу (4.4.1) и (4.4.2) матрицы $\{a_i^k(x,\xi)\}$ и $\{d_i^l(x,\xi)\}$ обратимы над $\mathfrak{A}_z^{p,q}$. Поэтому обратима также матрица коэффициентов (4.4.8), поскольку недиагональные блоки $\{b_i^l\}$ и $\{c_i^k\}$ образованы нечетными элементами, жоторые, следовательно, принадлежат максимальному идеалу \mathfrak{M}_z . Обращая разложения (4.4.8), получаем утверждение леммы.

Остается доказать лемму 4.1. Покажем сначала, что отображение πi мономорфно. Пусть $\pi i(a) = 0$, $a \in \mathfrak{V}_{2}^{\widetilde{p},\widetilde{q}}$, т. е.

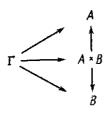
$$a(\widetilde{x}, \widetilde{\xi}) = \sum a^{i}(x, \xi) f_{i}(x, \xi) + \sum b^{j}(x, \xi) \psi_{j}(x, \xi)$$

с некоторыми коэффициентами из $\mathfrak{A}_z^{p,q}$. Полагая здесь x'=g и $\xi'=\psi$, мы не изменим левую часть и обратим в нуль правую. Отсюда следует, что a=0.

Проверим, что πi есть эпиморфизм. Для произвольного $a \in \mathfrak{A}_z^{p,q}$ положим $b\left(\tilde{x},\ \tilde{\xi}\right) = a\left(g,\ \tilde{x};\ \psi,\ \tilde{\xi}\right)$. Ясно, что b принадлежит образу i. Покажем, что элемент a'=a-b принадлежит Φ_z . Этого достаточно для завершения доказательства леммы. Мы имеем $a'(g,\ \tilde{x};\ \psi,\ \tilde{\xi}) = 0$. По лемме 4.2 элемент a' имеет вид (4.4.6), а в силу леммы 4.3 он принадлежит Φ_z .

Прямые произведения супермногообразий. Пусть С — некоторая категория A и B — ее объекты. Прямым произведением этих объектов называется объект $A \times B$ вместе с морфизмами $A \leftarrow A \times B \rightarrow B$, которые обладают следующим

«универсальным» свойством: для всякого объекта Γ и его морфизмов в A и B существует и определен однозначно морфизм в $A \times B$, такой, что коммутативна диаграмма



Теорема 4.4.2. В категориях *СВ* и *СК* прямое произведение

определено для любых объектов.

Доказательство. Пусть (M, \mathcal{O}_M) и (N, \mathcal{O}_N) — гладкие или комплексно-аналитические супермногообразия. Образуем прямое произведение подстилающих пространств $M \times N$. Наделим его структурой супермногообразия. Пусть

$$(\hat{f}, \varphi) : (U, \mathcal{O}_M | U) \to (\hat{f}(U), \mathfrak{A}^{p,q}),$$

$$(g, \psi) : (V, \mathcal{O}_N | V) \to (g(V), \mathfrak{A}^{r,s})$$

карты на исходных супермногообразиях. На открытом подмножестве $U \times V \subset M \times N$ зададим гомеоморфизм

$$f \times g: U \times V \rightarrow f(U) \times g(V) \subset \mathbb{R}^{p+r}(\mathbb{C}^{p+r})$$

по формуле $(f \times g)(x, y) = (f(x), g(y))$. Образ этого отображения, будучи наделен пучком $\mathfrak{A}^{p+r,\,q+s}$ (соответственно $\mathscr{B}^{p+r,\,q+s}$), является модельным гладким (комплексно-аналитическим) супермногообразием. Следовательно, $(U \times V, (f \times g)^* (\mathfrak{A}^{p+r,\,q+s}))$ есть супермногообразие, а отображение $(f \times g, 1)$ есть жарта на нем. Структурный пучок $\mathcal{O}_{M \times N}$ мы получим путем непротиворечивой склейки пучков $(f \times g)^* (\mathfrak{A}^{p+r,\,q+s})$. Чтобы определить отображения склейки, рассмотрим еще одну карту $(f', \varphi'): (U', \mathcal{O}_M | U') \rightarrow (f'(U'), \mathfrak{A}^{p,q})$ на M, связанную с (f, φ) отображением склейки (h, χ) (см. § 2, II). Зададим отображение склейки для модельных прямых произведений

$$(f(U\cap U')\times g(V),\ \mathfrak{A}^{p+r,\ q+s})\xrightarrow{(\widetilde{h},\widetilde{\chi})} \to (f'(U\cap U')\times g(V),\ \mathfrak{A}^{p+r,\ q+s}),$$

положив $\tilde{h}=h\times 1$. Согласно предложению 4.3.1 отображение действует в каждом слое путем подстановки $\chi(a)=b(x,\xi)\equiv \equiv a(x'(x,\xi),\xi'(x,\xi))$, где $x'(x,\xi)=(x_1'(x,\xi),...,x_p'(x,\xi))$ и $\xi'(x,\xi)=...$ — некоторые четные и нечетные сечения структурного пучка. Положим

$$\widetilde{\chi}$$
: $\alpha(x', y; \xi', \eta) \mapsto \beta(x, y; \xi, \eta) \equiv \alpha(x'(x, \xi), y; \xi'(x, \xi), \eta)$.

Подобным образом строится отображение склейки между картами на $U \times V$ и $U \times V'$. Непротиворечивость таких склеек лег-

ко проверяется.

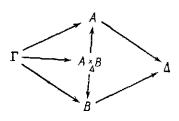
Определим отображение $(M \times N, \mathcal{O}_{M \times N}) \to (M, \mathcal{O}_{M})$. На подстилающем пространстве $M \times N$ оно действует как проекция на прямой сомножитель M. Отображение структурных пучков строится следующим образом при помощи карт:

$$m^*\left(\mathcal{O}_{M}\right)\mid U\times V\cong m_0^*\left(\mathfrak{A}^{p,q}\right)\mid U\times V\rightarrow \mathfrak{A}^{p+r,\ q+s}\mid U\times V\cong \mathcal{O}_{M\times N}\mid U\times V.$$

Подобным образом определяется структурное отображение прямого произведения на второй сомножитель. Проверку

универсального свойства мы оставляем читателю.

Расслоенные произведения. Пусть снова C — произвольная категория, $A \rightarrow \Delta \leftarrow B$ — ее объекты и морфизмы, Их расслоенным произведением называется объект, обозначаемый $A \times_{\Delta} B$ вместе с морфизмами в A и B, такими, что коммутативен правый треугольник в диаграмме



В этих категориях расслоенное произведение, вообще говоря, не существует. Однако справедлива

Теорема 4.4.3. Для любых морфизмов супермногообразий

 $M \rightarrow L \stackrel{n}{\leftarrow} N$ определено расслоенное произведение $M \times_L N$ принадлежащее категории Z_2 -градуированных **R**-кольцованных (С-кольцованных) пространств.

Опишем коротко его конструкцию, оставляя подробности дотошному читателю. Рассмотрим прямое произведение супер-

многообразий $M \times N$. Структурные морфизмы прямого произведения на сомножители в композиции с морфизмами m и n задают отображения $(l_i, \lambda_i) \colon M \times N \to L$. Выделим замкнутое подмножество $P \subset M \times N$ уравнением $l_1(x, y) = l_2(x, y)$, т. е. m(x) = n(y), и в произвольной точке $(x, y) \in P$ рассмотрим идеал $\mathcal{J}_{(x,y)}$ в кольце $\mathcal{O}_{M \times N}$, (x,y), прожденный элементами $\lambda_1(\zeta_\alpha) - \lambda_2(\zeta_\alpha)$, где ζ_α — четные и нечетные образующие алгебры $\mathcal{O}_{L, m(x)}$. Объединение $\mathcal{J} = \bigcup \mathcal{J}_{(x,y)}$ есть подпучок идеалов

в пучке $\mathcal{O}_{M \times N}|P$. Кольцованное пространство $(P, |\mathcal{O}_{M \times N}|P/\mathscr{Y})$

есть искомое расслоенное произведение. Из теоремы 4.4.1 вытекает достаточное (оно же и необходимое) условие того, что расслоенное произведение супермногообразий само является супермногообразием. В каждой точке $(x, y) \equiv P$ должно быть выполнено следующее условие трансверсальности: если $z_1, ..., z_k$ — четные, а $\theta_1, ..., \theta_l$ — нечетные образующие алгебры $C_{L, m(x)}$, то ранг матрицы

$$\left\{ \begin{array}{c|c} \frac{\partial \lambda_{1}\left(z_{i}\right)}{\partial x_{j}} & \frac{\partial \lambda_{2}\left(z_{i}\right)}{\partial y_{j'}} \end{array} \right\} \left| \begin{matrix} k \\ \xi=0, \ \eta=0, \ i=1 \end{matrix} \right.$$

размера $k \times (p+r)$ равен k, а ранг матрицы

$$\left\{ \begin{array}{cc} \frac{\partial \lambda_{1}\left(\theta_{l}\right)}{\partial \xi_{j}} & \frac{\partial \lambda_{2}\left(\theta_{l}\right)}{\partial \eta_{j'}} \end{array} \right\} \bigg|_{\xi=0,\; \eta=0,\; t=1} l$$

размера $l \times (q+s)$ равен l.

Слой отображения супермногообразий. Пусть $m:M\to L$ — такое отображение, а l — точка L. Наделив ее структурным полем K, мы получим нульмерное супермногообразие (l, K) и отображение супермногообразий $\lambda:(l, K)\to (L, C_L)$, где $C_{L,l}\to K$ есть отображение-вычет. Слой отображения m над l есть по определению расслоенное произведение отображений m и λ . Из сказанного выше легко вывести условие, при котором слой отображения сам является супермного-образием.

§ 5. СТРАТИФИКАЦИЯ СУПЕРМНОГООБРАЗИЯ

Пусть (X, \mathcal{O}_X) — супермногообразие гладкое или комплексно-аналитическое. Выберем точку $x \in X$ и рассмотрим идеал I_x в $\mathcal{O}_{X,x}$, порожденный всеми нечетными образующими $\xi_1, ..., \xi_q$ алгебры $\mathcal{O}_{X,x}$. При другом выборе нечетных образующих $\eta_1, ..., \eta_q$ мы получим тот же идеал, поскольку η_i разлагается по нечетным степеням образующих ξ_i и обратно. Объединение $I = \bigcup I_x$ есть открытое подмножество пучка \mathcal{O}_X , поскольку всякая нечетная образующая в данной точке является таковой и в близких точках. Следовательно, I есть подпучок идеалов пучка \mathcal{O}_X . Сказанное относится и к его степеням $I^k = \bigcup I_x^k$, k = 2, 3, Отметим, что множество корней любого из пучков

 I^k есть все подстилающее пространство. Согласно определению § 2 при любом k кольцованное пространство

$$X_k = (X, \mathcal{O}_X/I^{k+1})$$

есть замкнутое подпространство X_{k+1} и также супермногообразия $X_{\infty} = (\dot{X}, \mathcal{O}_X)$. Таким образом, мы имеем цепь «вложений» кольцованных пространств

$$X_0 \subseteq X_1 \subseteq \ldots \subseteq X_k \subseteq X_{k+1} \subseteq \ldots \subseteq X_{\infty}. \tag{4.5.1}$$

Пространство X_0 мы назовем носителем данного супермногообразия, а X_k — k-й инфинитезимальной окрестностью носителя в супермногообразии X_∞ . Цепь (4.5.1) назовем инфинитезимальной стратификацией этого супермногообразия. Заметим, что $X_Q = X_\infty$, если число Q больше нечетной размерности супермногообразия в каждой его точке.

Предложение 4.5.1. Пространство X_0 обладает тривиальной градуировкой и изоморфно гладкому, соответственно комплекс-

но-аналитическому многообразию.

Первое утверждение очевидно. Для проверки второго нужно установить локальный изоморфизм X_0 и модельного пространства из категории \mathcal{M}_1 , соответственно \mathcal{M}_2 . Пусть $(f, \varphi): (U, \mathcal{O}_X | U) \to (V, \mathfrak{A}^{\rho,q})$ — любая карта на X. Поскольку φ сохраняет Z_2 -градуировку, оно изоморфно отображает пучок I | U на аналогичный пучок $\mathcal{F} \subset \mathfrak{A}^{\rho,q}/V$ и, следовательно, порождает изоморфизм \mathbf{R} -кольцованных (\mathbf{C} -кольцованных) пространств:

$$(U, \mathcal{O}_X/I \mid U) \cong (V, \mathfrak{A}^{p,q}/\mathfrak{I} \mid V).$$

Таким образом, мы получаем карту на многообразии X_0 . Отметим, что согласно сказанному в § 2 нет необходимости проверять гладкость (аналитичность) отображений склейки этих карт. Другой способ в этом убедиться дает предложение 4.3.1, по которому склейки задаются отображениями $x \mapsto y = (y_1(x, 0), ..., y_n(x, 0))$.

Это предложение объясняет разницу между понятиями подстилающего пространства и носителем данного супермногообразия: первое есть лишь топологическое пространство, второе

имеет более тонкую структуру.

Более интересную информацию несет первая инфинитезимальная окрестность X_1 . Для ее описания необходимы допол-

нительные понятия.

Определение. Пусть (Z, \mathcal{C}_Z) — кольцованное пространство, \mathcal{M} — пучок на Z. Скажем, что \mathcal{M} имеет структуру \mathcal{C}_Z -модуля, если для всякого $z \in \mathbb{Z}$ слой \mathcal{M}_Z этого пучка имеет структуру $\mathcal{C}_{Z,z}$ -модуля (левого или правого), т. е. является коммутативной группой, и определено отображение кольца $\mathcal{C}_{Z,z}$ в кольцо эндоморфизмов этой группы (сохраняющее соответственно, меняющее порядок элементов при композиции соответствующих

эндоморфизмов). При этом требуется, чтобы отображение $C_Z imes_Z\mathcal{M} o\mathcal{M}$, порожденное действием колец $C_{Z,z}$ на \mathcal{M}_z , было

непрерывно.

Естественным образом вводится понятие отображения \mathcal{O}_Z -модулей, изоморфизма, прямой суммы и т. д. \mathcal{O}_Z -модуль \mathcal{L} называется локально свободным, если для любой точки $z{\in}Z$ имеется окрестность W и целое неотрицательное число k, такие, что существует изоморфизм $\mathcal{O}_Z|W$ -модулей $\mathcal{L}|W{\cong}\mathcal{O}_Z|W$. Число k называется рангом этого модуля в точке z.

Предложение 4.5.2. Пусть (X, \mathcal{O}_X) — гладкое или комплексно-аналитическое супермногоообразие. Пучок I/I^2 имеет структуру локально свободного \mathcal{O}_X/I -модуля. Ранг его в точ-

ке равен нечетной размерности X в этой точке.

Доказательство. Всякий пучок идеалов в \mathcal{O}_X есть \mathcal{O}_X -модуль, следовательно, I/I^2 имеет структуру фактормодуля. Всякий элемент $a \in \mathcal{O}_X$, принадлежащий I действует в этом модуле тривиально. Поэтому I/I^2 фактически имеет структуру \mathcal{O}_X/I -модуля. Покажем, что он локально свободен. Пусть (f, φ) — карта на супермногообразии с областью определения U. Рассмотрим отображение пучков

$$f^* (\mathfrak{A}^{p,q}/\mathfrak{J})^q \to I/I^2 \mid U$$

действующее по формуле $(a_1, \ldots, a_q) \longleftrightarrow \sum a_t \phi(\xi_i)$, где ξ_1, \ldots, ξ_q — суть нечетные образующие пучка $\mathfrak{A}^{p,q}$, а черта означает класс элемента в факторпучке I/I^2 . Легко проверить, что это отображение есть изоморфизм.

Имеется простой способ образовать векторное расслоение над многообразием X_0 по локально свободному пучку \mathscr{L} . Слой этого расслоения над точкой х есть векторное пространство $\mathscr{L}_x/\mathfrak{M}_x\mathscr{L}_x$ над полем $\mathcal{O}_{X_0,x}/\mathfrak{M}_x$, где \mathfrak{M}_x означает максимальный идеал в алгебре \mathcal{O}_{X_0,x_1} а $\mathfrak{M}_x\mathcal{L}_x$ есть образ отображения $\mathfrak{M}_x imes \mathscr{L}_x o \mathscr{L}_x$. Локальная свобода пучка \mathscr{L} обеспечивает кальную тривиальность расслоения. Применив эту жонструкцию к пучку I/I^2 , мы получим векторное расслоение $V \rightarrow X_0$. Оно тривиально над всяким подмножеством $U \subset X$, на котором определена карта, а его размерность равна нечетной размерности **с**упермногообразия. Образы $\bar{\xi}_1$, ..., $\bar{\xi}_q$ в пучке $I/I^2 \mid U$ нечетных образующих ξ_1 , ..., ξ_q порождают в каждой точке $x \in U$ базис пространства $N_x' = (I/I^2)_x/\mathfrak{R}_x(I/I^2)_x$. При переходе к другой системе образующих η_1 , ..., η_q новые базисные элементы выражаются через первый базис по следующему линейному правилу:

$$\overline{\eta}_i = \sum \frac{\partial \eta_i(x,0)}{\partial \xi_i} \overline{\xi}_i. \tag{4.5.2}$$

Эти формулы суть линейные части преобразований от ξ_i к η_i в структуре супермногообразия.

Сказанное приводит к следующей геометрической картине: первая инфинитезимальная окрестность носителя, т. е. прост-

ранство X_1 , адекватна многообразию X_0 , наделенному локально тривиальным конечномерным гладким (комплексно-аналитическим) векторным расслоением V. Первые окрестности заданного многообразия изоморфны тогда и только тогда, когда изоморфны соответствующие расслоения.

§ 6. РЕТРАКЦИЯ И ПЕРВОЕ ПРЕПЯТСТВИЕ

Векторное расслоение N', построенное в предыдущем параграфе, естественно называть конормальным расслоением на носителе супермногообразия ввиду понятной аналогии с конструкцией конормального расслоения в случае обычных многообразий 1. Рассмотрим теперь в некотором смысле обратную конструкцию: по многообразию X_0 и локально тривиальному векторному расслоению N' на X_0 построим супермногообразие, для которого X_0 есть носитель, а N' — конормальное расслоение к носителю. Среди всех многообразий, удовлетворяющих этому условию, имеется в определенном смысле наиболее простое; обозначим его $X_0(N')$. Коротко говоря, структурный пучок этого супермногообразия есть пучок ростков функций на X_0 со значениями во внешней алгебре, построенной на расслоении N'. Мы имеем в виду гладкие или комплексно-аналитические функции в зависимости от категории многообразия и расслоения. Иными словами, этот структурный пучок можно получить путем склейки модельных пучков $\mathfrak{A}^{\rho,q} | U$, если отображение склейки преобразует четные образующие этих пучков так же, как преобразует отображение склейки многообразия X_0 координатные функции, а нечетные образующие заменяются по формуле (4.5.2).

Супермногообразие вида $X_0(N')$ мы считаем простым в том отношении, что оно полностью задается объектами X_0 и N', принадлежащими обычной геометрии. Рассмотрим следующую задачу: при жаких условиях супермногообразие X изоморфно некоторому простому? На основе сказанного выше можно дать ответ: всякая точка должна обладать окрестностью U, такой, что в пучке $\mathcal{O}_X \mid U$ можно выделить систему координат $\{x_i, \xi_i\}$, обладающую следующим свойством: если система координат $\{y_k, \eta_i\}$ выделена в пересекающейся окрестности, то

они связаны формулами

$$y_k = y_k(x_1, \dots, x_p), \ k = 1, \dots, p,$$
 (4.6.1)

$$\eta_l = \sum_{i=1}^q \alpha_l^i(x_1, \dots, x_p) \, \xi_i, \ l = 1, \dots, q, \tag{4.6.2}$$

 $^{^1}$ На самом деле, это более чем аналогия. Пусть T_X — касательное расслоение к X (т. е. расслоение, слой которого в точке есть пространство дифференцирований $\mathcal{O}_{X,x} \to K$). Нормальное расслоение N к X_0 есть по определению коядро канонического вложения $T_{X_0} \to T_X$. Легко проверить, что N' двойственно N.

где $y_k(x)$, $a_i^j(x)$ — гладкие (комплексно-аналитические) функции на пересечении, т. е. четные образующие преобразуются независимо от нечетных, а нечетные — линейно.

Ответ в такой форме неудобен в разных отношениях. Наша задача теперь состоит в том, чтобы дать его в инвариантной форме и в терминах геометрии. Сейчас мы займемся отдельно условием (4.6.1). Его инвариантный смысл есть существование ретракции супермногообразия на его носитель. Напомним, что имеется каноническое вложение $i:X_0 \rightarrow X$. Ретракцией X на X мы называем (так же как в любой другой геометрической теории) отображение супермногообразий $r:X \rightarrow X_0$ такое, что композиция ri есть тождественное преобразование носителя.

Предложение 4.6.1. Существование четных образующих, удовлетворяющих (4.6.1), необходимо и достаточно для того, чтобы существовала ретракция супермногообразия на его носитель.

Доказательство. Необходимость. Ретракция означает существование отображения σ пучков **К**-алгебр (**С**-алгебр), такого, что композиция

$$\mathcal{O}_{X_0} \cong \mathcal{O}_X/I \xrightarrow{\sigma} \mathcal{O}_X \xrightarrow{\pi} \mathcal{O}_X/I$$

есть тождественное отображение. Пусть $U \subset X_0$ — координатная окрестность, x_1 , ..., x_p — координаты в U. Элементы $\sigma(x_i)$ суть сечения \mathcal{O}_X над U, причем $\pi\sigma(x_i)$ суть координатные функции. Отсюда легко заключить, что сечения $\sigma(x_i)$ могут служить четными образующими в тучке $\mathcal{O}_X \mid U$. Другие координатные функции y_i связаны с x_i формулой вида (4.6.1). Так как σ есть отображение пучков алгебр, то $\sigma(y_i) = y_i(\sigma(x_1), ..., \sigma(x_p))$, ч. и т. д.

Достаточность. Нужно построить отображение σ . Пусть $\{x_i\}$ — выделенная система четных образующих в окрестности U. Сечения $\pi(x_i)$ могут служить локальными координатами в окрестности любой точки $z \in U$. Поэтому всякий элемент $a \in \mathcal{O}_{X_0,z}$ можно записать в виде ростка функции $\tilde{a}(\pi(x_1),...,\pi(x_p))$. Положим

$$\sigma(a) = \tilde{a}(x_1, ..., x_p).$$

Ясно, что $\sigma: \mathcal{O}_{X_{\bullet,z}} \to \mathcal{O}_{X,z}$ есть отображение алгебр. Оно не зависит от выбора выделенной системы образующих, так как $\pi(y_i) = y_i(\pi(x_1), ..., \pi(x_p))$, т. е. координатные функции преобразуются по тому же закону, что и образующие.

Теперь наша задача приобрела инвариантное звучание: когда существует ретракция супермногообразия на носитель? Для решения мы воспользуемся инфинитезимальной стратификацией (4.5.1). Будем решать нашу задачу последовательно для пространств X_k , $k=1, 2, \ldots$ Этот способ аналогичен решению уравнения путем отыскания тейлоровского разложения неизвестной функции.

С помощью рассуждений, подобных предложению 4.6.1, нетрудно установить, что ретракция $X_k \rightarrow X_0$ существует в том и только том случае, когда существуют выделенные системы четных образующих, удовлетворяющие (4.6.1) по модулю пучка I^{k+1} , т. е. с точностью до слагаемых, не содержащих степеней ниже k+1. Так как для любой системы четных образующих формула (4.6.1) верна по модулю I^2 , то ретракция $X_1 \rightarrow X_0$ всегда существует. Этот вывод согласуется с тем, что структурный лучок X_1 можно отождествить с пучком сечений расслоения $E \bigoplus N'$, где E — одномерное тривиальное расслоение на X_0 .

Дальнейший план действий таков: ретракцию X_1 , которую мы нашли, попытаемся продолжить до ретракции X_2 , затем, если это удастся, продолжим ее на X_3 и т. д. После конечного числа попыток мы либо остановимся из-за невозможности продолжить ретракцию с X_k на X_{k+1} , либо получим ретракцию всего супермногообразия (предполагая, что его нечетная размерность ограничена). Сначала рассмотрим первый нетривиальный шаг: продолжение ретракции с X_1 на X_2 . Пусть T означает касательное расслоение к носителю, а $\Lambda^2 N'$ есть внешний квадрат его конормального расслоения.

Теорема 4.6.2. Для всякого супермногообразия X однозначно определен элемент $n_1 {\in} H^1(X_0, T {\otimes} \Lambda^2 N')$, обладающий следующим свойством: ретракция $X_2 {\to} X_0$ существует тогда и толь-

ко тогда, когда $n_1 = 0$.

Этот элемент мы назовем первым препятствием к построению ретракции X.

Теорема 4.6.3. Пусть $(1, \rho): X_2 \to X_0$ — некоторая ретракция, а $\tau \in H^0(X_0, T \otimes \Lambda^2 N')$. Тогда определена ретракция $(1, \rho + \tau)$, действующая по формуле

$$\mathcal{O}(X_2) \supseteq s \mapsto \rho(s) + \tau(s) \in \mathcal{O}(X_2),$$

где τ понимается как векторное поле на X_0 , переводящее сечения пучка $\mathcal{O}(X_0)$ в сечения I^2/I^3 .

Всякая ретракция $X_2 \rightarrow X_0$ имеет вид $(1, \rho + \tau)$ с некоторым $\tau \in H^0(X_0, T \otimes \Lambda^2 N')$. Иными словами, множество таких ретракций есть однородное пространство, на котором транзитивно

действует группа $H^0(X_0, T \otimes \Lambda^2 N')$.

Доказательство теоремы 4.6.2. Выберем какой-нибудь атлас $\mathcal U$ на супермногообразии X, т. е. совокупность карт, области определения которых покрывают подстилающее пространство. Он порождает в частности, атлас $\mathcal U_0$ на многообразии X_0 . Пусть (f, φ) и (g, ψ) — любые карты из атласа $\mathcal U$, определенные на U, соответственно $V \subset X_0$, а $\{x_a, \xi_j\}$ — образующие модельного пучка $\mathfrak A^{p,q}|f(U)$. Если (s,σ) — отображение склейки этих карт, а y_{β} , $\beta=1$, ..., p, — четные образующие на g(V), то $\sigma(y_{\beta})$ суть четные сечения модельного пучка над $f(U\cap V)$, т. е.

$$\sigma(y_{\beta}) = y_{\beta}(x, \xi) \equiv y_{\beta}(x, 0) + \sum y_{\beta}^{ij}(x) \xi_i \xi_j + \dots$$

На открытом подмножестве $f(U \cap V) \subset \mathbb{R}^p$ (или в \mathbb{C}^p) рим векторное поле

$$t_{U,V} = \sum y_{\beta}^{ij}(x) \, \overline{\xi}_i \, \bigwedge \, \overline{\xi}_j \, \frac{\partial}{\partial y_{\beta}}.$$

Напомним, что под $\overline{\xi}_i$ мы понимаем образ ξ_i в пучке **В** каждой точке $x \in f(U \cap V)$ выражение $y_{\mathfrak{p}}^{ij}(x) \overline{\xi}_i \wedge \overline{\xi}_j$ есть элемент векторного пространства $\Lambda^2 N'_x$, следовательно, $t_{U,V}$ можно рассматривать как векторное поле со значениями в расслоении Λ^2N' или как сечение над $U\cap V$ расслоения $T\otimes \Lambda^2N'$.

Таким образом, каждой упорядоченной паре карт из атласа отвечает сечение $t_{U,V}$ указанного расслоения. Эти сечения связаны следующими свойствами:

1) Если (h, χ) — еще одна карта из атласа с областью W, то $t'_{U,W} = t_{U,V} + t_{V,W}'$, где штрихи означают ограничения этих сечений на $U \cap V \cap W$. Для доказательства рассмотрим склейки модельных пространств

$$h(U \cap V \cap W)$$

$$f(U \cap V \cap W) \rightarrow g(U \cap V \cap W),$$

которые связывают все три карты. Понятно, что эта диаграм-

ма коммутативна. Пусть z_1 , $\gamma=1$, ..., p, — координатные функции (четные образующие) в h(W), $z_1(y, \eta)$ — сечения пучка $\mathfrak{A}^{p,q}|g(V\cap W), \tilde{z}_{\tau}(x,\xi)$ — сечения пучка $\mathfrak{A}^{p,q}|f(U\cap W),$ являются образами z_{τ} под действием указанных связывающих отображений. Из коммутативности диаграммы вытекает равен-СТВО

$$\tilde{z}_{\tau}(x, \xi) = z_{\tau}(y(x, \xi), \eta(x, \xi)),$$

где $y(x, \xi) = (y_1(x, \xi), ..., y_p(x, \xi)), \eta(x, \xi) =$ Пренебрегая членами, принадлежащими I^4 , мы запишем его в виде

$$\widetilde{z}_{\gamma}(x, 0) + \Sigma \widetilde{z}_{\gamma}^{ij}(x) \xi_{i} \xi_{j} \equiv z_{\gamma}(y(x, 0), 0) + \Sigma \frac{\partial z_{\gamma}(x, 0)}{\partial y_{\beta}} \times \psi_{\beta}^{ij}(x) \xi_{i} \xi_{i} + \Sigma z^{kl}(y(x, 0)) \frac{\partial \eta_{k}(x)}{\partial y_{\beta}} \frac{\partial \eta_{l}(x)}{\partial y_{\beta}} \xi_{i} \xi_{i} \pmod{I^{2}}.$$

$$\times y_{\beta}^{ij}(x) \, \xi_i \xi_j + \sum z_{\gamma}^{kl}(y(x,0)) \frac{\partial \eta_k(x)}{\partial \xi_i} \frac{\partial \eta_l(x)}{\partial \xi_j} \, \xi_i \xi_j \, (\text{mod } I^4).$$

Приравнивая члены второго порядка по ξ, мы находим, что

$$\begin{split} \Sigma \, \overline{z}_{\gamma}^{ij} \overline{\xi}_{i} \wedge \overline{\xi}_{j} \, \frac{\partial}{\partial y_{\gamma}} &= \Sigma \, \frac{\partial z_{\gamma}}{\partial y_{\beta}} \, y_{\beta}^{ij} \, \overline{\xi}_{i} \wedge \overline{\xi}_{j} \, \frac{\partial}{\partial z_{\gamma}} + \\ &+ \Sigma \, z_{\gamma}^{kl} \, \frac{\partial \eta_{k}}{\partial \xi_{j}} \, \frac{\partial \eta_{l}}{\partial \xi_{j}} \, \overline{\xi}_{i} \wedge \overline{\xi}_{j} \, \frac{\partial}{\partial z_{\gamma}} &= \Sigma \, \frac{\partial z_{\gamma}}{\partial y_{\beta}} \, y_{\beta}^{ij} \overline{\xi}_{i} \wedge \overline{\xi}_{j} \, \frac{\partial}{\partial y_{\beta}} + \\ &+ \Sigma \, z_{\gamma}^{kl} \, \frac{\partial z_{\gamma}}{\partial y_{\beta}} \, \overline{\eta}_{k} \wedge \overline{\eta}_{l} \, \frac{\partial}{\partial z_{\gamma}}, \end{split}$$

откуда вытекает 1).

2) $t_{V,U} = -t_{U,V}$. Это соотношение вытекает из 1), если учесть, что $t_{U,U} = 0$.

Из сказанного следует, что $\{t_{U,V}\}$ есть жососимметричный коцикл на покрытии $\mathcal U$ со значениями в расслоении $T\otimes\Lambda^2N'$. Рассмотрим элемент $t=\operatorname{cl}\{t_{U,V}\}{\rightleftharpoons}H^1(U_0,\,T\otimes\Lambda^2N')$.

3) Элемент t зависит лишь от атласа \mathcal{U}_0 . Действительно, если, скажем, карту (g, ψ) мы заменяем картой (h, χ) с областью определения W=V, то для всякой третьей карты $U \in \mathcal{U}_0$ в силу 1) $t_{U,W} = t_{U,V} + t_{V,W}$, где $t_{V,W}'$ — ограничение на $U \cap V$ сечения $t_{V,W}$, заданного в V. Следовательно, после указанного преобразования атласа \mathcal{U}_0 коцикл t заменяется на когомологичный, ч. и т. д.

Искомый элемент n_1 мы определяем как образ t при каноническом отображении $H^1(\mathcal{U}_0, T \otimes \Lambda^2 N') \to H^1(X_0, T \otimes \Lambda^2 N')$. Этот элемент не зависит от выбора атласа \mathcal{U}_0 . Действительно, если \mathcal{U}_0' — другой атлас, а t' — соответствующий элемент когомологии, то описанная конструкция применения k атласу $\mathcal{U}_0 \cup \mathcal{U}_0'$ приводит k элементу t'', ограничение которого на \mathcal{U}_0 совпадает с t, а ограничение на \mathcal{U}_0' равно t'. Таким образом, препятствующий элемент корректно определен.

Проверим требуемые свойства. Пусть $n_1=0$. Это означает, что существует такой атлас $\mathcal U$ на X, что соответствующий коцикл t на $\mathcal U_0$ когомологичен нулю, т. е. на каждом множестве U атласа $\mathcal U_0$ определено сечение t_U расслоения $T \otimes \Lambda^2 N'$, такое, что на пересечении любых элементов U и V этого атласа

$$t_{U,V} = t'_U - t'_V.$$
 (4.6.3)

Пусть (f, φ) — карта атласа $\mathcal U$ с областью определения U. С ее помощью представим t_U как векторное поле на f(U) со значениями в расслоении $\Lambda^2 N'$ и запишем в виде

$$t_{U} = \sum t_{\alpha}^{ij}(x) \, \overline{\xi}_{i} \wedge \overline{\xi}_{j} \, \frac{\partial}{\partial x_{\alpha}}.$$

Положим $t_{\alpha}(x, \xi) = \sum t_{\alpha}^{ij}(x)\xi_{i}\xi_{j}, t_{U}(x, \xi) = (t_{1}(x, \xi), ..., t_{p}(x, \xi))$ и рассмотрим отображение пучков Z_{2} -градуированных алгебр

$$\mathfrak{A}^{p,q}/I|f(U) \to \mathfrak{A}^{p,q}/I^3|f(U),$$
 (4.6.4)

действующее по формуле

$$a(x) \mapsto \tilde{a}(x, \xi) = a(x + t_U(x, \xi)) \pmod{I^3}$$
.

Ясно, что его композиция с каноническим отображением $\mathfrak{A}^{p,q}/I^3 \to \mathfrak{A}^{p,q}/I$ на f(U) есть тождественный гомоморфизм. Таким образом, (4.6.4) задает на U ретракцию $X_2 \to X_0$. Эти ретракции склеиваются в глобальную ретракцию, поскольку отображения (4.6.4) объединяются непротиворечивым образом в единый морфизм пучков алгебр $\mathcal{O}_X/I \to \mathcal{O}_X/I^3$. Это означает, что если элемент $a \in \mathfrak{A}^{p,q}/I \mid f(U)$ оклеен с элементом $b \in \mathfrak{A}^{p,q}/I \mid g(V)$, т. е. если a(x) = b(y(x, 0)), то $\sigma(\tilde{b}) = \tilde{a} \pmod{I^3}$.

Это соотношение вытекает из следующей выкладки, основанной на (4.6.3):

$$\sigma(\widetilde{b}) \equiv \widetilde{b} (y(x, \xi), \eta(x, \xi)) \equiv b (y(x, \xi) + t_V(y(x, \xi), \eta(x, \xi)))$$

$$\equiv b (y(x, 0)) + \Sigma \frac{\partial b}{\partial y_{\beta}} [y_{\beta}^{ij}(x) \xi_i \xi_j + t^{kl} (y(x, 0)) \eta_k(x, 0) \eta_l(x, 0)] =$$

$$\equiv a(x) + \Sigma \frac{\partial b}{\partial y_{\beta}} \frac{\partial y_{\beta}}{\partial x_{\alpha}} t_{\alpha}^{ij}(x) \xi_i \xi_j \equiv a(x + t_U(x, \xi)) \equiv \widetilde{a} \pmod{I^3}.$$

Остается проверить, что если ретракция $(1, \rho): X_2 \rightarrow X_0$ существует, то $n_1 = 0$. Выберем атлас $\mathcal U$ на X и для каждой области $U \rightleftharpoons \mathcal U_0$ рассмотрим следующую диаграмму отображения $\mathbf R$ -кольцованных ($\mathbf C$ -кольцованных) пространств:

$$(U, \mathcal{O}_X/I^3 \mid U) \stackrel{\simeq}{\to} (f(U, \mathfrak{A}^{p,q}/I^3)$$

$$(1, \rho)_U \uparrow \qquad \qquad \uparrow (1, \tau_U)$$

$$(U, \mathcal{O}_X/I \mid U) \stackrel{\simeq}{\to} (f(U), \mathfrak{A}^{p,q}/I),$$

$$(4.6.5)$$

где $(1, \rho)_U$ — ограничение ретракции на U, а морфизм τ_U делает эту диаграмму коммутативной. Пусть снова x_α , $\alpha=1$, ..., ρ , — координатные функции в f(U). Мы имеем $\tau_U(x_\alpha) \equiv x_\alpha \pmod{I^2}$, поскольку $(1, \tau_U)$ есть ретракция. Таким образом,

$$\tau_U(x_\alpha) = x_\alpha + \sum t_\alpha^{ij}(x) \, \xi_i \, \xi_j \pmod{I^3},$$

где t_{α}^{ij} суть сечения пучка $\mathfrak{A}^{p,0}|f(U)$. Выражение $\sum t_{\alpha}^{ij} \xi_i \wedge \xi_i \frac{\partial}{\partial x_{\alpha}}$ рассмотрим как сечение над U расслоения $T \otimes \Lambda^2 N'$. Это сечение обозначим t_U . Поскольку отображения происходят из глобально заданного морфизма, должно выполняться условие склейки

$$\sigma\left(\tau_{V}\left(b\left(y\right)\right)\right) = \tau_{U}\left(b\left(y\left(x,\,0\right)\right)\right), \ b \in \mathfrak{A}^{p,q} \mid g\left(V\right)$$

для любых двух карт. В применении к координатным функциям $y_{\mathfrak{p}}$ на g(V) оно влечет соотношения

$$y_{\beta}(x, 0) + \sum y_{\beta}^{ij}(x) \, \xi_{i} \xi_{j} + \sum t_{\beta}^{kl} \eta_{k} \eta_{l} \equiv y_{\beta}(x, 0) +$$

$$+ \sum \frac{\partial y_{\beta}}{\partial x_{\alpha}} t_{\alpha}^{ij} \xi_{i} \xi_{j} \pmod{I^{3}},$$

которые означают равенство $t_{U,V} + t'_V = t'_U$. Оно показывает, что $n_1 = 0$.

Доказательство теоремы 4.6.3. Рассмотрим произвольную ретракцию (1, ρ) и элемент $\tau \in H^0(X_0, T \otimes \Lambda^2 N')$. Последний представляет собой сечение расслоения $T \otimes \Lambda^2 N'$ и в любой карте U на X_0 может быть записан в виде $\sum t_{\alpha}^{ij} \xi_i \wedge \xi_j \frac{\partial}{\partial x_{\alpha}}$. Рас-

смотрим диаграмму (4.6.5) и зададим новый морфизм пучков Z_2 -градуированных алгебр $\tau'_U:\mathfrak{A}^{p,q}/I \to \mathfrak{A}^{p,q}/I^3$ по формуле

$$\tau_U^{\prime\prime}(a) = \tau_U(a) + \frac{\partial a}{\partial x_\alpha} t_\alpha^{ij} \xi_i \xi_j. \tag{4.6.6}$$

Легко проверить, что эти морфизмы склеиваются в глобальный

морфизм $\mathcal{O}_X/I \to \mathcal{O}_X/I^3$, который является ретракцией.

Пусть ρ и ρ' — любые ретражции X_2 на X_0 . Рассмотрим отображение ρ' — ρ Z_2 -градуированных пучков на X_0 . Его образ принадлежит I, так как ρ' и ρ суть ретракции. Образ любой координатной функции x_α является четным элементом и, следовательно, принадлежит I^2 . Запишем

$$(\rho' - \rho)(x_{\alpha}) \equiv \sum t_{\alpha}^{ij} \xi_{i} \xi_{j} \mod I^{3}. \tag{4.6.7}$$

Образуем сечение $t_U = \sum t_{\alpha}^{ij} \xi_i \wedge \xi_j \frac{\partial}{\partial x_{\alpha}}$ расслоения $T \otimes \Lambda^2 N'$ над U. Нетрудно усмотреть, что эти сечения образуют нульмерный коцикл, т. е. отвечают некоторому элементу $\tau \in H^0(X_0, T \otimes \Lambda^2 N')$. Остается проверить, что отображения ρ' и ρ связаны формулой (4.6.6), коэффициенты которой определены в (4.6.7). Эта формула легко проверяется на полиномах a, а затем переносится на любые элементы пучка $\mathfrak{A}^{p,0}|f(U)$ (или $\mathcal{H}^{p,0}|f(U)$) с помощью рассуждения, аналогичного доказательству предложения 3.1.

§ 7. ВЫСШИЕ ПРЕПЯТСТВИЯ

Рассмотрим следующие инфинитезимальные шаги в конструкции ретракции супермногообразия на его носитель. Если первое препятствие равно нулю, то ретракцию можно продолжить не только на X_2 , но и на X_3 , так как в этом случае выделены системы локальных четных образующих $\{x_i\}$, $\{y_j\}$, ..., связанные между собой формулами вида

$$y_j = y_j(x, 0) + \sum y_j^{l_1, l_2, l_3, l_4}(x) \xi_{l_1} \xi_{l_2} \xi_{l_3} \xi_{l_4} + \dots$$

(членов третьего порядка по ξ не может быть из-за четности образующих). На X_4 ретракция может не продолжаться из-за наличия членов четвертого порядка в этих разложениях. Повторяя конструкцию теоремы 6.2, можно построить элемент $n_2 \in H^1(X_0, T \otimes \Lambda^4 N')$, отвечающий за такое продолжение, и т. д. В результате мы приходим к следующему результату.

Теорема 4.7.1. Пусть при некотором $k \geqslant 1$ имеется ретракция $r: X_{2k-2} \rightarrow X_0$. Она всегда продолжается до ретракции $X_{2k-1} \rightarrow X_0$, и такое продолжение единственно. Определен элемент $n_k \rightleftharpoons H^1(X_0, T \otimes \Lambda^{2k}N')$ (называемый k-м препятствием), обладающий тем свойством, что ретракция r продолжается до ретракции $X_{2k} \rightarrow X_0$ тогда и только тогда, когда $n_k = 0$.

Следствие 4.7.2. Для того чтобы супермногообразие X ретрагировалось на свой носитель, достаточно, чтобы все препятствия n_1 , n_2 , ... (определяемые по индукции) были равны нулю.

Заметим, что это условие не является необходимым, так как высшее препятствие зависит от выбора ретракции на пре-

дыдущем шаге.

Теорема 4.7.3. Пусть $\tilde{r}: X_{2k} \to X_0$ — некоторое продолжение ретракции r, а $\tau \in H^0(X_0, T \otimes \Lambda^{2k}N')$. Определена ретракция $r': X_{2k} \to X_0$, действующая по формуле

$$\mathcal{O}_{X_{\bullet}} \Longrightarrow s \stackrel{\sim}{\longleftarrow} \widetilde{\rho}(s) + \tau(s) \stackrel{\sim}{\longleftarrow} \mathcal{O}_{X_{2k}},$$

которая также является продолжением r. Всякая фетракция $X_{2k} \rightarrow X_0$, продолжающая r, имеет такой вид.

Доказательство подобно рассуждениям теоремы 4.6.2. Подчеркнем, что эти результаты справедливы для обоих категорий *CB* и *CK*, т. е. для гладких и комплексно-аналитических супермногообразий. Однако они приводят к разным следствиям.

Следствие 4.7.4. В случае тладкого супермногообразия X всякая ретракция $X_{2k-2} \rightarrow X_0$ может быть продолжена до ретракции X_{2k} , $k=1,\ 2,\ \dots$ В частности, всякое гладкое супермно-

гообразие ретрагируется на свой носитель.

Это следует из того, что в любой положительной размерности когомология пучка ростков гладких сечений любого локально тривиального расслоения равна нулю. Этот факт легко доказывается с использованием гладких разбиений единицы на X_0 .

§ 8. ПРИМЕРЫ НЕРЕТРАГИРУЕМЫХ СУПЕРМНОГООБРАЗИЙ

Рассмотрим два примера комплексно-аналитических супермногообразий, не ретрагируемых из-за присутствия первых

препятствий.

Пример 1. Рассмотрим расширенную комплексную плоскость C^* с координатой z на ее конечной части, и еще один экземпляр C^* с координатой w. Пусть, далее, H — модельное супермногообразие размерности (0,4), т. е. точка, наделенная внешней C-алгеброй с четырьмя образующими, которые мы обозначим ξ_1 , ξ_2 , η_1 , η_2 . Образуем прямое произведение супермногообразий $Y = C^* \times C^* \times H$ и выделим в нем замкнутое подмногообразие X уравнениями

$$z\eta_i - w\xi_i = 0$$
 или $\frac{\eta_i}{w} = \frac{\xi_i}{z}$, $i = 1, 2$ (4.8.1)

И

$$wz = 1 + \frac{\xi_1}{z} \cdot \frac{\xi_2}{z} \equiv 1 + \frac{\eta_1}{w} \cdot \frac{\eta_2}{w}.$$
 (4.8.2)

Как легко видеть, дифференциалы левых частей (4.8.1) независимы в каждой точке, а дифференциал (4.8.2) не обращается в нуль. Поэтому X есть комплексно-аналитическое супермногообразие размерности (1,2) (теорема 4.4.1). Носителем его является комплексная проективная прямая, на которой z и w являются картами со склейкой wz=1. Слои N' над этими картами порождаются элементами ξ_1 , ξ_2 , соответственно η_1 , η_2 , причем связь между этими базисами в силу (4.8.1) имеет вид

$$\eta_i = \frac{1}{z^2} \, \xi_i, \quad i = 1, 2.$$

Отсюда нетрудно усмотреть, что N' изморфно прямой сумме двух экземпляров канонического расслоения (т. е. расслоения K на CP_1 , чей пучок сечений есть $\mathcal{O}(-2)$). Поэтому Λ^2N' изоморфно квадрату канонического расслоения, а $T \otimes \Lambda^2N'$ снова изоморфно K.

Первое препятствие к построению ретракции $X \rightarrow CP_1$ задается коциклом $t_{U,V}$, где U и V суть указанные карты на CP_1 , а

$$t_{U,V} = \frac{\tilde{\xi}_1 \wedge \tilde{\xi}_2}{z^3} \frac{\partial}{\partial w}.$$

Перейдем к однородным координатам (z_0, z_1) на CP_1 так, что $z=\frac{1}{w}=\frac{z_1}{z_0}$. Изоморфизм $T\otimes \Lambda^2 N'\cong K$ строится с помощью

соответствий $\xi_i \mapsto z_0^{-2}$, $\frac{\partial}{\partial w} \mapsto z_1^2$. При этом $t_{U,V}$ соответствует коциклу $\zeta_{U,V} = \frac{1}{z_0 z_1}$ со значениями в пучке $\mathcal{O}(-2)$. Послед-

ний, очевидно, не когомологичен нулю. В силу теоремы 6.2 указанная ретракция не существует.

Пример 2. Рассмотрим компактное комплексное пространство Минковского, которое мы реализуем как невырожденную квадрику Q в CP_5 . В подходящей однородной системе координат $(z_0,...,z_5)$ она задается уравнением $\Sigma z_t^2 = 0$. Покроем CP_5 аффинными картами $U_{\alpha} = \{z: z_{\alpha} \neq 0\}$ и рассмотрим комплексно-аналитические супермногообразия $Q_{\alpha} = Q \cap U_{\alpha} \times H_2$, где H_2 — модельное супермногообразие размерности (0,2). Для всякой пары (α, β) , $\alpha \neq \beta$, скленм пространство Q_{α} с пространством Q_{β} над областью $Q \cap U_{\alpha} \cap U_{\beta}$ при помощи следующих формул, в которых $x_{\gamma} = \frac{z_{\gamma}}{z_{-\alpha}}$, $\gamma \neq \alpha$; ξ_1 , ξ_2 — образующие в первом из этих прост-

ранств, а $y_{\gamma} = \frac{z_{\gamma}}{z_{8}}$, $\gamma \neq \beta$; η_{1} , η_{2} — образующие во втором:

$$y_{\gamma}(x, \xi) = \frac{x_{\gamma}}{x_{\beta}} \left(1 + \frac{\xi_{1}}{x_{\beta}} \cdot \frac{\xi_{2}}{x_{\beta}}\right), \ \gamma \neq \alpha, \beta,$$

$$y_{\alpha}(x, \xi) = \frac{1}{x_{\beta}} \left(1 + \xi_{1} \xi_{2} + \frac{\xi_{1}}{x_{\beta}} \cdot \frac{\xi_{2}}{x_{\beta}} \right),$$

$$\eta_{i} = \frac{\xi_{i}}{x_{\beta}}, i = 1, 2.$$

Нетрудно проверить, что эти склейки непротиворечивы, следовательно, задают комплексно-аналитическое супермногообразие

размерности (4.2) с носителем Q.

Опишем первое препятствие. Конормальное расслоение N' изоморфно прямой сумме двух линейных расслоений L, отвечающих пучку C(1)|Q, а $T=T_Q$ есть касательное расслоение к квадрике. Следовательно, коциклу $\{tv_{\alpha,}v_{\beta}\}$ отвечает коцикл со значениями в расслоении $T_Q \otimes L \otimes L$. Непосредственная выкладка показывает, что последний коцикл может быть представлен в виде

$$\left\{ \zeta_{U_{\pmb{\alpha}},U_{\pmb{\beta}}} = \left(\frac{1}{z_{\alpha}} \ \frac{\partial}{\partial z_{\alpha}} - \frac{1}{z_{\pmb{\beta}}} \ \frac{\partial}{\partial z_{\pmb{\beta}}} \right) \, \middle| \, Q \right\}.$$

Нетрудно показать, что он не когомологичен нулю. Это означает, что первое препятствие отлично от нуля и поэтому ретракции $X_2 \to Q$ нет.

§ 9. Z₊-ГРАДУИРОВКА И УСЛОВИЯ ПРОСТОТЫ СУПЕРМНОГООБРАЗИЯ

Супермногообразие X, изоморфное $X_0(N')$, где X_0 — его носитель, а N' — конормальное расслоение к X_0 , мы назвали в \S 6 простым. Сейчас мы дадим описание простых супермногообразий в иных терминах. Скажем, что K-алгебра A имеет Z_+ -градуировку, если указан

изоморфизм К-векторных пространств $A\cong \bigoplus_{0}^{\infty}A^k$, такой, что произведение любых элементов $a\in A^k$ и $b\in A^l$ принадлежит A^{k+l} . Градуировка называется конечной, если существует число k_0 , такое, что $A^k=0$ при $k>k_0$. Пусть, далее, (M,\mathcal{O}_M) — кольцованное пространство. Под Z_+ -градуировкой этого пространства мы будем понимать разложение структурного пучка в прямую сумму подпучков $\mathcal{O}_M\cong \bigoplus_{0}^{\infty}\mathcal{O}_M^k$, которое порождает Z_+ -градуи-

ровку каждого слоя $\mathcal{O}_{M,m}\cong \bigoplus_0^\infty \mathcal{O}_{M,m}^k$; с помощью Z_+ -градуировки можно построить Z_2 -градуировку, образовав прямую сумму пучков \mathcal{O}_M^k по четным степеням k и подобную сумму по нечетным k. Если задано отображение кольцованных пространств $(f, \varphi): (M, \mathcal{O}_M) \to (N, \mathcal{O}_N)$ и каждое из них имеет Z_+ -градуировку, то мы говорим, что отображение согласовано с этими градуировками, если φ переводит $f^*(\mathcal{O}_N^k)$ в \mathcal{O}_M^k для всех $k=0,1,\dots$

Теорема 9.1. Супермногообразие X является простым тогда и только тогда, когда оно обладает Z_+ -градуировкой, которая

удовлетворяет следующим условиям:

А) она конечна в каждом слое,

 \mathbf{b}) порождает исходную Z_2 -градуировку,

В) пучок \mathcal{O}_X есть локально свободный \mathcal{O}_X -модуль, ранг ко-

торого равен нечетной размерности супермногообразия.

Приведем доказательство, опуская некоторые детали. Необходимость. Структурный пучок $X_0(N')$ есть по определению пучок ростков функций на X_0 со значениями в расслоении Λ^*N' . Через \mathcal{O}^h обозначим его подпучок, образованный функциями со значениями в Λ^hN' . Полученная градуировка, очевидно, удовлетворяет всем условиям.

Достаточность. Пусть задана Z_+ -градуировка $\mathcal{O}_X \cong \bigoplus_{0}^{\infty} \mathcal{O}^k$, подчиненная A), Б) и B). Установим равенство

$$I_x \cong \bigoplus^{\infty} \mathcal{O}_x^k, \quad \forall x \in X_0.$$
 (4.9.1)

Правая часть есть идеал в алгебре $\mathcal{O}_{X,x}$ и согласно Б) содержит все нечетные элементы. Поэтому она содержит идеал I_x , который порождается такими элементами. Обратно, в силу А) всякий элемент α правой части нильпотентен. Пусть a — сечение пучка \mathcal{O}_X над некоторой окрестностью x, росток которого в точке x равен α . Некоторая степень этого сечения обращается в нуль в некоторой окрестности $U \Longrightarrow x$. Поэтому $r_y(a) = 0$ для $y \in U$, где r_y означает вычет в точке y, т. е. a(y, 0) = 0. Поэтому $\alpha \in I_x$, что завершает проверку (4.9.1). Из этого равенства вытекает, в частности, что $\mathcal{O}^0 \cong \mathcal{O}_X/I$, следовательно, вложение прямого слагаемого $\mathcal{O}^0 \to \mathcal{O}_X$ задает ретракцию X на X_0 , что влечет (4.6.1).

Из (4.9.1) следует, что $I^2 \subset \bigoplus_{2}^{\infty} \mathcal{O}^k$. Поэтому определен эпиморфизм \mathcal{O}^0 -модулей

$$p: I/I^2 \rightarrow O^1$$
.

Согласно предложению 4.5.2 модуль I/I^2 локально свободен и имеет тот же ранг, что и \mathcal{O}^1 (условие В)). Отсюда ввиду локальности пучка \mathcal{O}^0 вытекает, что p есть изоморфизм. Пусть $\xi_1, ..., \xi_q$ — образующие \mathcal{O}^0 -модуля \mathcal{O}^1 над некоторым открытым подмножеством $U \subset X$. Согласно сказанному они порождают систему образующих \mathcal{O}^0 -модуля I/I^2 и, следовательно, порождают I над U как пучок идеалов. Если $\eta_1, ..., \eta_q$ — другая система образующих \mathcal{O}^0 -модуля \mathcal{O}^1 над U, то $\eta_i = \sum a_i{}^j\xi_j$, где $a_i{}^j$ — некоторые сечения \mathcal{O}^0/U , т. е. (4.6.2) имеет место.

Предположим теперь, что супермногообразие X ретрагируется на свой носитель. Проанализируем достижимость условия (4.6.2) по методу § 6. Препятствие к выполнению этого условия состоит в том, что нечетные образующие преобразуются, вообще говоря, по нелинейному закону

$$\eta_{l} = \sum a_{l}^{i} \xi_{i} + \sum a_{l}^{i_{1}i_{2}i_{3}} \xi_{j_{1}} \xi_{j_{2}} \xi_{j_{3}} + \dots$$
 (4.9.2)

С помощью рассуждения предыдущей теоремы можно показать, что существование систем нечетных образующих, для которых в формулах (4.9.2) отсутствуют нелинейные члены степени, меньшей или равной k, эквивалентно тому, что пространство X_k обладает Z_+ -градуировкой, удовлетворяющей условиям A), B) и B). Рассмотрим на X_0 расслоение N, двойственное N' (нормальное расслоение к X_0 в X).

Теорема 4.9.2. Пусть пространство X_{2k-1} , $k \ge 1$, обладает описанной Z_+ -градуировкой. Тогда определен элемент $m_k \in H^1(X_0, N \otimes \Lambda^{2k+1}N')$, обладающий следующим свойством: для того чтобы пространство X_{2k+1} имело Z_+ -градуировку, удовлетворяющую A), B), B), такую, что каноническое вложение $X_{2k-1} \rightarrow X_{2k+1}$ согласовано с Z_+ -градуировками, необходимо и

достаточно, чтобы $m_k = 0$.

Доказательство параллельно рассуждениям теоремы 6.2. Искомый элемент m_h есть класс, содержащий кощикл

$$m_{U,V} = \sum a_{l}^{j_1 \dots j_{2k+1}} \xi_{l}' \cdot \xi_{j_1} \dots \xi_{l_{2k+1}},$$

где $\{\xi_i'\}$ — базис в N, двойственный к базису $\{\xi_i\}$. Элемент m_k естественно назвать k-м препятствием к продолжению Z_+ -градуировки.

Следствие 4.9.3. Если X ретрагируется на X_0 и все элементы

 m_1, m_2, \dots обращаются в нуль, то X просто.

Следствие 4.9.4. Всякое гладкое супермногообразие просто. В заключение отметим связь между препятствиями n_k и m_k . Ограничимся простейшим случаем. Рассмотрим билинейное отображение расслоений

$$T \otimes \Lambda^2 N' \times N \otimes \Lambda^3 N' \rightarrow T \otimes \Lambda^4 N'$$

которое в каждом слое на разложимых тензорах задается формулой

$$(t \otimes \xi_1 \wedge \xi_2) \circ (\xi' \otimes \eta) = t \otimes (\xi'(\xi_1) \eta \wedge \xi_2 + \xi'(\xi_2) \xi_1 \wedge \eta).$$

С его помощью можно определить умножение в когомологиях

$$H^{0}\left(X_{0},\,T\otimes\Lambda^{2}N'\right)\times H^{1}\left(X_{0},\,N\otimes\Lambda^{3}N'\right) \to H^{1}\left(X_{0},\,T\otimes\Lambda^{4}N'\right),$$

которое на коциклах выглядит так:

$$\{t_{\alpha}\} \circ \{s_{\alpha\beta}\} = \{t_{\alpha} \circ s_{\alpha\beta}\}.$$

Корректность его легко проверяется.

Предложение 4.9.5. Пусть X-комплексно-аналитическое супермногообразие, для которого $n_1 = 0$, $\rho: X_2 \rightarrow X_0$ — некоторая ретракция, m_1 — первое препятствие к продолжению Z_+ -градуировки, а τ — произвольный элемент $H^0(X_0, T \otimes \Lambda^2 N')$. Тогда второе препятствие к существованию ретракции зависит от ретракции ρ , построенной на первом шаге по формуле

$$n_2(\rho+\tau)=n_2(\rho)+\tau\circ m_1.$$

Напомним, что смысл суммы $\rho + r$ описан в теореме 4.6.3. Доказательство этого утверждения и его обобщения мы предоставляем читателю.

Глава 5. СУПЕРАЛГЕБРЫ ЛИ

В этой главе рассматриваются основные определения и конструкции теории супералгебр Ли и приводятся наиболее существенные примеры.

§ 1. ОБЩИЕ СВЕДЕНИЯ

1. Основные определения. Супералгеброй Ли, или, по другой терминологии, Z_2 -градуированной алгеброй Ли, называется вещественное или комплексное Z_2 -градуированное линейное пространство с фиксированной четностью $\mathfrak{g} = {}^0\mathfrak{g} \bigoplus {}^1\mathfrak{g}$, в котором определена билинейная операция [x, y], причем для однородных элементов справедливы тождества

$$\alpha([x, y]) = \alpha(x) + \alpha(y), \qquad (5.1.1)$$

$$[x, y) = (-1)^{\alpha(x)\alpha(y)+1} [y, x], \qquad (5.1.2)$$

$$[x, [y, z]] (-1)^{\alpha(x)} \alpha(z) + [z, [x, y]] (-1)^{\alpha(z)} \alpha(y) + + [y, [z, x]] (-1)^{\alpha(y)} \alpha(x) = 0.$$
 (5.1.3)

(Второе и третье слагаемое в (5.1.3) получаются из первого циклической перестановкой элементов x, y, z.)

Пусть e_i — однородный базис в \mathfrak{g} , $c^h{}_{ij}$ — отвечающие этому базису структурные константы, $[e_i, e_j] = \Sigma c^h{}_{ij}e_h$. Тождества (5.1.1) — (5.1.3) эквивалентны следующим соотношениям относительно структурных констант:

$$\alpha(i) + \alpha(j) + \alpha(k) = 0,$$
 (5.1.1')

$$c_{ij}^{k!} = (-1)^{\alpha(i)\alpha(j)+1} c_{ji}^{k}, \qquad (5.1.2')$$

$$c_{it}^{s} c_{kl}^{t} (-1)^{\alpha(l)\alpha(l)} + c_{kt}^{s} c_{li}^{t} (-1)^{\alpha(k)\alpha(l)} + c_{lt}^{s} c_{ik}^{t} (-1)^{\alpha(l)\alpha(k)} = 0, \quad (5.1.3')$$

где для краткости положено $\alpha(i) = \alpha(e_i)$.

(В равенстве (5.1.3') второе и третье слагаемое получаются из первого циклической перестановкой i, k, l.)

Супералгебра Ли называется:

простой, если она не содержит идеалов, отличных от нее самой и от нуля;

коммутативной, если [x, y] = 0 для любых $x, y \in \mathfrak{g}$;

редуктивной, если она является прямой суммой простой и коммутативной;

нильпотентной, если существует такое целое N>0, чго

 $[x, \ldots [x, y] \ldots] = 0$ для любых $x, y \in \mathfrak{g}$;

разрешимой, если она обладает последовательностью идеалов $\mathfrak{g} = \mathfrak{g}_0 \supset \mathfrak{g}_1 \supset \ldots \supset \mathfrak{g}_N = 0$, такой, что факторалгебры $\mathfrak{g}_k/\mathfrak{g}_{k+1}$ коммутативны:

полупростой, если она обладает цепочкой идеалов $\mathfrak{g}=\mathfrak{g}_0 \supset \ldots \supset \mathfrak{g}_N=0$, такой, что факторалгебры $\mathfrak{g}_k/\mathfrak{g}_{k+1}$ просты.

Все эти определения, кроме последнего, копируют определения, хорошо известные из теории обычных групп Ли. Что касается определения полупростоты, то тут возможно несколько вариантов. Приведенное определение кажется наиболее естественным.

Отметим некоторые простейшие следствия определения супералгебр Ли.

1) Подпространство од является обычной алгеброй Ли.

2) Автоморфизм четности $\mathfrak g$ как линейного пространства является автоморфизмом $\mathfrak g$ как алгебры (т. е. $[\mathbf Ax, \mathbf Ay] = \mathbf A[x, y]$).

3) Пусть \mathfrak{g} — вещественная супералгебра Ли. Множество формальных линейных комбинаций вида x+iy, x, $y \in \mathfrak{g}$ образует комплексную супералгебру Ли с операцией коммутирования, которая определяется формулой (5.1.4). Полученная алгебра называется комплексной оболочкой \mathfrak{g} . Комплексная оболочка вещественной супералгебры \mathfrak{g} будет обозначаться $[\mathfrak{g}]$.

Если комплексная супералгебра Ли $\mathfrak g$ является комплексной оболочкой вещественной алгебры $\mathfrak z$, $\mathfrak g = [\mathfrak z]$, то алгебра $\mathfrak z$ называется вещественной формой $\mathfrak g$.

4) Пусть $\mathfrak{g}={}^{9}\mathfrak{g}\oplus{}^{1}\mathfrak{g}-$ вещественная супералгебра Ли. Обозначим через $\mathfrak{g}'={}^{0}\mathfrak{g}\oplus{}i^{1}\mathfrak{g}$ множество формальных линейных комбинаций вида $x+iy, x\in{}^{0}\mathfrak{g}, y\in{}^{1}\mathfrak{g}, i=\sqrt{-1}$, В \mathfrak{g}' введем операцию коммутирования естественным образом:

$$[x_1+iy_1, x_2+iy_2] = [x_1, x_2]-[y_1, y_2]+i([x_1, y_2]+[y_1, x_2]). (5.1.4)$$

Легко видеть, что g' также является вещественной супералгеброй Ли, причем комплексные оболочки супералгебр Ли g и g' совпадают. Супералгебру Ли g' мы будем называть двойственной по Э. Картану по отношению к исходной супералгебре Ли g ввиду того, что ее конструкция является копией картановской конструкции для двойственных вещественных алгебр Ли.

Вообще следует отметить, что существует очень далекая аналогия между картановской теорией симметрических пространств и теорией супералгебр Ли. При этом ов играет роль алгебры Ли стационарной подгруппы симметрического пространства, в — роль пространства трансвенций, автоморфизм четности — роль инволютивного автоморфизма, выделяющего стационарную подалгебру.

Обозначим через $T:\mathfrak{g}
ightarrow \mathfrak{g}'$ линейный оператор, действующий согласно формуле

$$T(x+y) = x+iy, x \in \mathfrak{g}, y \in \mathfrak{g}. \tag{5.1.5}$$

Легко видеть, что для однородных $x, y \in \mathfrak{g}$

$$[Tx, Ty] = (-1)^{\alpha(x)\alpha(y)}T[x, y].$$

В частности, если e_k — однородный базис в \mathfrak{g} и $e_k'=Te_k=\frac{\pi i}{2}\alpha(k)$ $=e^2$ e_k — однородный базис в \mathfrak{g}' , то структурные константы супералгебр Ли \mathfrak{g} и \mathfrak{g}' в этих базисах связаны соотношением

$$c_{bl}^{s} = (-1)^{\alpha(e_k)} \alpha(e_l) c_{bl}^{s}$$
.

2. Связь с ассоциативными алгебрами. Пусть \mathfrak{A} — Z_2 -градуированная ассоциативная алгебра. Напомним, что ассоциативная алгебра \mathfrak{A} называется Z_2 -градуированной, если она обладает Z_2 -градуировкой как линейное пространство, $\mathfrak{A} = {}^{0}\mathfrak{A} \bigoplus^{1}\mathfrak{A}$ и автоморфизм четности \mathfrak{A} как линейного пространства является одновременно автоморфизмом четности \mathfrak{A} как алгебры. В частности, отсюда следует, что ${}^{0}\mathfrak{A}$ является подалгеброй.

Супералгебры Ли связаны с Z_2 -градуированными ассоциативными алгебрами подобно тому, как обычные алгебры Ли связаны с обычными ассоциативными алгебрами, каждая из операций

$$[x, y] = xy - (-1)^{\alpha(x)\alpha(y)} yx, \qquad (5.1.6)$$

$$[x, y] = (-1)^{\alpha(x)\alpha(y)} xy - yx, \qquad (5.1.7)$$

где x, y — однородные элементы \mathfrak{A} , превращает \mathfrak{A} в супералгебру Ли. Первую из них обозначим $\mathfrak{g}_{\mathfrak{A}}$, вторую — $\mathfrak{g}_{\mathfrak{A}}^{"}$. Супералгебра Ли $\mathfrak{g}_{\mathfrak{A}}^{"}$ изоморфна $\mathfrak{g}_{\mathfrak{A}}$ в комплексном случае, и к двойственной по Э. Картану супералгебре Ли $\mathfrak{g}_{\mathfrak{A}}^{'}$ в вещественном случае. В обоих случаях изоморфизм осуществляется оператором T, определяемым формулой (5.1.5).

Существует две основные конструкции, связывающие реализацию одной и той же супералгебры Ли формулами (5.1.6) и (5.1.7). Одна из них использует понятие грассмановой оболочки и будет рассмотрена позже. Другая состоит в следующем.

Пусть \mathfrak{g} — супералгебра Ли, элементами которой служат матрицы $x \in \operatorname{Mat}(p, q)$. Такие супералгебры в дальнейшем называются для краткости матричными. Предположим, что коммутатор в \mathfrak{g} задается формулой (5.1.6). Сопоставим каждой матрице $x \in \mathfrak{g}$ матрицу

$$y = -x', \tag{5.1.8}$$

где ' обозначает обычное матричное транспонирование. Очевид-

но, что в результате получается изоморфная в матричная супералгебра Ли с коммутатором (5.1.7). Обратно, если в — матричная супералгебра Ли с коммутатором (5.1.7), то преобразование (5.1.8) переводит ее в изоморфную супералгебру с коммутатором (5.1.6). С операцией транспонирования связан полезный признак изоморфизма, двойственных по Э. Картану супералгебр Ли.

Пусть матричная супералгебра Ли $\mathfrak g$ обладает тем свойством, что если $x \in \mathfrak g$, то также $x' \in \mathfrak g$. В таком случае супералгебра Ли $\mathfrak g$ изоморфна супералгебре Ли $\mathfrak g'$, двойственной $\mathfrak g$ по Э. Картану. Изоморфизм устанавливается формулой

$$T(x + y) = -x' - iy', x \in {}^{0}g, y \in {}^{1}g,$$

коммутатор в \mathfrak{g}' задается той же формулой (5.1.6) или (5.1.7), что и в \mathfrak{g} . Доказательство этого утверждения очевидно.

3. Супердифференцирования и полупрямые произведения. Пусть \mathfrak{A} — Z_2 -градуированная ассоциативная алгебра или супералгебра Ли. В обоих случаях линейные операторы в \mathfrak{A} , как в линейном пространстве, образуют Z_2 -градуированную ассоциативную алгебру $L(\mathfrak{A})$, градуировка в $L(\mathfrak{A})$ определяется обычным образом (см. гл. 3, § 1, п. 2).

Однородный оператор $A \in L(A)$ называется супердифферен-

цированием алгебры \mathfrak{A} , если для однородных x, y

$$A(xy) = (Ax) y + (-1)^{\alpha(A)\alpha(x)} xAy$$
 (5.1.9)

в случае, если алгебра 🛭 ассоциативна, и

$$A[x, y] = [Ax, y] + (-1)^{\alpha(A)\alpha(x)}[x, Ay]$$
 (5.1.10)

в случае, если $\mathfrak A$ является супералгеброй Ли. Множество всех супердифференцирований алгебры $\mathfrak A$ обозначим $D(\mathfrak A)$. $D(\mathfrak A)$ является линейным подпространством $L(\mathfrak A)$, но, вообще говоря, не подалгеброй. Однако множество $D(\mathfrak A)$ замкнуто относительно операции коммутирования.

Теорема 5.1. Пусть A, B — однородные элементы $D(\mathfrak{A})$. Тогда

$$[A, B] = AB - (-1)^{\alpha(A)} \alpha(B) BA \in D(\mathfrak{A}).$$

Таким образом, $D(\mathfrak{A})$ является супералгеброй Ли.

Доказательство. Пусть Я — ассоциативная алгебра. Из (5.1.9) имеем

$$AB(xy) = A((Bx) y + (-1)^{\alpha(B)\alpha(x)} x (By)) =$$

$$= (ABx) y + (-1)^{\alpha(A)\alpha(Bx)} (Bx) (Ay) + (-1)^{\alpha(B)\alpha(x)} (Ax) (By) +$$

$$+ (-1)^{(\alpha(A)+\alpha(B))\alpha(x)} x (ABy).$$

Меняя ролями A и B и учитывая, что $\alpha(Bx) = \alpha(B) + \alpha(x)$, $\alpha([A, B]) = \alpha(A) + \alpha(B)$, получаем отсюда, что

$$[A, B] (xy) = ((AB - (-1)^{\alpha(A)\alpha(B)}BA) x) y + + (-1)^{\alpha(A)(\alpha(B)+\alpha(x))}(Bx) (Ay) - (-1)^{\alpha(A)\alpha(B)+\alpha(A)\alpha(x)}(Bx) (Ay) +$$

$$+ (-1)^{\alpha(B)\alpha(x)} (Ax) (By) - (-1)^{\alpha(A)\alpha(B) + \alpha(B)} (\alpha(A) + \alpha(x)) (Ax) (By) + (-1)^{(\alpha(A) + \alpha(B))\alpha(x)} x (AB - (-1)^{\alpha(A)\alpha(B)} BA) y = ([A, B] x) y + (-1)^{\alpha([A,B])\alpha(x)} x [A, B] y.$$

Случай, когда я является супералгеброй Ли, рассматривается аналогично.

В обычном случае дифференцирование алгебры является инфинитезимальным аналогом автоморфизма, если $A\left(t\right)$ — однопараметрическая группа автоморфизмов ассоциативной алгебры, то

$$A(t)(xy) = (A(t)x)(A(t)y).$$

Дифференцируя по t и полагая затем t=0, получаем отсюда, что

$$\dot{A}(xy) = (\dot{A}x)y + x\dot{A}y.$$

Аналогично обстоит дело в случае алгебр Ли.

В следующем разделе мы увидим, что супердифференцирования также тесно связаны с автоморфизмами.

Пусть N— некоторая группа и G— группа (не обязательно всех) автоморфизмов $N:g\cdot xy=(gx)\,(gy)$, где $x,\,y\!\in\!N$ и $g\cdot x$ означает действие автоморфизма $g\!\in\!G$ на $x\!\in\!N$. В теории групп существуют важные конструкции, позволяющие объединить группы G и N в единую группу G_1 , в которой N присутствует в качестве нормального делителя, а G является факторгруппой: $G\!=\!G_1/N$. Простейшей (и важнейшей) из этих конструкций является полупрямое произведение. Группа G_1 называется полупрямым произведением групп G и N, если ее элеменгами являются пары (x,g) $x\!\in\!N$, $g\!\in\!G$, а умножение задается формулой

$$(x_1, g_1) (x_2, g_2) = (x_1(g_1 \cdot x_2), g_1g_2).$$

В случае, если G и N являются группами Ли, группа G очевидным образом является также группой автоморфизмов алгебры Ли \mathfrak{r} группы N. Действие элемента g на $\dot{\mathfrak{x}} \in \mathfrak{r}$ определяется формулой

$$g \cdot \dot{x} = \frac{d}{dt} g \cdot x(t) \Big|_{t=0}$$

где $\dot{x} \in \mathfrak{x}$ и $x(t) = \exp(t\dot{x})$ — соответствующая однопараметрическая подгруппа. Реализация группы G как группы автоморфизмов алгебры Ли \mathfrak{x} влечет за собой реализацию ее алгебры Ли как алгебры дифференцирований \mathfrak{x} .

Группа G_1 , являющаяся полупрямым произведением G и N, также является в этом случае группой Ли. Ее алгебра Ли \mathfrak{g}_1 устроена следующим образом: как линейное пространство \mathfrak{g}_1 является прямой суммой алгебр \mathfrak{g} и \mathfrak{n} . Коммутатор в \mathfrak{g}_1 определяется формулой

$$[a+x, b+y]_1 = [a, b] + a \cdot y - b \cdot x + [x, y],$$
 (5.1.11)

где $a, b \in \mathfrak{g}, x, y \in \mathfrak{n}$, [a, b] и [x, y] — коммутаторы соответственно в \mathfrak{g} и $\mathfrak{n}, a \cdot y$ и $b \cdot x$ — действие дифференцирований a и b на элементы y и x. Очевидно, что \mathfrak{n} является идеалом \mathfrak{g}_1 , алгебра \mathfrak{g} изоморфна факторалгебре $\mathfrak{g}_1/\mathfrak{n}$. Определенная таким образом алгебра Ли \mathfrak{g}_1 называется полупрямым произведением алгебры Ли \mathfrak{n} и алгебры Ли ее дифференцирований \mathfrak{g} . Полупрямые произведения групп или алгебр Ли очень часто встречаются в математическом обиходе. Так, например, группа Пуанкаре является полупрямым произведением группы трансляций и группы Лоренца.

Полупрямое произведение алгебр Ли следующим образом обобщается на случай супералгебр Ли. Пусть $\mathfrak n$ и $\mathfrak g$ — супералгебры Ли, причем $\mathfrak g = D(\mathfrak n)$ состоит из супердифференцирований $\mathfrak n$. Полупрямым произведением $\mathfrak n$ и $\mathfrak g$ называется супералгебра Ли $\mathfrak g_1$, которая как Z_2 -градуированное линейное пространство является прямой суммой $\mathfrak m$ и $\mathfrak q$, коммутатор в $\mathfrak q_2$ за-

дается формулой

$$[a+x, b+y]_1 = [a, b] + a \cdot y - (-1)^{\alpha(x)\alpha(b)}b \cdot x + [x, y],$$
 (5.1.12)

где [a, b], [x, y], $a \cdot y$, $b \cdot x$ имеют тот же смысл, что в (5.1.11). Отметим, что из (5.1.12), (5.1.10) следует, что при $a \in \mathfrak{g}$, x, $y \in \mathfrak{n}$

$$[a, [x, y]]_1 = a \cdot [x, y] = [a \cdot x, y] + (-1)^{\alpha(a)\alpha(x)} [x, a \cdot y].$$

Проверка того, что операция (5.1.12) удовлетворяет условиям (5.1.1)—(5.1.3), очень проста, и мы ее опустим. Очевидно, что является идеалом супералгебры Ли \mathfrak{g}_1 , супералгебра Ли \mathfrak{g} изоморфна факторалгебре $\mathfrak{g}_1/\mathfrak{n}$.

4. Супералгебры Лисграссмановой структурой. Пусть 3 — супералгебра Лиил — некоторая грассмано-

ва алгебра.

Сформулируем следующие основые определения.

Супералгебра Ли $\mathfrak g$ называется супералгеброй с грассмановой структурой, если она является левым модулем над Λ^1 и если умножение на элементы Λ связано с коммутатором в $\mathfrak g$ одним из следующих двух способов:

$$[\alpha x, \beta y] = \alpha \beta [x, y] \tag{5.1.13}$$

при любых α , $\beta \in \Lambda$, x, $y \in \mathfrak{g}$ или если в случае однородных α , $\beta \in \Lambda$ x, $y \in \mathfrak{g}$

$$[\alpha x, \beta y] = \alpha \beta [x, y] (-1)^{\alpha(\beta)\alpha(x)}. \tag{5.1.14}$$

В первом случае супералгебра Ли g называется супералгеброй Ли с грассмановой структурой 1-го рода, во втором случае — 2-го рода. Алгебра Ли з называется алгеброй Ли с грассмановой структурой, если она является четной подалгеброй супер-

¹ То есть, если определено умножение слева элементов g на элементы А. См. гл. 1, § 1.

алгебры Ли $\mathfrak g$ с грассмановой структурой: $\mathfrak z={}^0\mathfrak g$. При этом алгебра Ли $\mathfrak z$ называется алгеброй Ли 1-го или 2-го рода в зависимости от рода супералгебры Ли $\mathfrak g$.

Если x является алгеброй Ли с грассмановой структурой, то группа Ли $L=\exp x$ называется группой Ли с грассмановой

структурой.

Алгебры группы Ли с грассмановой структурой принадлежат к числу основных объектов суперматематики, которые находят применение в современной физике. Однако их общая теория в

настоящее время совершенно не разработана. В лучшем положении находятся алгебры Ли с грассмановой структурой, которые могут быть получены из супералгебр Ли с помощью грассмановых оболочек. Эти алгебры Ли образуют часть всего множества алгебр Ли с грассмановой структурой. Супералгебры, четной частью которых они являются, исчерпывают класс супералгебр Ли с грассмановой структурой, являющихся свободными модулями. Пример алгебры Ли с грассмановой структурой, не относящийся к этому классу, см. в § 2, п. 22.

5. Грассманова оболочка супералгебры Ли. Построим с помощью г. а. А полную грассманову оболочку супералгебры Ли в и введем в нее операцию коммутирования

одним из следующих двух способов:

$$[ax, by] = ab[x, y]$$
 (5.1.15)

или

$$[ax, by] = (-1)^{\alpha(x)\alpha(b)} ab [x, y],$$
 (5.1.16)

где x, y — однородные элементы \mathfrak{g} , a, b — однородные элементы Ли, скобка в правых частях формул (5.1.15), (5.1.16) озна-

чает коммутатор, имеющийся в в.

Легко видеть, что коммутатор (5.1.15) превращает грассманову оболочку дв супералгебру Ли с грассмановой структурой 1-го рода, коммутатор (5.1.16) превращает ее в супералгебру Ли с грассмановой структурой 2-го рода.

В соответствии с общими обозначениями гл. 3, п. 1, обозначим полученную таким путем супералгебру Ли через $\widehat{\mathfrak{g}}$ (Λ), ее

четную часть — через $\mathfrak{g}(\Lambda)$.

Очевидно, что \mathfrak{g} (Λ) является алгеброй Ли с грассмановой структурой 1-го или 2-го рода в зависимости от того, какой формулой (5.1.15) или (5.1.16) определен в ней коммутатор.

Для упрощения речи, а также с целью согласования терминологии с терминологией, принятой в случае ассоциативных алгебр (см. гл. 3, п. 1), мы будем в дальнейшем называть алгебру Ли \mathfrak{g} (Λ) просто грассмановой оболочкой супералгебры первого или второго рода.

Рассмотрение грассмановых оболочек выявляет еще один ас-

пект связи между коммутаторами (5.1.6) и (5.1.7).

Пусть \mathfrak{A} — \mathbf{Z}_2 -градуированная ассоциативная алгебра и \mathfrak{g}_1 , \mathfrak{g}_2 — изоморфные между собой супералгебры Ли, состоящие

из ее элементов, причем коммутатор в 🐧 задается формулой

(5.1.6), коммутатор в \mathfrak{g}_2 задается формулой (5.1.7). Обозначим через $\mathfrak{A}^{(1)}(\Lambda)$, $\mathfrak{A}^{(2)}(\Lambda)$ грассмано грассмановы оболочки

соответственно 1-го и 2-го рода алгебры 🛭 и положим $x, y \in \mathfrak{A}^{(1)}(\Lambda)$ (или $x, y \in \mathfrak{A}^{(2)}(\Lambda)$):

$$[x, y] = xy - yx.$$
 (5.1.16')

В $\mathfrak{A}^{(i)}(\Lambda)$, i=1, 2, рассмотрим подпространство, состоящее всевозможных элементов вида

$$\sum a_k e_k^{(i)}$$
,

где $e_k^{(i)}$ — однородный базис в \mathfrak{g}_i , $a_k \in \Lambda$ и $\alpha(a_k) = \alpha(e_k^{(i)})$. Это подпространство обозначим через з. Очевидно, что каждое из пространств 31 и 32 замкнуто относительно коммутатора (5.1.1). Легко проследить, что коммутатор (5.1.1) превращает \mathfrak{z}_4 в грассманову оболочку 1-го рода $\mathfrak{s}_1^{(1)}(\Lambda)$ супералгебры Ли \mathfrak{g}_1 и \mathfrak{f}_2 — в грассманову оболочку 2-го рода $\mathfrak{g}_2^{(2)}(\Lambda)$ супералгебры Ли \mathfrak{g}_2 . Далее, алгебры Ли $\mathfrak{z}_1 = \mathfrak{g}_1^{(1)}(\Lambda)$ и $\mathfrak{z}_2 = \mathfrak{g}_2^{(2)}(\Lambda)$ изоморфны. Изоморфизм между ними является естественным продолжением изоморфизма, существующего между супералгебрами Ли \mathfrak{g}_1 и \mathfrak{g}_2 . Пусть $T:\mathfrak{g}_1\to\mathfrak{g}_2$ — изоморфизм и пусть базисы $e_h^{(i)}$ В g_i выбраны таким образом, что $Te_k^{(1)}=e_k^{(2)}$. В таком случае изоморфизм $U: \mathfrak{g}^{(1)}(\Lambda) \to \mathfrak{g}^{(2)}(\Lambda)$ определяется следующим образом:

если

$$x = \sum a_k e_k^{(1)} \in \mathfrak{g}_1^{(1)}(\Lambda),$$

TO

$$Ux = \sum a_k e_k^{(2)} \in \mathfrak{g}_2^{(2)}(\Lambda).$$

Переход к грассмановым оболочкам сохраняет основные взаимоотношения между исходными супералгебрами. Ли: если 🐧 является подалгеброй или идеалом g2, то то же самое справедливо относительно их грассмановых оболочек одного и того же рода ит. п.

Остановимся более подробно на случае, когда супералгебра Ли в является алгеброй супердифференцирований супералгебры Ли или ассоциативной Z_2 -градуированной алгебры \mathfrak{A} . Пусть $\mathfrak{A}(\Lambda)$, $\mathfrak{g}(\Lambda)$ — грассмановы оболочки одного и того же рода алгебр $\mathfrak A$ и $\mathfrak g$. Для однородных $a, b \in \Lambda, x \in \mathfrak A, A \in \mathfrak g$ положим

$$aAbx = abAx \tag{5.1.17}$$

в случае, если $\mathfrak{A}(\Lambda)$, $\mathfrak{g}(\Lambda)$ являются грассмановыми оболочками 1-го рода, и

$$aAbx = (-1)^{\alpha(A)\alpha(b)}abAx \tag{5.1.18}$$

в случае грассмановых оболочек 2-го рода. На произвольные $A \in \mathfrak{g}(\Lambda)$ $x \in \mathfrak{A}(\Lambda)$ формулы (5.1.17), (5.1.18) распространим по линейности. Легко видеть, что в результате мы получим реализацию алгебры Ли g(A) как алгебры дифференцирований ал-

гебры ¾(Λ).

6. Три основных способа описания супералгебр Ли и их грассмановых оболочек. Первый способ состоит в абстрактном описании: супералгебра Ли в задается с помощью набора структурных констант c^h_{ij} . В случае, если супералгебра Ли в задана таким образом, мы, как правило, будем рассматривать лишь ее грассманову оболочку 1-го рода, термин «грассманова оболочка» без указания рода в этой ситуации всегда будет означать грассманову оболочку 1-го рода.

Второй способ состоит в том, что супералгебра Ли $\mathfrak g$ реализуется как матричная алгебра. В этом случае в качестве $\mathfrak g(V)$ мы всегда будем рассматривать ее грассманову оболочку 1-го рода. Другими словами, если супералгебра Ли $\mathfrak g$ состоит из матриц вида $\begin{pmatrix} A & B \\ C & D \end{pmatrix} \subseteq \operatorname{Mat}(p,q)$, то ее грассманова оболоч-

ка состоит из аналогичных матриц, разница состоит лишь в том, что в первом случае матричные элементы блоков A, B, C, D являются числами, во втором случае — элементами г. а. Λ , четными в случае блоков A, D и нечетными в случае блоков B, C.

Третий состоит в том, что супералгебра Ли в реализуется

как алгебра дифференциальных операторов 1-го порядка:

$$(Xf)(z) = \sum X^{i}(z) \frac{\partial}{\partial z^{i}} f(z), \qquad (5.1.19)$$

где f(z), $X^i(z) \in \Lambda_{p,q}(U)$, z^i — однородные образующие в $\Lambda_{p,q}(U)$. В множестве операторов вида (5.1.19) вводится \mathbf{Z}_2 -градуировка: однородными называются такие операторы, у которых однородны коэффициентные функции X^i , причем $\alpha(X^i) = \alpha(z^i)$. Для однородных операторов определяется четность согласно формуле

$$\alpha(X) = \alpha(X^i) + \alpha(z^i).$$

Легко видеть, что, хотя произведение двух операторов вида (5.1.19) не является оператором этого вида, их коммутатор, как определяемый формулой (5.1.6), так и формулой (5.1.7), снова является дифференциальным оператором 1-го порядка. Возможен вариант этой реализации, когда в качестве f и X^i рассматриваются r. а. функции, обычные или с грассмановскими коэффициентами.

В случае, если супералгебра Ли реализована дифференциальными операторами 1-го порядка, у нее будет в дальнейшем рассматриваться лишь грассманова оболочка 2-го рода, соответственно термин «грассманова оболочка» в этом случае всегда будет означать грассманову оболочку 2-го рода.

Наиболее естественная реализация грассмановой оболочки супералгебры Ли 3, заданной операторами вида (5.1.19), со-

стоит в том, что она реализуется операторами того же вида в пространстве г. а. функций с грассмановыми коэффициентами. При этом коэффициенты $X^i(z)$ также являются г. а. функциями с грассмановыми коэффициентами.

§ 2. ПРИМЕРЫ СУПЕРАЛГЕБР ЛИ

В этом параграфе описываются супералгебры Ли, представляющие наибольший интерес с точки зрения общей теории или

физических приложений.

1. Полная линейная алгебра $\mathfrak{l}(p,q)$. Пусть $K^{p,q}-Z_2$ -градуированное линейное пространство, L(K|p,q) — алгебра линейных операторов в $K^{p,q}$. Алгебра L(K|p,q) является ассоциативной и Z_2 -градуированной. Поэтому с ее помощью можно построить супералгебру Ли в соответствии с обшей формулой (5.1.6). Эта супералгебра Ли обозначается $\mathfrak{l}(K|p,q)$. Она является супераналогом алгебры Ли всех линейных операторов в пространстве K^n по отношению к обычному коммутированию.

Наряду с алгеброй L(p, q) мы будем рассматривать изоморфную ей алгебру $\mathrm{Mat}(p, q)$, состоящую из матриц операторов $A \in L(p, q)$ в стандартном базисе. Супералгебру Ли, порожденную $\mathrm{Mat}(p, q)$, в соответствии с формулой (5.1.6) обозначим $\mathrm{mat}(p, q)$. Алгебры $\mathrm{mat}(p, q)$ и $\mathfrak{t}(p, q)$ очевидным образом изоморфны.

Рассмотрим в алгебре Mat(p, q) операцию транспонирования, копирующую операцию (3.1.8) в $Mat(p, q|\Lambda)$,

$$\begin{pmatrix} A & B \\ C & D \end{pmatrix}^{T} = \begin{pmatrix} A' & C' \\ -B' & D' \end{pmatrix}, \tag{5.2.1}$$

где ' означает обычное матричное транспонирование. Операция (5.2.1) обладает следующими легко проверяемыми свойствами: если $\mathcal{A} \in {}^{0}$ Mat (p, q), $\mathscr{B} \in {}^{0}$ Mat (p, q), то

$$\left(\mathcal{A}\mathcal{B}\right)^{T} = \mathcal{B}^{T}\mathcal{A}^{T} \tag{5.2.2}$$

И

$$[\mathcal{A}, \mathcal{B}]^T = -[\mathcal{B}^T, \mathcal{A}^T]. \tag{5.2.3}$$

Обратим внимание на то, что в отличие от случая алгебры $\mathrm{Mat}(p,\,q\,|\,\Lambda)$ свойство (5.2.3) не распространяется на произвольные элементы $\mathrm{Mat}(p,\,q)$. Супералгебры $\mathrm{Лu}\ \mathrm{I}(p,\,q)$ и $\mathrm{mot}(p,\,q)$ играют особую роль в теории в связи со следующим отределением:

гомоморфизм произвольной супералгебры Ли $\mathfrak g$ в $\mathfrak l$ (p,q) или $\mathfrak m\mathfrak a\mathfrak t$ (p,q) называется линейным представлением супералгебры Ли $\mathfrak g$.

В следующих ниже примерах всегда, когда речь идет об алгебрах, состоящих из операторов или матриц, имеется в виду, что эти алгебры являются подалгебрами $\ell(p,q)$ или $\mathfrak{mat}(p,q)$, т. е. что коммутатор в них определяется формулой (5.1.6). Запись элемента супералгебры Ли \mathfrak{g} в виде u+v всегда будет означать, что $u \in \mathfrak{g}$, $v=\mathfrak{g}$.

2. Унимодулярная линейная супералгебра Ли (p, q). Эта алгебра состоит из операторов, удовлетворяющих условию

$$str A = 0.$$
 (5.2.4)

Она аналогична алгебре линейных операторов со следом, равным 0, в обычном линейном пространстве.

3. Алгебра суперкосоэрмитовых матриц $\mathfrak{u}(p,q)$. Эта алгебра состоит из матриц $\mathcal{U} \subseteq \operatorname{Mat}(\mathbb{C}|p,q)$ вида

$$\begin{pmatrix} A & 0 \\ 0 & D \end{pmatrix} + e^{-\pi i/4} \begin{pmatrix} 0 & B \\ -B^* & 0 \end{pmatrix} A = -A^*, \ D = -D^*, \quad (5.2.5)$$

где * означает эрмитовское сопряжение. Супералгебра Ли (p, q) является аналогом обычной алгебры Ли косоэрмитовых матриц.

 $\hat{\Pi}$ егко видеть, что $\mathfrak{u}(p, q)$ является вещественной формой $\mathfrak{mat}(C|p, q)$.

4. Унимодулярная алгебра суперкосоэрмитовых матриц ви (p, q). Супералгебра Ливи(p, q) является подалгеброй алгебры и (p, q), состоящей из матриц, удовлетворяющих условию (5.2.4).

5. Ортогонально-симплектические супералгебры $\mathfrak{osp}(C|2p,q)$, $\mathfrak{osp}(R|2p,q)$. Так называются подалгебры $\mathfrak{mat}(C|2p,q)$ и $\mathfrak{mat}(R|2p,q)$ соответственно, состоящие из матриц, удовлетворяющих условию

$$\mathcal{A}\,\mathcal{J}+\mathcal{J}\,\mathcal{A}^T=0,\quad \mathcal{J}=\begin{pmatrix}0&I_p&0\\-I_p&0&0\\0&0&I_q\end{pmatrix},\qquad (5.2.6)$$

где знак T над матрицей имеет тот же смысл, что в (5.2.1). Более подробно

$$\mathcal{A} = \begin{pmatrix} A & B & 0 \\ C & -A' & 0 \\ 0 & 0 & F \end{pmatrix} + \begin{pmatrix} 0 & 0 & \mu \\ 0 & 0 & \nu \\ \nu' & -\mu' & 0 \end{pmatrix}, B = B', C = C', F = -F'.$$
(5.2.7)

Алгебра $\mathfrak{osp}(\mathbf{R}|2p,q)$ является, очевидно, вещественной формой $\mathfrak{osp}(\mathbf{C}|2p,q)$. Алгебра $\mathfrak{osp}(\mathbf{R}|2p,q)$ тесно связана с линейными суперканоническими преобразованиями, которые рассматривались в гл. 3. Преобразуем матрицы $\mathcal{A} \in \mathfrak{osp}(\mathbf{R}|2p,q)$ к виду, удобному для установления этой связи. Рассмотрим матрицу

$$L_1 = \begin{pmatrix} e^{-\pi i/4} & I_{2p} & 0 \\ 0 & I_a \end{pmatrix} \tag{5.2.8}$$

и положим $\mathcal{B} = L_1 \mathcal{A} L_1^{-1}$. Очевидно, что

$$\mathcal{B} = \begin{pmatrix} A & B & 0 \\ C & -A' & 0 \\ 0 & 0 & F \end{pmatrix} + e^{-\pi i/4} \begin{pmatrix} 0 & 0 & \mu \\ 0 & -0 & \nu \\ i\nu' & -i\mu' & 0 \end{pmatrix}. \tag{5.2.9}$$

где A, B, C, F, μ , ν — те же, что в (5.2.7). Пользуясь свойством транспонирования (5.2.2), получаем

$$\mathcal{B}\mathcal{J}_1 + \mathcal{J}_1\mathcal{B}^T = 0, \tag{5.2.10}$$

где

$$\mathcal{J}_1 = L_1 \mathcal{J} L_1^{-1} = \begin{pmatrix} 0 & -iI_p & 0 \\ iI_p & 0 & 0 \\ 0 & 0 & I_q \end{pmatrix}, \tag{5.2.11}$$

Как мы увидим, соотношение (5.2.10) является инфинитезимальным аналогом соотношения (3.2.8), характерного для суперканонических преобразований вещественных образующих \hat{p}_i , \hat{q}_j , $\hat{\gamma}_h$ алгебры $\mathfrak{A}(\Lambda)$.

Укажем инфинитезимальный аналог соотношений (3.2.18), определяющих суперканонические преобразования образующих $\widehat{a}_{k,B}$, $\widehat{a}_{k,F}^*$, $\widehat{a}_{k,F}^*$ алгебры $\mathfrak{A}(\Lambda)$, которые являются аналогами бозевских и фермиевских операторов рождения и уничтожения (при нечетном q к образующим $\widehat{a}_{k,B},\ldots,\widehat{a}_{k,F}^*$ добавляется γ_q). Образующие \widehat{p}_i , \widehat{q}_j , $\widehat{\gamma}_k$ связаны с образующими $\widehat{a}_{k,B},\ldots,\widehat{a}_{k,F}^*$ (и γ_q при нечетном q) матрицей $L_2 = \begin{pmatrix} U_{|p/2} & 0 \\ 0 & U_{q/2} \end{pmatrix}$ при четном q и матрицей

$$L_3 = \begin{pmatrix} U_{p/2} & 0 & 0 \\ 0 & U_{q-1/2} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

при нечетном q, где $U_s = \frac{1}{\sqrt{2}} \begin{pmatrix} I_s & I_s \\ iI_s & -iI_s \end{pmatrix}$ (см. (3.2.17)).

В соответствии с этими инфинитезимальными супераналогами линейных канонических преобразований операторов рождения и уничтожения являются матрицы вида

$$\mathcal{S} = \begin{cases} L_2 \mathcal{B} L_2^{-1} & \text{при четном } q, \\ L_3 \mathcal{B} L_3^{-1} & \text{при нечетном } q. \end{cases}$$
 (5.2.12)

Из (5.2.12) следует, что матрицы \mathscr{S}' удовлетворяют условию

$$\mathscr{SS} + \mathscr{SS}^T = 0, \ \mathscr{S} = L \mathscr{S}_1 L^T = \begin{pmatrix} \tau_p & 0 \\ 0 & S_q \end{pmatrix}, \tag{5.2.13}$$

где $L=L_2$ при четном q и $L=L_3$ при нечетном q;

$$S_q = \begin{pmatrix} 0 & I_{q/2} \\ I_{q/2} & 0 \end{pmatrix}$$
 при четном q , (5.2.14)
$$S_q = \begin{pmatrix} 0 & I_{(q-1)/2} & 0 \\ I_{(q-1)/2} & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
 при нечетном q . (5.2.15)

Матрицы имеют следующий явный вид:

$$\mathcal{S} = \begin{pmatrix} M & 0 \\ 0 & N \end{pmatrix} + e^{-\pi i/4} \begin{pmatrix} 0 & Q \\ -S_a Q' \tau_0 & 0 \end{pmatrix}, \tag{5.2.16}$$

причем блоки M, N, Q имеют вид $M = \begin{pmatrix} U_1 & V_1 \\ \overline{V}_1 & \overline{U}_1 \end{pmatrix};$

$$[N=\left(egin{array}{c} U_2 \ \overline{V}_2 \ \overline{U}_2 \end{array}
ight)$$
, $Q=\left(egin{array}{ccc} lpha & eta \ \overline{eta} & \overline{lpha} \end{array}
ight)$ при четном q ,

$$N = \begin{pmatrix} U_2 & |V_2| C \\ \overline{V}_2 & \overline{U}_2 \overline{C} \\ -\overline{C}' - C' 0 \end{pmatrix}, \quad Q = \begin{pmatrix} \alpha & \beta & \sigma \\ \overline{\beta} & \overline{\alpha} & \overline{\sigma} \end{pmatrix} \text{ при нечетном } [q,]$$

$$V_1 = \text{KR3-LD3-TH-LE M3-TDWLM RODGLEOF } p/2 \text{ In } [a/2] \text{ COOTBETCT BEHALM.}$$

 U_i , V_i — квадратные матрицы порядков p/2 и [q/2] соответственно, α , β — прямоугольные $p \times [q/2]$ матрицы, C и σ — одностолбцовые матрицы.

Супералгебру Ли, состоящую из матриц вида (5.2.16) при четном q мы будем обозначать $\mathfrak{c}(m,n)$, при нечетном — $c_1(m,n)$, где m=p/2, n=[q/2]. Эти обозначения призваны подчеркнуть их связь с каноническими преобразованиями. 6. Алгебра $\mathfrak{osp}(\mathbb{R}|2p,2q',q'')$. Эта алгебра является

6. Алгебра $\mathfrak{osp}(R|2p,2q',q'')$. Эта алгебра является вещественной формой $\mathfrak{osp}(C|2p,2q'+q'')$. Она состоит из вещественных матриц, удовлетворяющих условию

$$\mathcal{A}\,\mathcal{O}_{p,q',q''} + \mathcal{O}_{p,q',q''}\mathcal{A}^T = 0, \tag{5.2.17}$$

где

$$\mathcal{S}_{p,\,q',\,q''} = \begin{pmatrix} \tau_p & 0 & 0 \\ 0 & S_{q'} & 0 \\ 0 & 0 & I_{q''} \end{pmatrix}, \quad \tau_p = \begin{pmatrix} 0 & I_p \\ -I_p & 0 \end{pmatrix}, \quad S_{q'} = \begin{pmatrix} 0 & I_{q'} \\ I_{q'} & 0 \end{pmatrix}.$$

Более подробно,

$$\mathcal{A} = \begin{pmatrix} A & [0] \\ 0 & B \end{pmatrix} + \begin{pmatrix} 0 & \mathbf{\gamma} \\ -\widetilde{S}_{q',\,q''}\,\mathbf{\gamma}'\mathbf{\tau}_p & 0 \end{pmatrix}, \text{ rge } \widetilde{S}_{q',\,q''} = \begin{pmatrix} S_{q'} & 0 \\ 0 & I_{q''} \end{pmatrix}.$$

 \overline{A}, B — вещественные матрицы, удовлетворяющие условиям

$$A \tau_{2p} + \tau_{2p} A' = 0, \quad B \widetilde{S}_{q', q''} + \widetilde{S}_{q', q''} B' = 0.$$

Эти матрицы имеют вид:

$$A = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & -A'_{11} \end{pmatrix}, B = \begin{pmatrix} B_{11} & B_{12} & B_{13} \\ B_{21} & -B'_{11} & B_{23} \\ -B'_{23} & -B'_{13} & B_{33} \end{pmatrix}.$$

причем $A_{12}=A'_{12}$, $A_{21}=A'_{21}$, $B_{12}=-B'_{12}$, $B'_{21}=-B_{21}$, $B_{33}=-B'_{33}$. При q'=0 супералгебра Ли $\mathfrak{osp}(\mathbb{R}|2p,2q',q'')$ превращается в рассмотренную ранее супералгебру Ли $\mathfrak{osp}(\mathbb{R}|2p,q)$, при q''=0 она тесно связана с гамильтоновой структурой в кокасательном пространстве к супермногообразию, которая наиболее прямолинейным образом обобщает на суперслучай гамильтонову структуру в кокасательном пространстве к обычному многообразию.

7. Ортогонально-симплектическая супералгебра Ли 2-го рода $\mathfrak{osp}(\mathbf{K}|n)$. Эта алгебра состоит из матриц $\mathcal{A} \in \mathrm{Mat}(\mathbf{K}|n,n)$, удовлетворяющих условию

$$\mathcal{A}\boldsymbol{\tau}_n + \boldsymbol{\tau}_n \mathcal{A}^T = 0, \ \boldsymbol{\tau}_n = \begin{pmatrix} 0 & \boldsymbol{I}_n \\ --\boldsymbol{I}_n & 0 \end{pmatrix}.$$

Более подробно,

$$\mathcal{A} = \begin{pmatrix} A & B \\ C & -A' \end{pmatrix}, B = -B', C = C'.$$

На первый взгляд кажется, что алгебра \mathfrak{osp} (K(n,n)) является точным аналогом симплектической алгебры Sp(n). Однако она в такой же степени является аналогом и ортогональной.

В самом деле, положим $\mathcal{A} = S_n \mathcal{B} S_n$, где $S_n = \begin{pmatrix} 0 & I_n \\ I_n & 0 \end{pmatrix}$. Легко видеть, что матрицы \mathcal{B} удовлетворяют условию $\mathcal{B} S_n + S_n \mathcal{B}^T = 0$ и тем самым образуют супералгебру Ли являющуюся точным

аналогом ортогональной алгебры O(2n). 8. Лоренцовская суперконформная алгебра \mathfrak{t} (2, 2, N). Так называется супералгебра Ли, состоящая из матриц вида

$$\mathcal{A} = \begin{pmatrix} A & B & 0 \\ C & -A^* & 0 \\ 0 & 0 & D \end{pmatrix} + e^{\pi i/4} \begin{pmatrix} 0 & 0 & \alpha \\ 0 & 0 & \beta \\ -i\beta^* & i\alpha^* & 0 \end{pmatrix}.$$
 (5.2.18)

где A, B, C — комплексные матрицы 2-го порядка, D — комплексная матрица порядка N, α , β — комплексные прямоугольные матрицы, имеющие 2 строки и N столбцов. Матрицы B, C и D удовлетворяют соотношениям

$$B=B^*, C=C^*, D=-D^*.$$
 (5.2.19)

9. Лоренцовское суперобобщение алгебры де Ситтера \hat{s}_L (4, N). Эта алгебра является подалгеброй

предыдущей, она выделяется дополнительным условием

$$\mathcal{A}\begin{pmatrix} \tau & 0 & 0 \\ 0 & \tau & 0 \\ 0 & 0 & I_N \end{pmatrix} + \begin{pmatrix} \tau & 0 & 0 \\ 0 & \tau & 0 \\ 0 & 0 & I_N \end{pmatrix} \mathcal{A}^T = 0,$$
 (5.2.20)

где \mathscr{A} — матрица вида (5.2.18), $\tau = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$,

$$C = \tau B'\tau$$
, $\beta = -i\tau\bar{\alpha}$, $D = -D' = \bar{D}$, tr $A = 0$, (5.2.21)

где A, B, C, D, α , β — блоки матрицы \mathscr{A} . Обратим внимание, что в обычном случае существует две алгебры де Ситтера: S^+ , состоящая из блочных 4×4 матриц $\begin{pmatrix} A & B \\ C & -A^* \end{pmatrix}$, удовлетво-

ряющих условиям

$$\binom{A}{C} - A^* \binom{\tau}{0} \binom{\tau}{\tau} + \binom{\tau}{0} \binom{\sigma}{\tau} \binom{A}{C} - A^* = 0, B = B^*, C = C^*, (5.2.22)$$

и S-, состоящая из аналогичных матриц, у которых, однако, первое условие (5.2.22) заменено на

$$\begin{pmatrix} A & B \\ C & -A^* \end{pmatrix} \begin{pmatrix} -\tau & 0 \\ 0 & \tau \end{pmatrix} + \begin{pmatrix} -\tau & 0 \\ 0 & \tau \end{pmatrix} \begin{pmatrix} A & B \\ C & -A^* \end{pmatrix}' = 0.$$
 (5.2.23)

Остальные условия (5.2.22) остаются неизменными. Супераналогом обладает только первая алгебра. Алгебра $\mathfrak{S}_L(4,N)$ изоморфна алгебре \mathfrak{osp} (R|4,N). Устанавливать изоморфизм удобно в два этапа. Вначале рассмотрим матрицы 4×4 и $(N+4)\times (N+4)$:

$$w = \frac{1}{\sqrt{2}} \begin{pmatrix} I_2 - iI_2 \\ \tau - i\tau \end{pmatrix}, \quad W = \begin{pmatrix} w & 0 \\ 0 & I_N \end{pmatrix}. \tag{5.2.24}$$

Положим $\mathscr{B}=W\mathscr{A}W^{-1}$, где $\mathscr{A} \in \mathfrak{S}_L(4,N)$. Матрица \mathscr{B} имеет вид

$$\mathcal{B} = \begin{pmatrix} U & V & 0 \\ \overline{V} & \overline{U} & 0 \\ 0 & 0 & D \end{pmatrix} + e^{\pi i/4} \begin{pmatrix} 0 & 0 & \sigma \\ 0 & 0 & -\overline{\sigma} \\ -\overline{\sigma}^* & -\overline{\sigma}' & 0 \end{pmatrix}$$
(5.2.25)

где

$$U = \frac{1}{2} (A - A^*) + \frac{i}{2} (B - \tau B' \tau), \quad V = \frac{1}{2} (A + A^*) \tau + \frac{i}{2} (B\tau - \tau B')$$

$$\sigma = \alpha - \tau \bar{\alpha}. \quad (5.2.26)$$

 $=\bar{a}\tau$ и $\tau b=-\bar{b}\tau$, где a — косоэрмитова, b — эрмитова матрицы, причем ${\rm tr}\; a={\rm tr}\; b=0.)$

Положим

$$\mathcal{K}_{1} = \begin{pmatrix} \tau & 0 & 0 \\ 0 & \tau & 0 \\ 0 & 0 & I_{N} \end{pmatrix}, \quad \mathcal{K} = W \mathcal{K}_{1} W^{T} = \begin{pmatrix} 0 & I_{2} & 0 \\ -I_{2} & 0 & 0 \\ 0 & 0 & I_{N} \end{pmatrix}. \quad (5.2.27)$$

Из (5.2.20) следует, что матрицы ${\mathcal B}$ удовлетворяют соотношению

$$\mathcal{B}\mathcal{K} + \mathcal{K}\mathcal{B}^T = 0. \tag{5.2.28}$$

Рассмотрим теперь 4×4 и $(4+N)\times (4+N)$ матрицы

$$u = \frac{1}{\sqrt{2}} e^{-\frac{\pi i}{4}} \begin{pmatrix} iI_2 & iI_2 \\ -I_2 & I_2 \end{pmatrix}, \ U = \begin{pmatrix} u & 0 \\ 0 & I_N \end{pmatrix}$$

и положим $\mathscr{C} = U\mathscr{B}U^{-1}$. Из (5.2.25) следует, что матрицы вещественны:

$$\begin{pmatrix}
r_{11} & r_{12} & 0 \\
r_{21} & r_{22} & 0 \\
0 & 0 & D
\end{pmatrix} + \begin{pmatrix}
0 & 0 & \rho \\
0 & 0 & \mu \\
\mu' & -\rho' & 0
\end{pmatrix},$$

$$\begin{pmatrix}
r_{11} & r_{12} \\
r_{21} & r_{22}
\end{pmatrix} = \begin{pmatrix}
\operatorname{Re} U + \operatorname{Re} V & \operatorname{Im} U - \operatorname{Im} V \\
-\operatorname{Im} U - \operatorname{Im} V & \operatorname{Re} U - \operatorname{Re} V
\end{pmatrix},$$
(5.2.29)

$$\binom{\rho}{\mu} = -\frac{1}{\sqrt[]{2}} \binom{\operatorname{Im} \sigma}{\operatorname{Re} \sigma},$$

где символы Re, Im означают вещественную и мнимую часть соответствующей матрицы. Заметим, что $\mathcal{K} = U\mathcal{K}U^T$. Поэтому из (5.2.29) следует, что матрицы \mathscr{C} удовлетворяют условиям

$$\mathcal{E}\mathcal{K} + \mathcal{K}\mathcal{E}^T = 0$$
,

т. е. $\mathscr{C} \in \mathfrak{osp}$ $(\mathbf{R}|4,N)$. Обратно, легко видеть, что если $\mathscr{C} \in \mathfrak{osp}$ $(\mathbf{R}|4,N)$, то $\mathscr{A} = W^{-1}U^{-1}\mathscr{C}UW \in \mathfrak{s}_L(4,N)$.

10. Евклидовская суперконформная алгебра $\mathfrak{u}_E(4,N)$. Эта алгебра существует только при четном N. Она состоит из матриц вида

$$\mathcal{A} = \begin{pmatrix} A & B & 0 \\ C & D & 0 \\ 0 & 0 & F \end{pmatrix} + \begin{pmatrix} 0 & 0 & \alpha \\ 0 & 0 & \beta \\ \gamma & \delta & 0 \end{pmatrix}, \tag{5.2.30}$$

где A, B, C, D — матрицы 2-го порядка, имеющие специальный вид

$$\left(\begin{array}{c} a & b \\ -\overline{b} & \overline{a} \end{array}\right), \tag{5.2.31}$$

матрицы α , β , γ , δ состоят из блоков, которыми служат матрицы 2-го порядка вида (5.2.31). Так как матрицы вида (5.2.31)

образуют алгебру кватернионов, то другими словами, можно сказать, что алгебра $\mathfrak{u}_{\mathcal{E}}(4,N)$ состоит из кватернионных матриц. По аналогии с введенными ранее пространствами $\mathbf{K}^{\rho,q}$, где $\mathbf{K}=\mathbf{R}$ или $\mathbf{K}=\mathbf{C}$, обозначим через $Q^{p,q}$ — градуированное кватернионное линейное пространство. Элементами $Q^{p,q}$ служат

столбики
$$\begin{pmatrix} x_1 \\ \vdots \\ x_{p+q} \end{pmatrix}$$
, где $x_i \in Q$ — кватернионы. Z_2 -градуированиую алгебру линейных операторов в этом пространстве обозна-

ную алгебру линейных операторов в этом пространстве обозначим L(Q|p,q), соответствующую супералгебру Ли — \mathfrak{z} (Q|p,q).

B этих обозначениях $\mathfrak{u}_E(4,N)=\mathfrak{z}\left(Q\,|\,2,\,\frac{N}{2}\right).$

де Ситтера $\mathfrak{d}_E(4,N)$. Эта алгебра, так же как предыдущая, существует только при четном N. Она состоит из матриц вида (5.2.30), удовлетворяющих дополнительному условию (5.2.20).

11. Евклидовское суперобобщение алгебры

12. Супералгебра Ли $\mathfrak{mat}(p)$. Эта алгебра состоит из матриц $\mathscr{A} \subseteq \mathfrak{mat}(p,q)$, имеющих специальный вид

$$\mathcal{A} = \begin{pmatrix} A & 0 \\ 0 & A \end{pmatrix} + \begin{pmatrix} 0 & B \\ B & 0 \end{pmatrix}. \tag{5.2.32}$$

Супералгебра Ли \mathfrak{mat} (p) обладает идеалом \mathfrak{s} \mathfrak{mat} (p), состоящим из матриц вида (5.2.32), удовлетворяющих дополнительному условию

$$tr B = 0.$$
 (5.2.33)

Супералгебра \mathfrak{s} таt (p) аналогична супералгебре $\mathfrak{s}_{\mathfrak{s}}(p,q)$: ей отвечает, как мы увидим, подгруппа S $Mat(p|\Lambda) \subset G$ $Mat(p|\Lambda)$, состоящая из элементов G $Mat(p|\Lambda)$ с супердетерминантом 2-го рода, равным 1. Супералгебра \mathfrak{s} таt (p) обладает идеалом, состоящим из

матриц вида $\lambda \begin{pmatrix} I_p & 0 \\ 0 & I_p \end{pmatrix}$. Факторалгебра \mathfrak{s} mat(p) по этому идеалу называется (f-d)-супералгеброй Гелл-Мана. Михеля.

идеалу называется (f-d)-супералгеброй Гелл-Мана, Михеля, Радикати. Мы будем обозначать ее $\mathcal{GMR}(p)$.

Алгебру $\mathcal{SMR}(p)$ можно реализовать матрицами вида (5.2.32) с дополнительными условиями $\operatorname{tr} A = \operatorname{tr} B = 0$ и коммутатором, отличающимся от обычного:

$$[\mathcal{A}, \mathcal{B}]_1 = [\mathcal{A}\mathcal{B}] - \frac{1}{2p} \operatorname{tr} [\mathcal{A}, \mathcal{B}] I_{2p}, \tag{5.2.34}$$

где $[\mathscr{A},\mathscr{B}]$ — обычный коммутатор, определяемый формулой (5.1.6).

13. Алгебра Гольфанда—Лихтмана ГЛ(N). Эту алгебру проще всего описать как подалгебру алгебры суперконформных преобразований и (2, 2, N), состоящую из матриц

$$\mathcal{A} = \begin{pmatrix} A & B & 0 \\ 0 & -A^* & 0 \\ 0 & 0 & 0 \end{pmatrix} + \begin{pmatrix} 0 & 0 & \gamma \\ 0 & 0 & 0 \\ 0 & -i\gamma^* & 0 \end{pmatrix}, \text{ tr } A = 0$$
 (5.2.35)

 $(\gamma = e^{\pi i/4}\alpha$, где α — матрица из правой части (5.2.18)). Четная часть алгебры ГЛ(N) является алгеброй Ли группы Пуанкаре.

Алгебра $\Gamma\Pi(N)$ обладает группой автоморфизмов, изоморфной U(N). Полупрямое произведение алгебр $\Gamma\Pi(N)$ и U(N) также является подалгеброй суперконформной алгебры \mathfrak{u} (2, 2, N). Обозначим его через $\Gamma\Pi_1(N)$. Супералгебра Π и $\Gamma\Pi_1(N)$ состоит из матриц вида

$$\mathcal{A} = \begin{pmatrix} A & B & 0 \\ 0 & -A^* & 0 \\ 0 & 0 & D \end{pmatrix} + \begin{pmatrix} 0 & 0 & \gamma \\ 0 & 0 & 0 \\ 0 & -\gamma^* & 0 \end{pmatrix}, \text{ tr } A = 0.$$
 (5.2.36)

14. Супералгебра локальных векторных полей $D_{\rho,q}(U)$. Эта алгебра состоит из дифференциальных операторов 1-го порядка действующих в алгебре $\Lambda_{\rho,q}(U)$ как линейном пространстве:

$$(Xf)(z) = \sum X^{i}(z) \frac{\overrightarrow{\partial}}{\partial z^{i}} f, \qquad (5.2.37)$$

где z^i , $1 \le i \le p+q$, — образующие алгебры $\Lambda_{p,q}(U)$, $X^i \subseteq \Lambda_{p,q}(U)$. В случае, если $\alpha(z^i)=1$, в (5.2.37) имеется в виду левая про-изводная.

Очевидно, что оператор вида (5.2.37) не меняет четности элемента f, если коэффициенты X^i однородны и $\alpha(X^i) + \alpha(z^i) = 0$ при всех i, и меняет четность f, если коэффициенты X^i однородны, но $\alpha(X^i) + \alpha(z^i) = 1$ при всех i. Таким образом, в соответствии с общим определением четности оператора, действующего в Z_2 -градуированном линейном пространстве, оператор X вида (5.2.37) однороден, если его коэффициенты X^i однородны и сумма $\alpha(X^i) + \alpha(z^i)$ не зависит от номера i. При этих условиях его четность равна

$$\alpha(X) = \alpha(X^i) + \alpha(z^i). \tag{5.2.38}$$

Операция коммутирования в $D_{p,q}(U)$ определяется в соответствии с общей формулой (5.1.6). Так же как в случае обычных дифференциальных операторов 1-го порядка, легко проверяется, что коммутатор операторов вида (5.2.37) является оператором того же вида. Таким образом, коммутатор (5.1.6) превращает $D_{p,q}(U)$ в супералгебру Ли. В случае однородных $X, Y \in D_{p,q}(U)$ коэффициенты $[X, Y]^i$ операторов [X, Y] выражаются через коэффициенты $[X, Y]^i$ операторов [X, Y] согласно формуле

$$[X, Y]^{i} = \sum X^{s} \left(\frac{\overrightarrow{\partial}}{\partial z^{s}} Y^{i} \right) - (-1)^{\alpha(X)\alpha(Y)} Y^{s} \left(\frac{\overrightarrow{\partial}}{\partial z^{s}} X^{i} \right) \cdot (5.2.39)$$

Заметим, что операторы $X \in D_{p,q}(U)$ являются дифференцированиями алгебры $\Lambda_{p,q}(U)$ $X(f,g) = (Xf)g + (-1)^{\alpha(X)\alpha(f)}fXg$ (5.2.40)

для однородных $f,g \in \Lambda_{p,q}(U)$, $X \in D_{p,q}(U)$. Так же как в обычном случае, можно показать, что $D_{p,q}(U)$ состоит из всех диф-

ференцирований $\Lambda_{p,q}(U)^{\perp}$.

15. Представление алгебры $D_{p,q}(U)$ в пространстве локальных тензорных полей. Напомним, что тензорным полем называется полилинейная функция, зависящая от некоторого количества касательных и кокасательных векторов к супермногообразию: $F = F(z | u, \ldots, u; v, \ldots, v)$, где z—точка супермногообразия $M, u = \{u_1 \ldots u_{p+q}\}, v = \{v^1 \ldots v^{p+q}\}$ —соответственно кокасательный и касательный векторы к M в

точке z. Напомним, что четности компонент этих векторов u_i , v^j связаны с четностями локальных координат одним из следующих двух соотношений:

$$\alpha(u_i) = \alpha(z^i)$$
 или $\alpha(u_i) = \alpha(z^i) + 1$, $\alpha(v^i) = \alpha(z^i)$ или $\alpha(v^i) = \alpha(z^i) + 1$. (5.2.41)

В случае, если $\alpha(u_i) = \alpha(v^i)$, векторы u и v называются родственными, между ними определено скалярное произведение

$$(u, v) = \sum u_i v^i. \tag{5.2.42}$$

В случае, если супермногообразие M является локальным, т. е. если $z \in \Lambda_{p,q}(U)$, тензорное поле $F(z|u,\ldots,u;v,\ldots,v)$ является элементом алгебры $T_{p,q}(U) \subset \Lambda_{\infty,\infty}(U \times K^\infty)$. Напомним, что элементами алгебры $T_{p,q}(U)$ служат произвольные (не обязательно полилинейные) цилиндрические функции от z,u,v.

В случае глобального супермногообразия M роль алгебры $T_{p,q}(U)$ играет алгебра сечений расслоения, базой которого служит M, а слоем — бесконечное произведение касательных и кокасательных пространств.

В алгебре $T_{p,q}(U)$ существует оператор, который называется

упрощением

$$\operatorname{simpl} F = \int F(z \mid u, v) e^{-\sum_{r \in M} \frac{(u, v)}{r \, m(r)}} \prod \widehat{d}u \widehat{d}v, \qquad (5.2.43)$$

где $M \subset \mathbb{Z}_+$, m(r) — функция на M, принимающая положительные целочисленные значения, причем $m(r_1) = m(r_2)$ только, если $r_1 = r_2$; u, v — пары родственных векторов.

 $^{^1}$ Отметим, что отсюда следует замкнутость $D_{p,\,q}(U)$ относительно коммутатора (5.1.6) в обход прямых вычислений. См. теорему 5.2.

Таким образом, функция $G = \underset{M,m}{\text{simpl } F}$ зависит от числа аргументов, на 2|M| меньшего, чем F, где |M| — число точек

гументов, на 2|M| меньшего, чем F, где |M| — число точек в множестве M. Пусть A_r — однородный оператор в $T_{p,q}(U)$, имеющий вид

$$A_r = A_k^i u_i \frac{\vec{\partial}}{\partial u_k}. \tag{5.2.44}$$

где r — некоторое фиксированное число, $A_k{}^i \!\!\in\!\! T_{\rho,q}(U)$. Обозначим через $A_r{}^T$, \tilde{A}_r операторы, действующие согласно формулам: $A_r{}^T F = (-1)^{(\alpha(F) + \alpha(v^i) + \alpha(v^k))\alpha(A_r)} F \frac{\overleftarrow{\partial}}{\partial v^i} v^k A_k^i, \qquad (5.2.45)$

$$\widetilde{A}_r F = (-1)^{\alpha(v^k)(\alpha(v^i) + \alpha(v^k))} A_k^i v^k \frac{\overrightarrow{\partial}}{\partial v^i} F.$$

С помощью соотношений (2.1.4) и (2.2.7), (2.2.8) легко проверяется, что $A_r{}^T = \bar{A}_r$ и что

$$\underset{r,r}{\operatorname{simpl}}(A_{r}^{T}F) = \underset{r,r'}{\operatorname{simpl}}(A_{r}^{T}F) = \underset{r,r'}{\operatorname{simpl}}(A_{r}F),$$
 (5.2.46) где $r' = m(r) \in \mathbb{Z}_{+}$ — произвольное число, такое, что векторы u и v родственны. Перейдем к описанию представления алгебры

 $D_{p,q}(U)$ в пространстве $T_{p,q}(U)$. Каждому $X \in D_{p,q}(U)$ сопоставим в $T_{p,q}(U)$ оператор T_X согласно формуле

$$T_{X} = X - \sum_{r} (-1)^{\alpha(z^{i})\alpha(u_{s})} (X^{i}u_{i}) \frac{\overrightarrow{\partial}}{\partial z_{s}} \frac{\overrightarrow{\partial}}{\partial u_{s}} + \sum_{r} (-1)^{\alpha(X)(\alpha(z^{i})+\alpha(v^{i}))} v^{s} \left(\frac{\overrightarrow{\partial}}{\partial z^{s}} X^{i}\right) \frac{\overrightarrow{\partial}}{\partial v^{i}}, \qquad (5.2.47)$$

где X — оператор в $T_{p,q}(U)$, действующий на элемент F(z|u,v), как на функцию z. Из формулы (5.2.45) легко следует, что оператор T_X имеет следующую структуру:

$$T_X = X - \sum_{r} A_r(X) + \sum_{r} \widetilde{A_r(X)},$$
 (5.2.48)

где

$$A_{r}(X) = (-1)^{\alpha(z^{s})\alpha(u_{s})} (X^{i}u_{i}) \frac{\overrightarrow{\partial}}{\partial z^{s}} \frac{\overrightarrow{\partial}}{\partial u_{s}}.$$
 (5.2.49)

Оператор A_r вида (5.2.49) обладает важным свойством, если $f=Y^{\ell}\left(z\right)u_{\ell}$, то

$$(T_Xf)^i = [X,Y]^i = X^s \left(\frac{\overrightarrow{\partial}}{\partial z^s} Y^i\right) - (-1)^{\alpha(X)\alpha(Y)} Y^s \left(\frac{\overrightarrow{\partial}}{\partial z^s} X^i\right).$$

где $Y = Y^i - \frac{\partial}{\partial z^i}$ — оператор, аналогичный X. Операторы T_X вида (5.2.47) являются супераналогами так называемых производных \mathcal{J} и, хорошо известных в обычной дифференциальной геометрии. Мы сохраним этот термин и в дальнейшем будем часто называть эти операторы производными \mathcal{J} и.

Теорема 5.2. 1) Операторы T_X вида (5.2.47) образуют ли-

нейное представление супералгебры Ли $D_{p,q}(U)$.

2) Операторы T_X перестановочны с операторами упрощения. 3) Операторы T_X являются дифференцированиями алгебры

 $T_{p,q}(U)$.

Доказательство. Третье утверждение очевидным образом следует из того, что T_X является дифференциальным оператором 1-го порядка, причем оператор T_X однороден, если X однороден и $\alpha(T_X) = \alpha(X)$.

Второе утверждение следует из того, что оператор T_X имеет вид (5.2.48), в то время как оператор X коммутирует с упрощением, а операторы A_t , \tilde{A}_t связаны с оператором упрощения

формулой (5.2.46).

Перейдем к первому утверждению. Заметим, что при любых $X, Y \in D_{\rho,q}(U)$ и любых $r, r'[A_r(X), \widetilde{A}_{r'}(Y)] = 0$ при $r \neq r'$. Также $[A_r(X), A_{r'}(Y)] = [\widetilde{A}_r(X), \widetilde{A}_{r'}(Y)] = 0$. Поэтому

$$[T_X, T_Y] = [X, Y] - \Sigma[X, A_r(Y)] + \Sigma[X, \widetilde{A}_r(Y)] - \Sigma[A_r(X), Y] +$$

$$+ \Sigma[\overline{A}_r(X), Y] + \Sigma[A_r(X), A_{r'}(Y)] + \Sigma[\widetilde{A}_r(X), \widetilde{A}_{r'}(Y)].$$

Заметим, что слагаемое, содержащее $A_r(X)$ или $A_r(Y)$, является дифференциальным оператором только по переменным u_i , слагаемое, содержащее $\tilde{A}_r(X)$ или $A_r(Y)$, — только по переменным v^i . Поэтому условие $\{T_X, T_Y\} = T_{[X,Y]}$ эквивалентно следующим двум системам условий:

$$A_r([X, Y]) = [X, A_r(Y)] + [A_r(X), Y] - [A_r(X), A_r(Y)],$$

$$\bar{A}_r([X, Y]) = [X, \bar{A}_r(Y)] + [\bar{A}_r(X), Y] + [\bar{A}_r(X), \bar{A}_r(Y)].$$

Эти соотношения проверяются одинаково. Ограничимся проверкой соотношений 2-й группы. Опустим индекс r. Непосредственное вычисление дает

$$[X, \widetilde{A}(Y)] = (-1)^{\alpha(Y)(\alpha(z^t) + \alpha(v^t)) + \alpha(v^t)\alpha(X)} v^s X^t \left(\frac{\overrightarrow{\partial}}{\partial z^t} \frac{\overrightarrow{\partial}}{\partial z^s} Y^t \right) \frac{\overrightarrow{\partial}}{\partial v^t},$$

 $[\widetilde{A}(X), Y] = -(-1)^{\alpha(X)\alpha(Y) + \alpha(X)(\alpha(z^{l}) + \alpha(v^{l})) + \alpha(v^{l})\alpha(Y)} v^{s}Y^{t} \times \left(\frac{\overrightarrow{\partial}}{\partial x^{l}} \frac{\overrightarrow{\partial}}{\partial x^{l}} X^{l}\right) \frac{\overrightarrow{\partial}}{\partial x^{l}}, \qquad (5.2.50)$

$$[\widetilde{A}(X), \widetilde{A}(Y)] = (-1)^{(\alpha(X) + \alpha(Y))(\alpha(z^i) + \alpha(v^i))} \times$$

$$\times \left[v^{s} \left(\frac{\overrightarrow{\partial}}{\partial z^{s}} X^{t} \right) \left(\frac{\overrightarrow{\partial}}{\partial z^{t}} Y^{i} \right) - (-1)^{\alpha(X)\alpha(Y)} v^{s} \left(\frac{\overrightarrow{\partial}}{\partial z^{s}} Y^{t} \right) \left(\frac{\overrightarrow{\partial}}{\partial z^{t}} X^{t} \right) \right] \frac{\overrightarrow{\partial}}{\partial v^{t}}.$$

Заметим, что в силу (5.2.41) сумма $\alpha(z^i) + \alpha(v^i)$ не зависит от i. Поэтому

$$(-1)^{\alpha(Y)(\alpha(z^l)+\alpha(v^l))+\alpha(v^s)\alpha(X)}=(-1)^{(\alpha(X)+\alpha(Y))(\alpha(z^l)+\alpha(v^l))+\alpha(X)\alpha(z^s)}.$$

Применяя аналогичное преобразование в правой части 2-го равенства (5.2.50) и складывая затем все три равенства, находим, что сумма правых частей имеет вид

$$(-1)^{\alpha(W)(\alpha(z^i)+\alpha(v^i))}v^s\left(\frac{\overrightarrow{\partial}}{\partial z^s}W^i\right)\frac{\overrightarrow{\partial}}{\partial v^i},$$

где

$$\begin{split} W^{t} &= X^{t} \left(\frac{\overrightarrow{\partial}}{\partial z^{t}} Y^{t} \right) - (-1)^{\alpha(X)\alpha(Y)} Y^{t} \left(\frac{\overrightarrow{\partial}}{\partial z^{t}} X^{t} \right), \\ W &= W^{t} \frac{\overrightarrow{\partial}}{\partial z^{t}} = [X, Y]. \end{split}$$

В заключение сделаем несколько замечаний по поводу определения операторов $X,\ T_X$ и их свойств.

Замечание 1. Обозначим временно оператор, определяемый формулой (5.2.37), через X_t и рассмотрим аналогичный оператор X_r

$$(X_{t}f)(z) = f\frac{\partial}{\partial z^{t}}X^{t}.$$

Теория, которая получается на основе операторов X_r , полностью эквивалентна рассмотренной, ввиду того что

$$\left(f\frac{\overleftarrow{\partial}}{\partial z^i}X^i\right)^0 = (X^i)^0 \frac{\overrightarrow{\partial}}{\partial z^i}f^0,$$

где 0 — оператор в $\Lambda_{\rho,q}(U)$ переставляющий нечетные координаты в обратном порядке.

Замечание 2. Определение оператора T_X может быть модифицировано за счет изменения значковых множителей без ущерба для справедливости теоремы 5.2. Выбранные нами знаковые множители в (5.2.47) однозначно определены условиями:

1) если $F = Y^i u_i \in T_{p,q}(U)$, то $T_X F = [X, Y]^i u_i$, где $[X, Y]^i -$ коэффициент коммутатора оператора X с оператом $Y = Y^i - \frac{\partial}{\partial z^i}$ (см. (5.2.39)):

2) оператор T_X должен коммутировать с операторами упрошения.

Замечание 3. Обозначим через ${}^0D_{p,q}(U)$ подмножество $D_{p,q}(U)$, состоящее из операторов, коэффициенты которых линейно зависят от z^i . Из (5.2.50) следует, что ${}^0D_{p,q}(U)$ является подалгеброй $D_{p,q}(U)$. Если элемент $f \in \Lambda_{p,q}(U)$, в свою очередь, линеен по образующим z^i , то

$$Xf = X_k^l z^k \frac{\overrightarrow{\partial}}{\partial z^l} f_s z^s = X_k^l z^k$$

(коэффициенты f_i являются числами, поэтому знаковые множители не возникают). Следовательно, супералгебра Ли ${}^0D_{p,q}(U)$ изоморфна супералгебре $\max(p,q)$. Изоморфизм дается формулой

$$X \rightarrow \left\| \frac{\overrightarrow{\partial}}{\partial z^k} X^i \right\|$$

16. Коммутатор производной Ли и ковариантной производной. Напомним, что однородной ковариантной производной называется оператор в $T_{p,q}(U)$ вида

$$\nabla (a) = a^{\ell} \frac{\overrightarrow{\partial}}{\partial z^{\ell}} + \sum_{r} a^{k} \Gamma_{kl}^{\ell} u_{i} \frac{\overrightarrow{\partial}}{\partial u_{l}} - \sum_{r} (-1)^{\alpha(\nabla)\alpha(v^{\ell})} v^{\ell} a^{k} \Gamma_{kl}^{\ell} \frac{\overrightarrow{\partial}}{\partial v^{\ell}} (5.2.51)$$

где a^i — компоненты касательного вектора a,

$$\alpha(\nabla) = \alpha(a^t) + \alpha(z^t) = \alpha(a^k) + \alpha(z^t) + \alpha(z^t) + \alpha(\Gamma_{k,t}^t).$$

Оператор $\nabla(a)$, подобно оператору T_X , перестановочен с оператором упрощения. Это видно из того, что он имеет структуру, аналогичную оператору T_X :

$$\nabla (a) = D(a) + \sum_{r} B_{r} - \sum_{r} \widetilde{B}_{r}, \qquad (5.2.52)$$

где

$$D(a) = a^{t} \frac{\overrightarrow{\partial}}{\partial z^{t}}, \quad B_{r} = a^{k} \Gamma_{kl}^{t} u_{i} \frac{\overrightarrow{\partial}}{\partial u_{l}},$$

$$\widetilde{B}_{r} = (-1)^{\alpha(\mathbf{v})\alpha(\mathbf{v}^{l})} v^{l} \alpha^{k} \Gamma^{l}_{kl} \frac{\overrightarrow{\partial}}{\partial v^{l}}, \qquad (5.2.53)$$

знак ~ имеет тот же смысл, что в (5.2.45). Сопоставим оператору $\nabla(a)$ элемент $\Gamma \in T_{p,q}(U)$, равный

$$\Gamma(a,u,v,w,t)=a^k\Gamma^l_{kl}u_iw^l$$
—(—1) $r^lv^la^k\Gamma^l_{kl}t_i$, (5.2.54) где w , t — соответственно касательный и кокасательный векторы, причем

 $\alpha(w^i) = \alpha(u_i), \quad \alpha(t_i) = \alpha(v^i).$

Таким образом.

$$\nabla (a) = \sum_{r} \Gamma \left(a, u, v, \frac{\overrightarrow{\partial}}{\partial u}, \frac{\overrightarrow{\partial}}{\partial v} \right), \qquad (5.2.56)$$

(5.2.55)

Теорема 5.3. Коммутатор операторов T_X и $\nabla(a)$ имеет вид

$$[T_{X}, \nabla(a)] = \sum_{r} \Gamma_{1}\left(a, u, v, \frac{\overrightarrow{\partial}}{\partial u}, \frac{\overrightarrow{\partial}}{\partial v}\right) + \sum_{r} \Gamma_{2}\left(a, u, \frac{\overrightarrow{\partial}}{\partial u}\right) - \sum_{r} \widetilde{\Gamma}_{2}\left(a, v, \frac{\overrightarrow{\partial}}{\partial v}\right). \quad (5.2.57)$$

причем

$$\Gamma_1(a, u, v, w, t) = \mathbf{A}_w T_X \mathbf{A}_w \Gamma(a, u, v, w, t), \qquad (5.2.58)$$

где A_w — оператор четности по переменной w,

$$\mathbf{A}_{w} f(u, v, w, t) = f(u, v, w', t), \quad w'^{t} = (-1)^{\alpha(w')} v',$$
PREMERTY $\Gamma_{v}(a, v, w)$ $\Gamma_{v}(a, v, t)$ where the

элементы $\Gamma_2(a,u,w)$, $\Gamma_2(a,v,t)$ имеют вид

$$\Gamma_{\mathbf{2}}(a, u, w) = (-1)^{\alpha(z^{S})} \alpha^{(u_{S})} a^{J} \frac{\overrightarrow{\partial}}{\partial z^{I}} (X^{I} u_{I}) \frac{\overleftarrow{\partial}}{\partial z^{S}} w^{S},$$

$$(5.2.59)$$

$$\widetilde{\Gamma}_{2}(a, v, t) = (-1)^{\alpha(X)} \frac{(\alpha(z^{l}) + \alpha(v^{l}))}{(\alpha^{l} - \frac{\overrightarrow{\partial}}{\partial z^{l}} - v^{s} - \frac{\overrightarrow{\partial}}{\partial z^{s}} - X^{t}) t_{i}.$$

Доказательство. Представим операторы T_X и $\nabla(a)$ в виде (5.2.48) и (5.2.52) соответственно, в сумме (5.2.48) выделим слагаемое, отвечающее $v^i = a^i$, которое обозначим A_0 :

$$\widetilde{A}_0 = (-1)^{\alpha(X) \alpha(\nabla)} a^{\mathfrak{s}} \left(\frac{\overrightarrow{\partial}}{\partial z^{\mathfrak{s}}} X^{\ell} \right) \frac{\overrightarrow{\partial}}{\partial a^{\ell}}. \tag{5.2.60}$$

(Напомним, что $\alpha(\nabla) = \alpha(z^i) + \alpha(a^i)$.) Учитывая, что операторы, содержащие производные, по различным аргументам коммутируют между собой, имеем:

$$[T_X, \nabla(a)] = [X, D] + [\widetilde{A}_0, D] - \sum_r [A_r, D] + \sum_{r \neq 0} [\widetilde{A}_r, D] + \sum_r ([X, B_r] - [X, \widetilde{B}_r]) - \sum_r ([A_r, B_r] + [\widetilde{A}_r, \widetilde{B}_r]). \quad [(5.2.61)]$$

Заметим, что производные $\partial/\partial z^i$ могут содержаться лишь первой строке. Коэффициент при $\partial/\partial z^i$, таким образом,

$$(-1)^{\alpha(X)\alpha(\nabla)}a^{s}\left(\frac{\overrightarrow{\partial}}{\partial z^{s}}X^{i}\right)+(-1)^{\alpha(X)\alpha(\nabla)}a^{s}\left(\frac{\overrightarrow{\partial}}{\partial z^{s}}X^{i}\right)=0,$$

Далее, слагаемые содержащие вторые производные X^i , содержатся только во втором, третьем и четвертом слагаемых. Эти слагаемые имеют вид

$$(-1)^{\alpha(\nabla)\alpha(X)}DA_{r}-(-1)^{\alpha(\nabla)\alpha(X)}D\widetilde{A}_{r}+\ldots, \qquad (5.2.62)$$

где многоточие означает однородный дифференциальный оператор 2-го порядка. Операторы (5.2.62) имеют при всех г одинаковый вид, поэтому в дальнейших вычислениях индекс г опускается. Очевидно, что

$$DA = \Gamma_2 \left(a, u, \frac{\overrightarrow{\partial}}{\partial u} \right) + \dots,$$

$$D\widetilde{A} = \widetilde{\Gamma}_2 \left(a, v, \frac{\overrightarrow{\partial}}{\partial v} \right) + \dots,$$

$$\Gamma_{\mathbf{2}}(a, u, w) = (-1)^{\alpha(z^{s})} \alpha^{(u_{s})} a^{t} \frac{\overline{\partial}}{\partial z^{t}} (X^{t} u_{t}) \frac{\overline{\partial}}{\partial z^{s}} w^{s},$$

$$\widetilde{\Gamma}_{\mathbf{z}}(a, v, t) = (-1)^{\alpha(X) (\alpha(z^i) + \alpha(v^i))} a^j \left(\frac{\overrightarrow{\partial}}{\partial z^j} v^s \frac{\overrightarrow{\partial}}{\partial z^s} X^t \right) t_i$$

и многоточие имеет тот же смысл, что выше.

Перейдем к последним двум слагаемым. Опуская индекс г, имеем

$$[X, B] = X^{i} \left(\frac{\overrightarrow{\partial}}{\partial z^{i}} a^{k} \Gamma_{k, l}^{i} \right) u_{j} \frac{\overrightarrow{\partial}}{\partial u_{l}},$$

(5.2.63)

$$[X, \widetilde{B}] = -(-1)^{\alpha(\nabla)\alpha(v^l)} X^l \left(\frac{\overline{\partial}}{\partial z^l} v^l a^k \Gamma_{kl}^l \right) \frac{\overline{\partial}}{\partial v^l}.$$

Эти члены имеют очевидным образом нужный вид. Далее,

$$-[A, B] = (-1)^{\alpha(z^s) \alpha(u_s)} \left(X^l u_i \frac{\overleftarrow{\partial}}{\partial z^s} \right) \frac{\overrightarrow{\partial}}{\partial u^s} (a^k \Gamma_{kl}^l u_i) \frac{\overrightarrow{\partial}}{\partial u_l} +$$

$$+ (-1)^{\alpha(X) \alpha(\nabla) + \alpha(z^s) \alpha(u_s)} a^k \Gamma_{kl}^l u_i \frac{\overrightarrow{\partial}}{\partial u_l} \left(X^l u_i \frac{\overleftarrow{\partial}}{\partial z^s} \right) \frac{\overrightarrow{\partial}}{\partial u_s}, \quad (5.2.64)$$

$$-[\widetilde{A}, \widetilde{B}] = (-1)^{\alpha(X) (\alpha(z^l) + \alpha(v^l)) + \alpha(\nabla)\alpha(v^l)} v^s \left(\frac{\overrightarrow{\partial}}{\partial z^s} X^l \right) \times$$

$$\times v^{l}a^{k} \Gamma_{kl}^{l} - \frac{\overrightarrow{\partial}}{\partial v^{l}} v^{s} \left(-\frac{\overrightarrow{\partial}}{\partial z^{s}} X^{l} \right) - \frac{\overrightarrow{\partial}}{\partial v^{l}}. \tag{5.2.65}$$

 $\times \frac{\overrightarrow{\partial}}{a_{-l}} (v^l a^k \Gamma^l_{kl}) \frac{\overrightarrow{\partial}}{a_{-l}} + (-1)^{\alpha(X)\alpha(\nabla) + \alpha(X)(\alpha(z^l) + \alpha(v^l)) + \alpha(\nabla)\alpha(v)^l)} \times$

Первые слагаемые в правых частях формул (5.2.63) и (5.2.64)

имеют нужный вид, вторые следует преобразовать. Запишем второе слагаемое в правой части (5.2.64) в виде $C\left(a,u,\frac{\partial}{\partial u}\right)$, где

$$C(a, u, w) = (-1)^{\alpha(X)\alpha(\nabla) + \alpha(z^{s})\alpha(u_{s}) + \alpha(u_{l})\alpha(X^{l})} \times$$

$$\times a^{k} \Gamma_{kl}^{l} u_{l} w^{l} \frac{\overleftarrow{\partial}}{|\partial w^{l}|} \left(X^{l} \frac{\overleftarrow{\partial}}{\partial z^{s}} \right) w^{s} =$$

$$= (-1)^{\gamma} w^{s} \left(\frac{\overrightarrow{\partial}}{\partial z^{s}} X^{l} \right) \frac{\overleftarrow{\partial}}{\partial w^{l}} (a^{k} \Gamma_{kl}^{l} u_{l} w^{l}).$$

Показатель у равен

$$+ \alpha (w^i) (\alpha (\nabla) + 1) + (\alpha (X^i) + \alpha (z^s)) (\alpha (\nabla) + \alpha (w^i)) +$$

$$+ \alpha (w^s) (\alpha (\nabla) + \alpha (X^i) + \alpha (z^s) + \alpha (w^i)) + \alpha (z^s) (\alpha (X^i) + 1).$$

 $\mathbf{\gamma} = \mathbf{\alpha}(X) \mathbf{\alpha}(\nabla) + \mathbf{\alpha}(z^s) \mathbf{\alpha}(u_s) + \mathbf{\alpha}(u_s) \mathbf{\alpha}(X^t) + \mathbf{\alpha}(u_s) \mathbf{\alpha}(X^t)$

Преобразуем γ , пользуясь тем, что $\alpha(X^l) = \alpha(X) + \alpha(z^l)$, $\alpha(u_i) = \alpha(w^i)$, $\alpha(z^l) + \alpha(z^k) = \alpha(w^l) + \alpha(w^k)$.

$$+ \alpha(\nabla) (\alpha(w^t) + \alpha(z^t) + \alpha(z^s) + \alpha(w^s)) +$$

$$+ \alpha(z^s) \alpha(w^s) + \alpha(w^t) \alpha(z^t) + \alpha(w^t) (\alpha(z^t) + \alpha(z^s)) +$$

 $\mathbf{Y} = \alpha(X) (\alpha(\nabla) + \alpha(w^t) + \alpha(\nabla) + \alpha(w^t) + \alpha(w^s) + \alpha(z^s)) +$

$$+\alpha(w^s)(\alpha(z^t) + \alpha(z^s) + \alpha(w^t)) + (\alpha(z^s)(\alpha(z^t) + \alpha(z^s)) =$$

$$= \alpha(X)(\alpha(w^s) + \alpha(z^s)) + \alpha(z^s)(\alpha(w^s) + \alpha(w^s) + \alpha(z^t) + \alpha(z^s)) +$$

$$+ \alpha (w^i) (\alpha (z^i) + \alpha (w^i) + \alpha (z^i) + \alpha (z^s)) + \alpha (w^s) (\alpha (z^i) + \alpha (w^i)) =$$

$$= \alpha (X) (\alpha (w^s) + \alpha (z^s)) + \alpha (z^s) (\alpha (z^i) + \alpha (z^s)) +$$

$$+ \alpha (\mathbf{w}^{t}) (\alpha (z^{s}) + \alpha (\mathbf{w}^{t})) + \alpha (\mathbf{w}^{s})^{*} (\alpha (z^{t})^{n} + \alpha (\mathbf{w}^{t})) =$$

$$= \alpha (X) (\alpha (\mathbf{w}^{s}) + \alpha (z^{s})) + \alpha (z^{s})^{*} (\alpha (z^{t}) + \alpha (z^{s})) +$$

$$+ \alpha(w^i) (\alpha(w^s) + \alpha(z^i)) + \alpha(w^s) (\alpha(z^i) + \alpha(w^i)) =$$

$$= \alpha(X) (\alpha(w^s) + \alpha(z^s)) + \alpha(z^s) (\alpha(z^i) + \alpha(z^s)) + \alpha(z^i) (\alpha(w^i) + \alpha(w^s)) =$$

$$= \alpha(X) (\alpha(w^s) + \alpha(z^s)) + (\alpha(z^s) + \alpha(z^t))^2 =$$

$$= \alpha(X) (\alpha(w^s) + \alpha(z^s)) + \alpha(w^s) + \alpha(w^t).$$

Таким образом,

$$C(a, u, w) = \mathbf{A}_{w} A \mathbf{A}_{w} a^{k} \Gamma^{j}_{kl} u_{i} w^{l},$$

(5.2.66)

где A — оператор A_t , отвечающий случаю, когда v=w.

Перейдем ко второму слагаемому в правой части (5.2.65).

Запишем его в виде $D\left(a,v,\frac{\overrightarrow{\delta}}{\partial u}\right)$, где

$$D(a, v, t) = (-1)^{\alpha(X)\alpha(v) + \alpha(X)} (\alpha(z^{t}) + \alpha(v^{t})) + \alpha(v) \alpha(v^{t}) \times (v^{t}a^{k} \Gamma_{kl}^{i} t_{i}) \frac{\overrightarrow{\partial}}{\partial t_{s}} \left(\frac{\overrightarrow{\partial}}{\partial z^{s}} X^{t} \right) t_{i} = (-1)^{v} (X^{t} t_{i}) \frac{\overrightarrow{\partial}}{\partial z^{s}} \frac{\overrightarrow{\partial}}{\partial t_{s}} (v^{t} a^{k} \Gamma_{kl}^{i} t_{i}).$$

Показатель у преобразуем аналогично предыдущему:

$$\gamma = \alpha(X) \left(\alpha(\nabla) + \alpha(z^{i}) + \alpha(v^{i})\right) + \alpha(\nabla) \alpha(v^{i}) +
+ \alpha(t_{s}) \left(\alpha(\nabla) + 1\right) + \left(\alpha(z^{s}) + \alpha(X^{i}) + \alpha(t_{i})\right) \left(\alpha(\nabla) + \alpha(t_{s})\right) +
+ \alpha(z^{s}) \left(\alpha(X^{i}) + \alpha(t_{i}) + 1\right) =
= \alpha(X)(\alpha(\nabla) + \alpha(z^{i}) + \alpha(t_{i}) + \alpha(\nabla) + \alpha(t_{s}) + \alpha(z^{s})) +
+ \alpha(\nabla) \left(\alpha(v^{i}) + \alpha(t_{s}) + \alpha(z^{s}) + \alpha(z^{i}) + \alpha(t_{i})\right) +
+ \alpha(z^{s})(\alpha(z^{i}) + \alpha(t_{i}) + \alpha(z^{s})) =
= \alpha(\nabla) \alpha(v^{i}) + \alpha(z^{s}) \alpha(t_{s}).$$

Таким образом,

$$D(a, v, t) = A(-1)^{\alpha(v)\alpha(v^l)} v^l a^k \Gamma_{kl}^l t_j.$$
 (5.2.67)

Объединяя формулы (5.2.66), (5.2.67) с первыми слагаемыми в правых частях равенств (5.2.64), (5.2.65) и с (5.2.63), получаем нужный результат.

17. Диффеоморфизмы, оставляющие инвариантной интегральную форму. Применим производную Лик интегральной форме

$$\omega = \rho(x, \xi) dx^1 \dots dx^p \bar{d}\xi^1 \dots \bar{d}\xi^q.$$
 (5.2.68)

В этом случае $u_i = dz^i = d\xi^{i-p}$ при $p+1 \le i \le p+q$, $v^j = dz^j$ (= dX^i при $1 \le i \le p$),

 $\alpha(u_i) = \alpha(z^i), \quad \alpha(v^i) = \alpha(z^i) + 1.$ (5.2.69)

Поэтому

$$T_X \omega = X \rho v^1 \dots v^\rho u_{\rho+1} \dots u_{\rho+\rho} +$$

$$+\left.(-1)^{\alpha(X)+\alpha(v^5)\cdot(\alpha(z^5)+\alpha(X^l))+(\alpha(X^l)+1)\alpha(z^5)}\,\left(X^l\,\frac{\overleftarrow{\partial}}{\partial z^5}\right)v^s\,\frac{\overrightarrow{\partial}}{\partial v^l}\,\times\right.$$

$$\times \rho v^1 \dots v^\rho u_{n+1} \dots u_{n+q}$$

$$-(-1)^{\alpha(z^{s})+\alpha(u_{i})\alpha(z^{s})}\left(X^{i}\frac{\overleftarrow{\partial}}{\partial z^{s}}\right)u_{i}\frac{\overrightarrow{\partial}}{\partial u_{s}}\rho v^{1}\dots v^{p}u_{p+1}\dots u_{p+q}=$$

$$=\left\{X\rho+\sum_{i\leq p}(-1)^{\alpha(X)+\alpha(v^{i})\alpha(X)+\alpha(z^{i})\alpha(X)}\left(X^{i}\frac{\overleftarrow{\partial}}{\partial z^{i}}\right)\rho-\right.$$

$$-\sum_{i=0}^{p}(-1)^{\alpha(z^{i})+\alpha(u_{i})\alpha(z^{i})}\left(X^{i}\frac{\overleftarrow{\partial}}{\partial z^{i}}\right)\rho\right\}v^{1}\dots v^{p}u_{p+1}\dots u_{p+q}+\widetilde{\omega}.$$

При преобразованиях учтено, что

$$v^{s} \frac{\overrightarrow{\partial}}{\partial v^{l}} v^{1} \dots v^{p} = \delta_{i}^{s} v^{1} \dots v^{p}, \quad s \leqslant p,$$

$$u_{i} \frac{\overrightarrow{\partial}}{\partial u_{s}} u_{p+1} \dots u_{p+q} = \delta_{i}^{s} u_{p+1} \dots u_{p+q}, \quad s > p.$$

Окончательно получаем, что $T_{\mathbf{X}}\omega = \omega_1 + \widetilde{\omega}$, где ω_1 — форма, аналогичная ω , причем

$$\rho_1(z) = (X \rho)(z) + \sum_i (-1)^{\alpha(z^i)} \left(X^i \frac{\overleftarrow{\partial}}{\partial z^i} \right) \rho(z). \quad (5.2.70)$$

Форма о имеет вид

$$\widetilde{\omega} = \sum_{\substack{s>p\\t\leqslant p}} \left(X^t \frac{\overleftarrow{\partial}}{\partial z^s} \right) \rho(z) \left(u_t \frac{\overrightarrow{\partial}}{\partial u^s} - v^s \frac{\overrightarrow{\partial}}{\partial v^t} \right) v^1 \dots v^p u_{p+1} \dots v_{p+q}.$$
(5.2.71)

Положим

$$u_i = \sum_{i>p} \omega_i^l u_i, \quad v^s = \sum_{k< p} \omega_k^s v^k,$$
 (5.2.72)

где $\|w_k^s\|$ — прямоугольная матрица, $1 \le k \le p$, $p+1 \le s \le p+q$, $\mathbf{a}(w_k^s)=1$. Подставляя u_i , v^s из (5.72) в (5.71), получаем, что

$$\widetilde{\omega} = \Sigma \left(X^i - \frac{\widetilde{\partial}}{\partial z^s} \right) \rho (z) (w_i^s - w_i^s) v^1 \dots v^p u_{p+1} \dots u_{p+q} = 0.$$

в полном согласии с общей теорией, развитой в гл. 5.

Возвращаясь к формуле (5.2.70), находим, что инфинитезимальное условие сохранения суперобъема, задаваемого интегральной формой (5.2.68), состоит в тождестве

$$X \rho + \Sigma (-1)^{\alpha(z^l)} \left(X^l - \frac{\overleftarrow{\partial}}{\partial z^l} \right) \rho = 0.$$
 (5.2.73)

18. Диффеоморфизмы, сохраняющие инвариантной внешнюю дифференциальную форму.

$$\omega = \sum \omega_{l_1 \dots l_k} v^{l_k} \dots v^{l_1} \qquad (5.2.74)$$

внешняя дифференциальная форма,

$$v^i = dz^i, \quad \alpha(v^i) = \alpha(z^i) + 1.$$
 (5.2.75)

Применяя оператор T_X к форме ω , получаем

$$T_{X} \omega = X \omega + (-1)^{\alpha(X)} v^{s} \left(\frac{\overrightarrow{\partial}}{\partial z^{s}} X^{l} \right) \frac{\overrightarrow{\partial}}{\partial v^{l}} \omega =$$

$$= X \omega + (-1)^{\alpha(X)} v^{s} \frac{\overrightarrow{\partial}}{\partial z^{s}} \left(X^{l} \frac{\overrightarrow{\partial}}{\partial v^{l}} \omega \right) -$$

$$- (-1)^{\alpha(X) + \alpha(z^{s})} (\alpha(X) + 1) + \alpha(v^{s}) (\alpha(X^{l}) + \alpha(v^{l})) v^{s} \left(X^{l} \frac{\overrightarrow{\partial}}{\partial v^{l}} \right) \left(\frac{\overrightarrow{\partial}}{\partial z^{s}} \omega \right) =$$

$$= X \omega + (-1)^{\alpha(X)} v^{s} \frac{\overrightarrow{\partial}}{\partial z^{s}} \left(X^{l} \frac{\overrightarrow{\partial}}{\partial v^{l}} \omega \right) -$$

$$- (-1)^{\alpha(X) + \alpha(z^{s})} (\alpha(X) + 1) + \alpha(v^{s}) (\alpha(X^{l}) + \alpha(v^{l})) \left[\left(X^{l} \frac{\overrightarrow{\partial}}{\partial v^{l}} \right) v^{s} \frac{\overrightarrow{\partial}}{\partial z^{s}} \omega -$$

$$- X^{s} \frac{\overrightarrow{\partial}}{\partial z^{s}} \omega \right] = (-1)^{\alpha(X)} v^{s} \frac{\overrightarrow{\partial}}{\partial z^{s}} \left(X^{l} \frac{\overrightarrow{\partial}}{\partial v^{l}} \omega \right) +$$

$$+ X^{l} \frac{\overrightarrow{\partial}}{\partial z^{l}} v^{s} \frac{\overrightarrow{\partial}}{\partial z^{s}} \omega$$

(при преобразованиях используется условие четности (5.2.75)). Окончательно получаем, что

$$T_X \omega = \delta_X d\omega + (-1)^{\alpha(X)} d \delta_X \omega, \qquad (5.2.76)$$

где $d=v^s\frac{\overrightarrow{\partial}}{\partial z^s}$, $\delta_X=X^l\frac{\overrightarrow{\partial}}{\partial v^l}$. Оператор d является внешним дифференциалом. В частности, инфинитезимальное условие инвариантности замкнутой формы относительно диффеоморфизма состоит в том, что

$$d\delta_X \omega = 0. \tag{5.2.77}$$

19. Гамильтоновы векторные поля. Алгебра скобок Пуассона. Пусть ω — замкнутая внешняя 2-форма. В этом случае аннулирующие ее внешние поля называются гамильтоновыми. Из (5.2.77) имеем

$$-\frac{1}{2}\delta_X\omega=dH. (5.2.78)$$

(Напомним, что мы рассматриваем лишь локальные векторные поля.) Множитель — 1/2 введен из соображений удобства. $\delta_X \omega$

является формой 1-го порядка. Следовательно, H — функция. Очевидно, что функция H определяется формулой (5.2.78) однозначно с точностью до постоянного слагаемого. Она называется гамильтоннаном или гамильтоновой функцией векторного поля X. Возникает естественный вопрос: всякая ли функция H является гамильтонианом какого-нибудь векторного поля? Ответ очевидным образом положителен, если форма ω невырождена (т. е. если матрица $\|\omega_{ik}\|$ этой формы обратима), и отрицателен, если форма вырождена.

Обозначим через $A_{\omega}(U)$ множество гамильтонианов векторных полей. $(A_{\omega}(U) = \Lambda_{p,q}(U))$ в случае, если форма ω невырож-

ден<u>а.</u>)

Пусть X, Y— гамильтоновы векторные поля, H_X , $H_Y \in A_{\infty}(U)$ — их гамильтонианы. Коммутатору векторных полей X, Y отвечает композиция функций H_X , H_Y , которая называется скобкой Пуассона. Скобку Пуассона мы будем обозначать аналогично коммутатору: $[H_X, H_Y]$ или, в случае, если возможно недоразумение, $[H_X, H_Y]_P$.

Скобка Пуассона, таким образом, определяется равенством

$$-\frac{1}{2}\delta_{[X,Y]}\omega = d[H_X, H_Y]. \qquad (5.2.79)$$

Очевидно, что она превращает множество A_{ω} в супералгебру Ли. Скобку Пуассона естественно называть однородной, если форма однородна. Однородную скобку Пуассона будем называть четной или нечетной в зависимости от того, четной или нечетной является форма ω^1 . Пусть ω — однородная замкнутая форма 2-го порядка, X — однородное гамильтоново векторное поле, H_X — соответствующий гамильтониан. Легко видеть, что функция H_X в этом случае однородна, причем

$$\alpha(H_X) = \alpha(X) + \alpha(\omega).$$

Выразим скобку Пуассона непосредственно через гамильтонианы.

Теорема 5.4. Пусть ω — однородная замкнутая форма 2-го порядка:

$$\omega = v^s v^t \omega_{ts}, \tag{5.2.80}$$

$$\omega_{ts} = (-1)^{\alpha(v^s) \alpha (v^t)} \omega_{st},$$
 (5.2.81)

 $\|\omega^{ik}\|$ — матрица, связанная с матрицей $\|\omega_{st}\|$ соотношением

$$\omega_{it} \omega^{ts} \omega_{si} (-1)^{\alpha(\omega)\alpha(z^t)} = \omega_{ii}, \qquad (5.2.82)$$

 $^{^1}$ Напомним, что форма ω называется однородной, если однородны ее коэффициенты $\omega_{t_1\dots t_k} \text{ и четность числа } d\left(\omega_{t_1\dots t_k}\right) = \alpha\left(z^{t_1}\right) + \dots + \alpha\left(z^{t_k}\right)$ одна и та же для всех коэффициентов. Четность однородной формы определяется согласно формуле

 $[\]alpha\left(\omega\right)=\alpha\left(\omega_{l_{1}...l_{k}}\right)+\alpha(v^{l_{1}})+...+\alpha\left(v^{l_{k}}\right),\ v^{l}=dz^{l},\ \alpha\left(v^{l}\right)=\alpha\left(z^{l}\right)+1.$

X, Y — гамильтоновы векторные поля, $H = H_X$, $G = H_Y$, соответствующие им гамильтонианы. Тогда

$$[H, G] = H \frac{\overrightarrow{\partial}}{\partial x^i} \omega^{ij} \frac{\overrightarrow{\partial}}{\partial x^j} G. \qquad (5.2.83)$$

Доказательство теоремы отнесено в следующий раздел. Сделаем по поводу нее несколько комментариев. Прежде всего заметим, что из (5.2.82) следует условие четности для элементов ω^{ij} :

$$\alpha(\omega^{ts}) = \alpha(v^t) + \alpha(v^s) + \alpha(\omega). \tag{5.2.84}$$

Далее, если матрица $\|\omega^{ts}\|$ удовлетворяет уравнению (5.2.82), то матрица с элементами

$$\omega_{11}^{fs} = \omega^{st} \left(-1\right)^{(\alpha(z^5) + \alpha(\omega))(\alpha(z^t) + \alpha(\omega) + 1)}$$

также удовлетворяет этому уравнению. В этом можно убедиться, подставив ω_1^{ts} вместо ω^{ts} в (5.2.82), переставив затем ω_{sj} налево, ω_{it} направо и воспользовавшись свойством симметрии (5.2.81) матрицы $\|\omega_{ij}\|$. Соответствующие вычисления мы опустим. Положим теперь $\widetilde{\omega}^{ts} = \frac{1}{2} (\omega^{ts} + \omega_1^{ts})$. Очевидно, что

матрица $\|\widetilde{\omega}^{t_s}\|$ также является решением уравнения (5.2.82). Кроме того, она удовлетворяет условию симметрии

$$\widetilde{\omega}^{ts} = \widetilde{\omega}^{st} \left(-1 \right)^{(\alpha(s^3) + \alpha(\omega)) \cdot (\alpha(s^t + \alpha(\omega)) + 1}. \tag{5.2.85}$$

Таким образом, скобка Пуассона не изменится, если вместо ω^{ij} в формулу (5.2.83) подставить $\widetilde{\omega}^{ij}$.

Пусть теперь $\|\widetilde{\omega}^{ij}\|$ — произвольная матрица, удовлетворяющая условию симметрии (5.2.85). Построим с ее помощью скобку, заменив в (5.2.83) ω^{ij} на $\widetilde{\omega}^{ij}$. Нетрудно проверить, что условие симметрии (5.2.85) влечет за собой свойство симметрии скобки (5.2.83)

$$[H, G] = (-1)^{(\alpha(H) + \alpha(\omega)) \times (\alpha(G) + \alpha(\omega) + 1)} [G, H].$$
 (5.2.86)

Для доказательства следует перенести $\frac{\overrightarrow{\partial}}{\partial z^l}$ G налево, H $\frac{\overleftarrow{\partial}}{\partial z^l}$ направо, заменить левую производную на правую, правую на левую и воспользоваться свойством (5.2.85). Соответствующие вычисления являются автоматическими, и мы их опустим.

Отметим, что если форма о невырождена, то матрица, удовлетворяющая уравнению (5.2.82), заведомо существует и,

более того, определяется однозначно

$$\omega_{it}\omega^{ts}(-1)^{\alpha(\omega)\alpha(z^t)} = \delta_t^s. \qquad (5.2.87)$$

Следовательно, в этом случае $\omega^{ts} = \widetilde{\omega}^{ts}$ удовлетворяет условию (5.2.85). В случае, если форма ω вырождена, существование

матрицы $\|\omega^{ij}\|$, удовлетворяющей уравнению (5.2.82), следует из теоремы 5.5. Заметим, что формула (5.2.83) может быть

применена к любой паре элементов $H, G \in \Lambda_{p,q}(U)$.

В то же время структуру супералгебры Ли она задает, вообще говоря, не на всей алгебре $\Lambda_{p,q}(U)$, а на множестве $A_{\infty} \subset \Lambda_{p,q}(U)$, которое является более узким, чем $\Lambda_{p,q}(U)$, если форма вырождена. Возникает вопрос: каким условиям должна удовлетворять матрица $\|\omega^{ij}\|$, чтобы формула (5.2.83) задавала структуру супералгебры Ли во всем пространстве $\Lambda_{p,q}(U)$?

Прежде чем формулировать эти условия, дадим следующее определение. Пусть A — супералгебра Ли, состоящая из элементов алгебры $\Lambda_{\rho,q}(U)$. Мы будем говорить, что супералгебра Ли A обладает согласованной (с $\Lambda_{\rho,q}(U)$) Z_2 -градуировкой, если однородные элементы A являются в то же время одно-

родными, как элементы $\Lambda_{p,q}(U)$.

Формула (5.2.86) показывает, что если супералгебра Ли A скобок Пуассона построена с помощью однородной формы ω , то она обладает согласованной Z_2 -градуировкой. При этом четность элемента H, как элемента A, совпадает с его четностью, как элемента $\Lambda_{p,q}(U)$, если $\alpha(\omega) = 0$, и не совпадает, если $\alpha(\omega) = 1$.

Теорема 5.5. Для того чтобы формула (5.2.83) задавала в $\Lambda_{p,q}(U)$ структуру супералгебры Ли с согласованной Z_2 -градуировкой, необходимо и достаточно, чтобы матрица $\|\omega^{ij}\|$ об-

ладала свойствами:

1) элементы ω^{st} однородные, и их четность удовлетворяет условию (5.2.84), где $\alpha(\omega)$ — число, не зависящее от s, t;

2) элементы ω^{st} обладают свойством симметрии (5.2.85);

3) выполняется тождество

$$\omega^{ls} \frac{\overrightarrow{\partial}}{\partial z^{s}} \omega^{ll} (-1)^{(\alpha(z^{l}) + \alpha(\omega)) (\alpha(z^{l}) + \alpha(\omega))} +$$

$$+ \omega^{ls} \frac{\overrightarrow{\partial}}{\partial z^{s}} \omega^{ll} (-1)^{(\alpha(z^{l}) + \alpha(\omega)) (\alpha(z^{l}) + \alpha(\omega))} +$$

$$= \omega^{ls} \frac{\overrightarrow{\partial}}{\partial z^{s}} \omega^{ll} (-1)^{(\alpha(z^{l}) + \alpha(\omega)) (\alpha(z^{l}) + \alpha(\omega))} = 0,$$

(второе и третье слагаемое получаются из первого циклической перестановкой индексов i, j, l).

Доказательства всех этих утверждений состоят в непосредственной проверке, которая осуществляется с помощью автоматических вычислений и поэтому может быть опущена. Первые два свойства гарантируют согласованность Z_2 -градуировки и свойства (5.2.86), третье — выполнение тождества Якоби.

В заключение обратим внимание на следующее обстоятельство. Пусть матрица $\|\omega^{ij}\|$ является невырожденной и постоянной: $\frac{\partial}{\partial z^{i}}\omega^{ij}=0$. Очевидно, что в этом случае квадратичные

функции образуют подалгебру алгебры скобок Пуассона (5.2.83). Пусть $\omega = \|\omega^{ij}\|$ — матрица, связанная с матрицей $\|\omega_{ij}\|$ со-

Пусть $\omega = \|\omega^{ij}\|$ — матрица, связанная с матрицей $\|\omega_{ij}\|$ соотношением (5.2.87). Соответствующие квадратным гамильтонианам векторные поля имеют вид

$$X=a_i^t z^j \frac{\partial}{\partial z^i},$$

причем матрица $a = \|a_j^i\|$ связана с матрицей ω соотношением: $a_{\omega} + \omega a^T = 0$.

Согласно теореме 5 в случае, если $\alpha(\omega)=0$, число p с необходимостью является четным и в подходящем специальном базисе матрица ω имеет вид

$$\omega = \begin{pmatrix} 0 & I_{p/2} & 0 \\ -I_{p/2} & 0 & 0 \\ 0 & 0 & I_q \end{pmatrix}.$$

В случае, если $\alpha(\omega)=1$, с необходимостью p=q и в подходящем специальном базисе

$$\omega = \begin{pmatrix} 0 & I_p \\ I_p & 0 \end{pmatrix}$$

Таким образом, в первом случае квадратичные гамильтонианы образуют ортогональную симплектическую алгебру 1-го рода, во втором — 2-го рода.

20. Доказательство теоремы 5.4. Прежде всего выразим частные производные гамильтонианов H и G через коэффициенты соответствующих векторных полей X и Y. Исходя из (5.2.78), (5.2.80) находим

$$dH = -\frac{1}{2} X^{i} \frac{\partial}{\partial v^{i}} \omega = -X^{i} v^{i} \omega_{i}^{i},$$

с другой стороны,

$$dH = v^t \frac{\vec{\partial}}{\partial x^t} H.$$

Отсюда

$$\frac{\overrightarrow{\partial}}{\partial z^t} H = (-1)^{\alpha(v^t)\alpha(X^t)+1} X^t \omega_{ti},$$

$$H \frac{\overleftarrow{\partial}}{\partial z^t} = (-1)^{\alpha(X)+\alpha(\omega)(\alpha(v^t)+1)} X^t \omega_{ti}.$$

Аналогично,

$$\frac{\partial}{\partial z^s}G = (-1)^{\alpha(v^s)\alpha(Y^l)+1}Y^l\omega_{si} = (-1)^{\alpha(v^s)\alpha(Y)+\alpha(v^s)+1}Y^l\omega_{is}.$$

Подставляя найденные выражения в (5.2.83) и пользуясь (5.2.82), после несложных преобразований получаем $[H,G] = Y^j X^i \omega_{ij} (-1)^\sigma, \tag{5.2.88}$ где

 $\sigma = \alpha(X) \alpha(Y) + \alpha(X) \alpha(v^{j}) + \alpha(Y) + \alpha(v^{j}).$

Для доказательства теоремы следует установить тождество $d\left[H,\,G\right] = -\frac{1}{2}\,\delta_{[X,Y]}\,\omega. \tag{5.2.89}$

Исходя из (5.2.88) имеем

$$d[H, G] = v^{s} \left\{ \left(\frac{\overrightarrow{\partial}}{\partial z^{s}} Y^{i} \right) X^{i} \omega_{il} + (-1)^{\alpha(z^{s})\alpha(Y^{l})} Y^{l} \left(\frac{\overrightarrow{\partial}}{\partial z^{s}} X^{i} \right) \omega_{il} + \right.$$

$$\left. + (-1)^{\alpha(z^{s})(\alpha(Y^{l}) + \alpha(X^{l}))} Y^{l} X^{l} \left(\frac{\overrightarrow{\partial}}{\partial z^{s}} \omega_{il} \right) \right\} \left[(-1)^{\sigma} \right].$$

Для формы ω вида (5.2.80) условие замкнутости в координатах имеет вид

$$\begin{split} (-1)^{\alpha(\sigma^{\delta})(\alpha(\sigma^{\delta})+1)} \left(\frac{\overrightarrow{\partial}}{\partial z^{\delta}} \, \omega_{ij} \right) + (-1)^{\alpha(\sigma^{\delta})(\alpha(\sigma^{\delta})+1)} \left(\frac{\overrightarrow{\partial}}{\partial z^{\delta}} \, \omega_{js} \right) + \\ + (-1)^{\alpha(\sigma^{\delta})(\alpha(\sigma^{\delta})+1)} \left(\frac{\overrightarrow{\partial}}{\partial z^{\delta}} \, \omega_{si} \right) = 0. \end{split}$$

(Второе и третье слагаемые получаются из первого циклическими перестановками индексов i, j, s.) Выражая отсюда $\left(\frac{\partial}{\partial z^s}\omega_{ii}\right)$, преобразуем d[H,G] к виду $d[H,G]=v^s(A_1+A_2)(-1)^\sigma, \tag{5.2.90}$

где

$$A_{1} = Y^{I} \left\{ (-1)^{\alpha(z^{S})(Y^{I})} \left(\frac{\overrightarrow{\partial}}{\partial z^{S}} X^{I} \right) \omega_{II} + \right.$$

$$\left. + (-1)^{\alpha(z^{S})(\alpha(Y^{I}) + \alpha(X^{I})) + (1 + \alpha(v^{S}))(1 + \alpha(v^{I}))} X^{I} \frac{\overrightarrow{\partial}}{\partial z^{I}} \omega_{sI} \right\},$$

$$A_{2} = X^{I} \left\{ (-1)^{\alpha(X^{I})(\alpha(Y^{I}) + \alpha(z^{S}))} \left(\frac{\overrightarrow{\partial}}{\partial z^{S}} Y^{I} \right) \omega_{II} + \right.$$

$$+ \left(-1 \right)^{\alpha(z^s)(\alpha(Y^l) + \alpha(X^l)) + \alpha(X^l)\alpha(Y^l) + (\alpha(v^s) + 1)(\alpha(v^l) + 1) + \alpha(v^l)\alpha(v^l)} Y^l \left(\frac{\overrightarrow{\partial}}{\partial z^l} \omega_{si} \right) \right\}.$$

Преобразуем A_1 . Обозначим через μ_1 , σ_1 показатели при (-1) у первого и второго слагаемых соответственно. Заметим, что $\mu_1 = (\alpha(v^s) + 1) (\alpha(Y) + \alpha(v^l) + 1)$ $\sigma_1 = (\alpha(v^s) + 1) (\alpha(X) + \alpha(Y) + \alpha(v^l) + 1)$.

Следовательно $\mu_1 + \sigma_1 = (\alpha(v^s) + 1)\alpha(X)$. Таким образом, $\Delta_1 = Y^i \left\{ X^i \left(\frac{\overrightarrow{\partial}}{\partial x^i} \omega_{si} \right) + (-1)^{(\alpha(v^s)+1)\alpha(X)} \left(\frac{\overrightarrow{\partial}}{\partial x^s} X^i \right) \omega_{ii} \right\} (-1)^{\sigma_i}.$

Воспользуемся теперь гамильтоновостью поля Х. Из общей формулы (5.2.47) следует, что

 $\left\{X+(-1)^{\alpha(X)}v^k\left(\frac{\overrightarrow{\partial}}{\partial z^k}X^l\right)\frac{\partial}{\partial z^l}\right\}\omega=0.$

В компонентах

$$X^{l}\left(\frac{\overrightarrow{\partial}}{\partial z^{l}}\omega_{sl}\right) + (-1)^{\alpha(X)(\alpha(v^{l})+1)+\alpha(v^{s})\alpha(v^{l})}\left(\frac{\overrightarrow{\partial}}{\partial z^{l}}X^{l}\right)\omega_{ls} +$$

$$+ (-1)^{\alpha(X)(\alpha(v^{s})+1)}\left(\frac{\overrightarrow{\partial}}{\partial z^{s}}X^{l}\right)\omega_{il} = 0.$$
 (5.2.91)

Таким образом, $A_1 = Y^j \frac{\overrightarrow{\partial}}{\partial z^j} X^l \omega_{ls} (-1)^{\sigma_1 + \alpha(X)(\alpha(v^j) + 1) + \alpha(v^s)\alpha(v^j) + 1},$

отсюда
$$v^sA_1(-1)^\sigma=Y^j\left(\frac{\overrightarrow{\partial}}{\partial z^j}X^i\right)v^s\omega_{si}(-1)^{\rho_1}, \tag{5.2.92}$$
 гле

где

$$\begin{split} \rho_1 &= \sigma + \sigma_1 + \alpha \left(X \right) \left(\alpha \left(v^l \right) + 1 \right) + \alpha \left(v^s \right) \left(\alpha \left(v^l \right) + 1 \right) + \alpha \left(v^s \right) \left(\alpha \left(Y \right) + 1 \right) \\ &+ \alpha \left(X \right) + \alpha \left(v^l \right) + 1 \right) + \alpha \left(v^s \right) \alpha \left(v^l \right) = \alpha \left(X \right) \alpha \left(Y \right) + \alpha \left(X \right) \alpha \left(v^l \right) + \\ &+ \alpha \left(v^s \right) + 1 + \alpha \left(v^l \right) + 1 + \alpha \left(v^s \right) \right) + \alpha \left(Y \right) \left(1 + \alpha \left(v^s \right) + 1 + \alpha \left(v^s \right) \right) + \\ &+ \alpha \left(v^l \right) + \left(\alpha \left(v^s \right) + 1 \right) \left(\alpha \left(v^l \right) + 1 \right) + \alpha \left(v^s \right) \alpha \left(v^l \right) + \alpha \left(v^s \right) \left(\alpha \left(v^l \right) + 1 \right) + \\ &+ \alpha \left(v^s \right) \alpha \left(v^l \right) + 1 = \alpha \left(X \right) \alpha \left(Y \right). \end{split}$$
Заметим теперь, что если форма ω имеет вид (5.2.80), то

 $\delta_z \omega = z^t \frac{\partial}{\partial u^t} \omega = 2z^t v^t \omega_{ti}.$ (5.2.93)Поэтому из (5.2.92) окончательно следует, что

$$v^{\mathfrak{g}}A_{1}(-1)^{\mathfrak{g}} = \frac{1}{2} (-1)^{\alpha(X)\alpha(Y)} Y^{\mathfrak{f}} \left(\frac{\overrightarrow{\partial}}{\partial z^{\mathfrak{f}}} X^{\mathfrak{f}} \right) \frac{\partial}{\partial v^{\mathfrak{f}}} \omega . \tag{5.2.94}$$

Перейдем к слагаемому A_2 . Обозначим через μ_2 и σ_2 показатели при (-1) у первого и второго слагаемых. Преобразуя эти множители аналогично предыдущему и вынося (-1) в за скобку,

получаем

тде

$$A_{s} = X^{l} \left\{ Y^{l} \frac{\partial}{\partial z^{l}} \omega_{si} + (-1)^{\alpha(Y)(\alpha(v^{s})+1)+\alpha(v^{l})\alpha(v^{l})} \left(\frac{\overrightarrow{\partial}}{\partial z^{s}} Y^{l} \right) \omega_{il} \right\} (-1)^{\sigma_{s}} =$$

$$= X^{l} \left\{ Y^{l} \left(\frac{\overrightarrow{\partial}}{\partial z^{l}} \omega_{si} \right) + (-1)^{\alpha(Y)(\alpha(v^{s})+1)} \left(\frac{\overrightarrow{\partial}}{\partial z^{s}} Y^{l} \right) \omega_{li} \right\} (-1)^{\sigma_{s}},$$

$$\sigma_{\mathbf{s}} = \alpha(X) \alpha(Y) + \alpha(X) (\alpha(v^{\mathbf{s}}) + \alpha(v')) + \alpha(Y) (\alpha(v^{\mathbf{s}}) + \alpha(v')) + \alpha(v')) + \alpha(v^{\mathbf{s}}) \alpha(v') + \alpha(v^{\mathbf{s}}) + \alpha(v').$$

Сравнивая это выражение с (5.2.91), меняя в (5.2.91) X на Y и переставляя индексы i и j, находим:

$$A_2 = X^l \left(\frac{\partial}{\partial z^l} Y^l \right) \omega_{is} \left(-1 \right)^{\sigma_s + \alpha(Y)(\alpha(\sigma^l) + 1) + \alpha(\sigma^s)\alpha(\sigma^l) + 1}.$$

Таким образом,

$$v^s A_2 (-1)^{\sigma} = X^I \left(\frac{\partial}{\partial z^I} Y^I \right) v^s \omega_{sI} (-1)^{\rho_s},$$

где

$$\begin{aligned} \rho_2 &= \sigma + \sigma_2 + \alpha (v^s) (\alpha (X) + \alpha (Y) + \alpha (v^l) + 1) + \alpha (v^s) \alpha (v^l) + \\ &+ \alpha (Y) (\alpha (v^l) + 1) + \alpha (v^s) \alpha (v^l) + 1 = \\ &= \alpha (X) (\alpha (v^l) + \alpha (v^s) + \alpha (v^l) + \alpha (v^s)) + \alpha (Y) (1 + \alpha (v^s) + \\ &+ \alpha (v^l) + \alpha (v^s) + \alpha (v^l) + 1) + \alpha (v^l) + \alpha (v^s) + \alpha (v^l) + \alpha (v^s) + \\ &+ \alpha (v^l) + \alpha (v^s) (\alpha (v^l) + 1) + \alpha (v^s) \alpha (v^l) + \alpha (v^s) \alpha (v^l) + 1 = 1. \end{aligned}$$

Учитывая (5.2.93), получаем отсюда, что

$$v^s A_2 (-1)^{\sigma} = -\frac{1}{2} X^l \left(\frac{\overrightarrow{\partial}}{\partial z^l} Y^l \right) \frac{\overrightarrow{\partial}}{\partial v^l} \omega.$$
 (5.2.95)

Комбинируя (5.2.94), (5.2.95) и (5.2.90), устанавливаем тождество (5.2.89).

21. Контактные преобразования. Пусть ω — произвольная внешняя форма. Обозначим через \mathbf{C}_{ω} множество векторных полей X, обладающих тем свойством, что соответствующие операторы T_X умножают форму ω на функцию

$$T_X \omega \equiv \delta_X d\omega + (-1)^{\alpha(X)} d\delta_X \omega = \lambda(z) \omega$$
 (5.2.96)

(см. (5.2.76)). Очевидно, что C_{ω} является супералгеброй Ли. Заметим, что для однородного оператора X элемент $\lambda(z) \in A_{p,q}(U)$ также однороден, причем $\alpha(\lambda) = \alpha(X)$.

Рассмотрим форму ω_1 на единицу большего порядка, чем ω , и зависящую от на единицу большего числа переменных:

$$\omega_1 = d(z_0 \omega) = [dz_0 \cdot \omega + (-1)^{\alpha(z^0)} z^0 d\omega$$
 (5.2.97)

 $(z^0$ — новое переменное).

Сопоставим каждому векторному полю $X \subseteq \mathbb{C}_{\infty}$ новое векторное поле X_1 , действующее в пространстве функций на единицу большего числа переменных

$$X_1 = X - \lambda(z) z^0 \frac{\partial}{\partial z^0}, \qquad (5.2.98)$$

где $\lambda(z)$ — та же функция, что в (5.2.96). Покажем, что оператор T_{X_1} анулирует форму ω_1 . В самом деле, согласно (5.2.96)

$$\delta_{X_{1}}\omega_{1} = -\lambda(z)z^{0}\omega + (-1)^{(\alpha(z^{0})+1)(\alpha(X)+1)}dz^{0}\delta_{X}\omega + \\ + (-1)^{\alpha(z^{0})+\alpha(z^{0})(\alpha(X)+1)}z^{0}\delta_{X}d\omega = (-1)^{\alpha(X)\alpha(z^{0})}z^{0}(\delta_{X}d\omega - \lambda(z)\omega) + \\ + (-1)^{(\alpha(z^{0})+1)(\alpha(X)+1)}dz^{0}\delta_{X}\omega = (-1)^{\alpha(X)\alpha(z^{0})+\alpha(X)+1}z^{0}d\delta_{X}\omega + \\ + (-1)^{(\alpha(z^{0})+1)(\alpha(X)+1)}dz^{0}\delta_{X}\omega = (-1)^{(\alpha(z^{0})+1)(\alpha(X)+1)}d(z^{0}\delta_{X}\omega). \quad (5.2.99)$$

Согласно (5.2.76) из полученного тождества следует, что $T_{X_1}\omega_1=0$. Приведенная конструкция имеет особо важное значение в случае, когда ω — форма 1-го порядка. В этом случае алгебра C_{\bullet} называется супералгеброй Ли контактных преобразований.

Формула (5.2.99) показывает, что каждое контактное векторное поле X порождает гамильтоново векторное поле X_1 с гамильтонианом

$$H = -\frac{1}{2} \left(-1\right)^{(\alpha(z^{\theta})+1)(\alpha(X)+1)} z^{\theta} \delta_{X} \omega. \tag{5.2.100}$$

22. Грассмановы оболочки супералгебр Ли $\mathfrak{s}(p,q)$ и $\mathfrak{osp}(R|2p,q)$. Особенность этих супералгебр состоит в том, что для построения их грассмановых оболочек естественно использовать грассманову алгебру с инволюцией: только в этом случае алгебры Ли $\mathfrak{s}(p,q|\Lambda)$, $\mathfrak{s}(p,q|\Lambda)$ и соответствующие им группы будут обладать свойствами, похожими на свойства их классических аналогов.

Пусть Λ — комплексная г.а. с инволюцией, σ_k — канонические образующие Λ , инвариантные относительно инволюции и

$$\xi_k = e^{\pi t/4} \sigma_k. \tag{5.2.101}$$

Обозначим через $\widetilde{\Lambda}$ вещественную подалгебру Λ , порожденную образующими ξ_k . Алгебра $\widetilde{\Lambda}$ очевидным образом не инвариантна относительно инволюции. Поэтому в соответствии с общим правилом (гл. 3 § 2) грассманова оболочка супералгебры Ли $\mathfrak{t}(p,q)$, построенная с помощью $\widetilde{\Lambda}$, обозначается не $\mathfrak{t}(p,q)\widetilde{\Lambda}$, а $\mathfrak{t}(p,q)\Lambda$). Легко видеть, что $\mathfrak{t}(p,q)\Lambda$) состоит из всевозможных матриц вида

$$\mathcal{A} = \begin{pmatrix} A & B \\ C & D \end{pmatrix},$$

где A, D — квадратные $p \times p$ - и $q \times q$ -матрицы соответственно, B, C — прямоугольные $p \times q$ - и $q \times p$ -матрицы, причем элементы матриц A, D суть четные элементы Γ .а. Λ , элементы матриц B, C суть нечетные элементы Λ и

$$\mathcal{A} + \mathcal{A}^{\bullet} = 0. \tag{5.2.102}$$

Перейдем к супералгебрам обр (R|2p,q). Запишем матрину $\mathscr{C} \in \mathfrak{osp}$ (R|2p,q) в виде (5.2.16) и перейдем к грассмановой оболочке точно так же, как в случае супералгебры $\mathfrak{u}(p,q)$. В результате мы получим, что алгебра обр $(R|2p,q|\Lambda)$ состоит из матриц, аналогичных (5.2.16):

$$\mathcal{E} = \begin{pmatrix} M & Q \\ -S_c Q' \tau_n & N \end{pmatrix}, \tag{5.2.103}$$

причем матрицы M, N, Q имеют тот же вид, что в (5.2.16), с той лишь разницей, что их элементы являются не числами, но элементами г.а. Λ , четными в случае матриц M и N и нечетными в случае матрицы Q. При этом знак «—» над матрицей имеет следующий смысл: если $\alpha = \|\alpha_{ik}\|$, то $\bar{\alpha} = \|\alpha^*_{ik}\|$ (т. е. каждый элемент α_{ik} матрицы α заменяется на α^*_{ik} , перестановки индексов не происходит).

Нетрудно проследить, что матрицы (5.2.103) характеризуются следующими свойствами:

$$\mathcal{E}\mathcal{J} + \mathcal{J}\mathcal{E}^T = 0, \quad \mathcal{E}^*\mathcal{R} + \mathcal{K}\mathcal{E} = 0, \quad (5.2.104)$$

где

$$\mathcal{J} = \begin{pmatrix} \tau_{p} \ 0 \\ 0 \ S_{q} \end{pmatrix}, \ \mathcal{K} = \begin{pmatrix} \sigma_{p} \ 0 \\ 0 \ S_{q} \end{pmatrix}, \ \sigma_{p} = \begin{pmatrix} I_{p} \ 0 \\ 0 \ -I_{p} \end{pmatrix},$$

 τ_p , S_q — те же матрицы, что в (5.2.16).

Соотношения (5.2.104) являются инфинитезимальными аналогами соотношений (3.2.18), (3.2.19), которые эквивалентны сохранению канонических перестановочных соотношений. Таким образом, соответствующую $\mathfrak{osp}(\mathbf{R}|2p,q)$ группу Ли естественно называть группой линейных суперканонических преобразований.

В заключение обратим внимание на следующее обстоятельство. Пусть \mathfrak{g} — вещественная супералгебра Ли, $[\mathfrak{g}]$ — ее комплексная оболочка, Λ — вещественная г.а., $[\Lambda]$ — комплексная оболочка Λ . Очевидно, что вещественная алгебра Ли $\mathfrak{g}(\Lambda)$ является вещественной формой комплексной алгебры Ли $[\mathfrak{g}]([\Lambda])$. Однако не следует думать, что каждая вещественная форма алгебры Ли $[\mathfrak{g}]([\Lambda])$ является грассмановой оболочкой какойнибудь супералгебры Ли. Приведем соответствующий пример. Пусть Λ — комплексная г.а. с полуавтоморфизмом \square , удовлетворяющим условию

$$(\xi^{\square})^{\square} = -\xi. \tag{5.2.105}$$

(Напомним, что отображение $a \rightarrow a$ пазывается полуавтоморфизмом, если $(ab) = a \Box b \Box$ для любых $a, b \in \Lambda$, $(\lambda a) \Box = \lambda a \Box$, если λ — комплексное число и $a \in \Lambda$.)

Рассмотрим множество матриц вида

$$\begin{pmatrix} a & b & u \\ -b^{\square} & -a & u^{\square} \\ u^{\square} & -u & 0 \end{pmatrix}, \quad a^{\square} = -a, \tag{5.2.106}$$

тде $u \in {}^{1}\Lambda$, $a, b \in {}^{0}\Lambda$.

Нетрудно проверить, что матрицы вида (5.2.106) образуют вещественную алгебру Ли, комплексная оболочка которой совладает с обр (С|2,1|Л). Однако алгебра (5.2.106) не является грассмановой оболочкой никакой супералгебры Ли. Если бы такая супералгебра Ли существовала, ее четная подалгебра состояла бы из матриц вида

$$\begin{pmatrix} is & u & 0 \\ -u & -is & 0 \\ 0 & 0 & 0 \end{pmatrix}$$
 (5.2.107)

Легко проверить, однако, что алгебру (5.2.107) нельзя дополнить до супералгебры, которая была бы изоморфна вещественной форме $\mathfrak{s}\mathfrak{s}\mathfrak{p}$ ($\mathbb{C}[2,1)$.

§ 3. ПРИСОЕДИНЕННОЕ И КОПРИСОЕДИНЕННОЕ ПРЕДСТАВЛЕНИЯ. АЛГЕБРА СКОБОК ПУАССОНА, СВЯЗАННАЯ С СУПЕРАЛГЕБРАМИ ЛИ

1. Присоединенное и коприсоединенное представления. Пусть \mathfrak{g} — супералгебра Ли. Сопоставим каждому $x \in \mathfrak{g}$ оператор в \mathfrak{g} , как в линейном пространстве:

$$ad(x)y = [x, y].$$
 (5.3.1)

Из (5.3.1) легко следует, что операторы ad(x) образуют линейное представление супералгебры Ли $\mathfrak g$ относительно коммутатора (5.1.6). Это представление называется присоединенным. Обозначим через $\mathfrak g$ пространство линейных форм на $\mathfrak g$. Значение линейной формы $y \in \mathfrak g$ на элементе $x \in \mathfrak g$ будем обозначать $\langle x, y \rangle$.

Пусть e_i — однородный базис в \mathfrak{g} и \tilde{e}^i — биортогональный ему базис в \mathfrak{g} :

$$\langle e_k, \ \widetilde{e^l} \rangle = \delta_k^l.$$

Существует два естественных способа ввести четность в эположив

$$\alpha(\tilde{e}^i) = \alpha(e_i) \tag{5.3.2}$$

$$\alpha(\tilde{e}^i) = \alpha(e_i) + 1. \tag{5.3.3}$$

Отметим, что в обоих случаях $\alpha(e_i) + \alpha(\tilde{e}^i)$ не зависит от i. Сопоставим каждому u \in \mathfrak{g} оператор $\widetilde{\mathrm{ad}}(u)$ в $\widetilde{\mathfrak{g}}$ согласно формуле

$$\langle \widetilde{\mathrm{ad}}(u) y, x \rangle + \langle y, \operatorname{ad}(u) x \rangle = 0. \tag{5.3.4}$$

Операторы $\widehat{ad}(x)$ образуют также представление супералгебры Ли \mathfrak{g} , но уже относительно операции (5.1.7). Это видно из того, что матрицы a(x) и $\widetilde{a}(x)$ операторов ad(x), $\widetilde{ad}(x)$ в биортогональных базисах связаны соотношением

$$\tilde{a}(x) + a'(x) = 0$$
 (5.3.5)

(' означает транспонирование, см. § 1 п. 2). Представление супералгебры Ли $\mathfrak g$ операторами $\operatorname{ad}(x)$ называется коприсоединенным. Матрицы операторов $\operatorname{ad}(x)$, $\operatorname{ad}(x)$ в биортогональных базисах просто связаны со структурными константами супералгебры $\mathfrak g$. Пусть $x=\sum x^ie_i$, $y=\sum y^ie_i$. Тогда

ad
$$(x) y = [x, y] = x^i y^k c^s_{ik} e_s$$
,

Следовательно,

$$(ad(x))_k^s = x^i c^s_{ik}.$$
 (5.3.6)

Согласно (5.3.5)

$$(\widetilde{ad}(x))_{k}^{s} = -x^{i}c^{s}_{ik}.$$
 (5.3.7)

Оператор $\widetilde{\mathrm{ad}}(x)$ действует на вектор $z = \sum z_i \widetilde{e}^i$ согласно формуле $(\widetilde{\mathrm{ad}}(x)z)_k = (\widetilde{\mathrm{ad}}(x))_k {}^s z_s$.

Рассмотрим грассмановы оболочки алгебры Ли \mathfrak{g} и пространства \mathfrak{g} . Между элементами \mathfrak{g} (Λ) и \mathfrak{g} (Λ) определим скалярное произведение

$$\langle x, y \rangle = \sum x^i y_i, \tag{5.3.8}$$

где x^i , y_i — компоненты элементов $x = \sum x^i e_i$, $y = \sum y_i \tilde{e}^i$ по биортогональным базисам. Отметим, что скалярное произведение (5.3.8) является не числом, но элементом г. а. Λ , четным в случае, если четность в \tilde{g} выбрана согласно (5.3.2), и нечетным, если она выбрана согласно (5.3.3). В пространствах $g(\Lambda)$ и $\tilde{g}(\Lambda)$ действуют представления алгебры Ли $g(\Lambda)$, которые определяются аналогично представлениям ad(x) и ad(x) супералгебры Ли $g(\Lambda)$ эти представления мы будем называть соответственно присоединенным и коприсоединенным представлениями алгебры Ли $g(\Lambda)$ и обозначать $ad_{\Lambda}(x)$, $ad_{\Lambda}(x)$.

В биортогональных базисах операторы $\operatorname{ad}_{\Lambda}(x)$, $\operatorname{ad}_{\Lambda}(x)$ задаются формулами, аналогичными предыдущим, однако теперь важен порядок следования множителей:

$$(\operatorname{ad}_{\Lambda}(x) y)^{s} = (\operatorname{ad}(x))_{k}^{s} y^{k} = x^{i} c_{ik}^{s} y^{k},$$

$$(\widetilde{\mathrm{ad}}_{\Lambda}(x)z)_{k} = -(-1)^{\alpha(e_{l})\alpha(e_{k})} x^{l} c_{ik}^{s} z_{s} = x^{l} c_{ki}^{s} z_{s}.$$

Обратим внимание на

операторы ad(x), ad(x), $ad_{\Lambda}(x)$, $ad_{\Lambda}(x)$ в следующем виде: $\operatorname{ad}(x) = \sum x^{i} E_{i} \operatorname{ad}_{\Lambda}(x) = \sum x^{i} E_{i}^{(\Lambda)}$

$$\widetilde{\operatorname{ad}}(x) = \sum x^{i}\widetilde{E}_{i}, \ \widetilde{\operatorname{ad}}_{\Lambda}(x) = \sum x^{i}\widetilde{E}_{i}^{(\Lambda)}.$$

Операторы E_i и $E_i^{(\Lambda)}$ в базисе e_i имеют совпадающие матрицы. B то же время операторы \tilde{E}_i и $\tilde{E}_i^{(\Lambda)}$ имеют в базисе e^i различные матрицы: из (5.3.7) следует, что матричный элемент оператора \hat{E}_i равен — $c^s{}_{ik}$, из (5.3.9) следует, что соответствующий матричный элемент оператора $\widetilde{E}_i^{(\Lambda)}$ равен

$$(\widetilde{E}_i^{(\Lambda)})_k^s = c_{kl}^s. \tag{5.3.10}$$

важное обстоятельство. Представим

(5.3.9)

(5.3.11)

(5.3.12)

(5.3.13)

базису e_k .

 ${f H}$ етрудно проследить, что операторы $ilde{E}_i^{(\Delta)}$, подобно операторам E_i , $E_i^{(\Lambda)}$, образуют представление супералгебры Ли тельно коммутатора (5.1.6) (а не относительно коммутатора (5.1.7), как операторы \tilde{E}_i).

Пусть $\mathcal{B}_{\Lambda}(\mathfrak{g})$, $\mathcal{B}_{\Lambda}(\mathfrak{g})$ — алгебры грассмановых аналитических функций с грассмановскими коэффициентами на д (Л) и (Λ) соответственно. Представления $\mathrm{ad}_{\Lambda}(x)$ и $\mathrm{ad}_{\Lambda}(x)$ гебры Ли 🐧 (Л) обычным образом порождают представления

этой алгебры в пространствах
$$\mathscr{B}_{\Lambda}(\mathfrak{g})$$
 и $\mathscr{A}_{\Lambda}(\overline{\mathfrak{g}})$ ($A_{\Lambda}(x)f$) $(y)=\frac{d}{dt}f(y-t\operatorname{ad}_{\Lambda}(x)y)|_{t=0},$

$$(\widetilde{A}_{\Lambda}(x) f)(z) = \frac{d}{dt} f(z - t \widetilde{\mathrm{ad}}_{\Lambda}(x) z)|_{t=0}.$$

Oператоры $A_{\Lambda}(x)$ и $\tilde{A}_{\Lambda}(x)$ линейно зависят от x:

$$A_{\Lambda}(x) = \sum x^k A_k, \ \widetilde{A}_{\Lambda}(x) = \sum x^k \widetilde{A}_k,$$

где x^k — координаты элемента x по однородному Укажем явный вид операторов A_k и \tilde{A}_k

$$A_k = -(E_k^{(\Lambda)})_i^s y^i \frac{\overrightarrow{\partial}}{\partial u^s} = -c_{ki}^s y^i \frac{\overrightarrow{\partial}}{\partial u^s}$$

 $\tilde{A}_{k} = -(\tilde{E}_{k}^{(\Lambda)})_{i}^{s} z_{s} \frac{\overrightarrow{\partial}}{\partial z_{s}} = -c_{ik}^{s} z_{s} \frac{\overrightarrow{\partial}}{\partial z_{s}}.$

Сопоставим каждому $x = \sum x^i e_i \in \mathfrak{g}$ операторы A(x) и $\tilde{A}(x)$ $= \sum x^i A_i$, $\tilde{A}(x) = \sum x^i \tilde{A}_i$.

Очевидно, что операторы A(x) и $\widetilde{A}(x)$ образуют представления супералгебры. Ли \mathfrak{g} в пространствах $\mathfrak{B}_{\Lambda}(\mathfrak{g})$ и $\mathfrak{B}_{\Lambda}(\mathfrak{g})$ соответственно относительно коммутатора (5.1.7) (а не относительно коммутатора (5.1.6), как $E_i^{(\Lambda)}$, $\widetilde{E}_i^{(\Lambda)}$). Это обстоятельство связано с тем, что одна и та же алгебра Ли \mathfrak{g} (Λ) является грассмановой оболочкой 1-го рода операторов $E_i^{(\Lambda)}$ или $\widetilde{E}_i^{(\Lambda)}$ и грассмановой оболочкой 2-го рода операторов A_i или \widetilde{A}_i .

Представления $\mathrm{ad}_{\Lambda}(x)$, $\widetilde{\mathrm{ad}}_{\Lambda}(x)$, $A_{\Lambda}(x)$, $\widetilde{A}_{\Lambda}(x)$ алгебры Ли \mathfrak{g} (Λ) обычным образом порождают представления соответствующей группы Ли $G(\Lambda)$. Эти представления мы будем обо-

значать $Ad(\mathfrak{g})$, $\widetilde{Ad}(\mathfrak{g})$, $A(\mathfrak{g})$, $\widetilde{A}(\mathfrak{g})$ соответственно.

2. Супермногообразия с гамильтоновым действием супералгебры Ли. Пусть $M(\Lambda)$ — некоторое многообразие с грассмановой структурой, $\mathcal{B}_{\Lambda} = \mathcal{B}_{\Lambda}(M)$ — алгебра г. а. функций на $M(\Lambda)$ с грассмановыми коэффициентами, \mathfrak{g} — супералгебра Ли. Пусть в \mathcal{B}_{Λ} действует представление \mathfrak{g} с помощью дифференциальных операторов 1-го порядка L_x , $\mathbf{x} \in \mathfrak{g}$. Пусть, кроме того, в \mathcal{B}_{Λ} существует скобка Пуассона. Предположим, что для каждого $\mathbf{x} \in \mathfrak{g}$ существует такая функция $H(\mathbf{x}) \in \mathcal{B}_{\Lambda}$ (гамильтониан), что

$$L_{x}f = [H(x), f]_{P}$$
 (5.3.14)

для любой функции $f \in \mathcal{B}_{\Lambda}$. В этом случае представление супералгебры Ли \mathfrak{g} операторами L_x называется гамильтоновым. (Напомним, что в применении к функциям $f \in {}^{0}\mathcal{B}_{\Lambda}$ скобка Пуассона образует обычную алгебру Ли, а не супералгебру Ли.)

Переходя от супералгебры Ли \mathfrak{g} к ее грассмановой оболочке, мы получаем представление алгебры Ли \mathfrak{g} (Λ) в \mathcal{B}_{Λ} . За операторами этого представления сохраним прежнее обозначение L_x . Очевидно, что гамильтоновость представления супералгебры \mathfrak{g} влечет за собой гамильтоновость представления ее грассмановой оболочки: для каждого $\mathfrak{x} \in \mathfrak{g}$ (Λ) существует гамильтониан $H(\mathfrak{x}) \in \mathcal{B}_{\Lambda}$, при котором справедливо равенство (5.3.14). Если представление алгебры \mathfrak{g} (Λ) с помощью операторов Ли в \mathcal{B}_{Λ} является гамильтоновым, то действие группы $G(\Lambda) = \exp \mathfrak{g}$ (Λ) на многообразии $M(\Lambda)$ также называется гамильтоновым. В случае, если группа Ли действует на многообразии M гамильтоновым образом, скобку Пуассона часто называют инвариантной относительно этой группы. Это название оправдывается следующим обстоятельством:

в случае гамильтонового действия группы сдвига

$$(T_g f)(x) = f(gx)$$

являются автоморфизмами скобки Пуассона (т. е. каноническими преобразованиями).

В самом деле, инфинитезимальное условие того, что оператор $(T_g f)(z) = f(gz)$ является автоморфизмом, состоит в том, что

$$[Lf, g]_{P} + [f, Lg]_{P} = L[f, g]_{P},$$
 (5.3.15)

где $(Lf)(z) = \frac{d}{dt} f(g(t)z)|_{t=0}$, g(t) — однопараметрическая группа. Равенство (5.3.15) с учетом того, что $L_f = [H, f]_{P}$, эквивалентно тождеству Якоби.

Пусть e_i — однородный базис в супералгебре Ли \mathfrak{g} $L_i = L_{e_i}$, $H_i = H(e_i)$ — соответствующие e_i оператор Ли и гамильтониан. Укажем несколько основных свойств гамильтонианов H_i .

Прежде всего заметим, что

$$lpha\left(H_{i}
ight) = \left\{ egin{array}{ll} lpha\left(e_{i}
ight) & ext{в случае четной скобки Пуассона,} \\ lpha\left(e_{i}
ight) + 1 & ext{в случае нечетной скобки Пуассона.} \end{array}
ight.$$

Это свойство получается из сравнения четностей левой и правой части (5.3.14) при условии, что $L_x = L_i$, $H(x) = H_i$ и элемент f однороден. При этом следует учесть, что $\alpha(L_i) = \alpha(e_i)$ в силу определения линейного представления супералгебры Ли.

Пусть
$$x, y \in \mathfrak{g}$$
. Использование тождества Якоби дает, что $[H(x)[H(y)f]_{\mathbb{P}}]_{\mathbb{P}} = (-1)^{\alpha(y)\alpha(x)}[H(y)[H(x)f]_{\mathbb{P}}]_{\mathbb{P}} =$

$$= [[H(x), H(y)]_{P.} f]_{P.}$$

как в случае четной, так и в случае нечетной скобки Пуассона. Вспомним, что

$$[L_x, L_y] = (-1)^{\alpha(x)\alpha(y)} L_x L_y - L_y L_x$$

Учитывая (5.3.14), получаем отсюда, что

$$(-1)^{\alpha(x)\alpha(y)}[H(x), H(y)]_{P} = H([x, y]). \tag{5.3.17}$$

Из (5.3.17) следует, что

$$[H_i, H_j] = \sum (-1)^{\alpha(e_i)\alpha(e_j)} c_{ij}^k H_k = -\sum c_{ji}^k H_k, \qquad (5.3.18)$$

где c_{ij}^{k} — структурные константы супералгебры Ли \mathfrak{g} . Переходя от супералгебры Ли \mathfrak{g} к ее грассмановой оболочке $\mathfrak{g}(\Lambda)$, получаем, исходя из (5.3.18) и учитывая (5.3.16), что

$$[H(x), H(y)]_{P} = H([x, y]).$$
 (5.3.19)

Рассмотрим в алгебре \mathcal{B}_{Λ} подалгебру, состоящую из функций, зависящих от $z \in M$ через посредство гамильтонианов H_i : $f(z) = F(H_1(z) \dots H_i(z))$. Из явной формулы (5.2.83) для скобки Пуассона следует, что в этом случае

$$[f, g]_{P.B.} = \sum F \frac{\overleftarrow{\partial}}{\partial H_{I}} [H_{i}, H_{i}] \frac{\overrightarrow{\partial}}{\partial H_{I}} G =$$

$$= -\sum F \frac{\overleftarrow{\partial}}{\partial H_{I}} c_{jl}^{k} H_{k} \frac{\overrightarrow{\partial}}{\partial H_{I}} G. \qquad (5.3.20)$$

Функции F, G естественно рассматривать как r. a. функции на пространстве \mathfrak{g} (Λ) линейных форм на алгебре \mathcal{J}_{H} \mathfrak{g} (Λ). Формула (5.3.20) показывает, что в пространстве $\mathfrak{F}_{\Lambda}(\tilde{\mathfrak{g}})$ существует естественная скобка Пуассона

$$[F, G] = -\sum F \frac{\overrightarrow{\partial}}{\partial z_i} c_{ji}^k z_k \frac{\overrightarrow{\partial}}{\partial z_j} G. \qquad (5.3.21)$$

Отметим, однако, что из предыдущего изложения еще не следует, что скобка (5.3.21) действительно заслуживает названия скобки Пуассона, т. е. определяет супералгебру Ли 1. В этом можно убедиться, используя соотношения (5.1.1)—(5.1.3).

Соответствующие вычисления являются автоматическими, и

мы их опустим.

В теории обычных алгебр Ли скобка Пуассона, аналогичная (5.3.21), играет весьма важную роль как в теории самих алгебр и групп Ли и их представлений, так и в приложениях. Скобка Пуассона (5.3.21) призвана играть аналогичную роль в теории супералгебр Ли. Отметим, что формула (5.3.20) демонстрирует определенную универсальность этой скобки.

3. Алгебра скобок Пуассона в пространстве $\mathcal{B}_{\Lambda}(\mathfrak{g} \oplus \widetilde{\mathfrak{g}})$. Пусть $x \in \mathfrak{g}$ (Λ), $y \in \widetilde{\mathfrak{g}}$ (Λ), x^i , y_i — координаты этих элементов в биортогональных базисах. Определим в пространстве $\mathcal{B}_{\Lambda}(\mathfrak{g} \oplus \widetilde{\mathfrak{g}})$ скобку Пуассона

$$[f, g] = \sum_{k} (-1)^{\alpha(e_{k})\alpha(\tilde{e}^{k})} f \frac{\overleftarrow{\partial}}{\partial y^{k}} \frac{\overrightarrow{\partial}}{\partial z_{k}} g - f \frac{\overleftarrow{\partial}}{\partial z_{k}} \frac{\overrightarrow{\partial}}{\partial y^{k}} g.$$
(5.3.22)

Согласно теореме 5.5, скобка (5.3.22) действительно является скобкой Пуассона, т. е. порождает супералгебру Ли.

Теорема 5.6. Представление супералгебры Ли $\mathfrak g$ в пространстве $\mathfrak F_\Lambda(\mathfrak g\oplus\mathfrak g)$ с помощью операторов $A(x)+\tilde A(x)$ является гамильтоновым; гамильтониан, соответствующий базисному вектору e_i $\mathfrak g$ равен

$$H_i(y, z) = c^s{}_{ik} y^k z_s,$$
 (5.3.23)

где $y = \sum y' e_i \in \mathfrak{g}(\Lambda)$, $z = \sum z_i \tilde{e^i} \in \widetilde{\mathfrak{g}}(\Lambda)$.

Доказательство. Пусть $f \in \mathfrak{S}_{\Lambda}(\mathfrak{g} \oplus \widetilde{\mathfrak{g}})$

$$[H_{i}, f]_{P.B.} = \sum (-1)^{\alpha(e_{k})} \alpha(\tilde{e}^{k}) H_{i} \frac{\overleftarrow{\partial}}{\partial y^{k}} \frac{\overrightarrow{\partial}}{\partial z_{k}} f - H_{i} \frac{\overleftarrow{\partial}}{\partial z_{k}} \frac{\overrightarrow{\partial}}{\partial y^{k}} f =$$

$$= \sum (-1)^{\alpha(e_{k})} \alpha(\tilde{e}^{k}) c_{ik}^{s} z_{s} \frac{\overrightarrow{\partial}}{\partial z_{k}} f - \sum c_{ik}^{s} y^{k} \frac{\overrightarrow{\partial}}{\partial y^{s}} f =$$

 $^{^1}$ Поскольку мы пока еще не знаем, существует ли хотя бы одно много-образие с грассмановой структурой с гамильтоновым действием группы $G(\Lambda)$,

$$= -\sum (-1)^{\alpha(e_k)\alpha(\widetilde{e}^k) + \alpha(e_k)\alpha(\widetilde{e}^s) + \alpha(e_i)\alpha(e_k)} c_{ki}^s z_s \frac{\overline{\partial}}{\partial z^k} f - \sum c_{ik}^s y^k \frac{\overline{\partial}}{\partial y^s} f.$$

Преобразуем знаковый множитель в первом слагаемом:

$$\alpha(e_k) \alpha(\widetilde{e}^k) + \alpha(e_k) \alpha(\widetilde{e}^s) + \alpha(e_i) \alpha(e_k) =$$

$$= \alpha(e_k) (\alpha(\widetilde{e}^k) + \alpha(\widetilde{e}^s) + \alpha(e_i)) = 0,$$

так как $\alpha(\tilde{e}^k) + \alpha(\tilde{e}^s) = \alpha(e_k) + \alpha(e_s) = \alpha(e_i)$ в силу (5.1.1), (5.3.2), (5.3.3). Вспоминая (5.3.13), получаем, что

$$[H_i, f] = \tilde{A}_i f + A_i f.$$

В заключение этого раздела обратим внимание на то, что при $x \in \mathfrak{g}$ (Λ) гамильтониан $H(x) = H(x; y, z) = \sum x^i H_i$ может быть записан в бескоординатной форме

$$H(x; y, z) = \langle [x, y], z \rangle,$$
 (5.3.24)

где [x, y] — коммутатор элементов $x, y \in \mathfrak{g}$ (Л) и <.,.> —

скалярное произведение (5.3.8).

4. Инвариантные алгебры скобок Пуассона в пространстве $\mathcal{B}_{\Lambda}(\mathfrak{g})$. Имеется в виду инвариантность относительно коприсоединенного действия группы $G(\Lambda) = \exp \mathfrak{g}(\Lambda)$ в $\mathfrak{g}(\Lambda)$. Одна такая скобка Пуассона описывается формулой (5.3.22). При этом гамильтониан H_i , соответствующий базисному вектору e_i , равен

$$H_i = z_i. (5.3.25)$$

Описание всех инвариантных скобок Пуассона в $\mathscr{B}_{\Lambda}\left(\widetilde{\mathfrak{g}}\right)$ сос-

тоит в следующем.

Теорема 5.7. 1) Пусть $[\cdot, \cdot]_p$. — четная или нечетная скобка Пуассона в $\mathcal{B}_{\Lambda}(\widetilde{\mathfrak{g}})$, инвариантная относительно коприсоединенного действия группы $G(\Lambda)$ в \mathfrak{g} ; $u_i(z) \in \mathcal{B}_{\Lambda}(\widetilde{\mathfrak{g}})$, $z \in \widetilde{\mathfrak{g}}(\Lambda)$, — гамильтонианы, соответствующие однородным базисным элементам $e_i \in \mathfrak{g}$, и x^i — координаты вектора $x \in \mathfrak{g}(\Lambda)$ по базису e_i . Тогда функция

$$h(x, z) = \langle x, u \rangle = \sum x^{i} u_{i}(z)$$
 (5.3.26)

инвариантна относительно представления $A_{\Lambda} imes A_{\Lambda}$, группы $G(\Lambda)$ в пространстве \mathscr{B}_{Λ} ($\mathfrak{g} \bigoplus \widetilde{\mathfrak{g}}$).

2) Обратно, пусть г. а. функции $u_i(z)$ на $\widetilde{\mathfrak{g}}$ (Λ) таковы, что:

а) ври всех i $\alpha(u_i) = \alpha(e^i)$, либо $\alpha(u_i) = \alpha(e^i) + 1$;

в) функции u_i являются грассмановыми координатами (вообще говоря, нелинейными) в $\tilde{g}(\Lambda)$, т. е. каждая функция $f(z) \in \mathcal{B}_{\Lambda}(\mathfrak{g})$ представима в виде f(z) = F(u);

с) функция (5.3.26) инвариантна относительно представления $A_{\Lambda} \times \widetilde{A}_{\Lambda}$.

Тогда скобка Пуассона в 🚜 (g), определяемая равенством

$$[f, g]_{P.} = -\sum F(u) \frac{\overleftarrow{\partial}}{\partial u_i} c_{ji}^k u_k \frac{\overrightarrow{\partial}}{\partial u_i} G(u), \qquad (5.3.27)$$

где F(u) = f(z), G(u) = g(z), является инвариантной.

Доказательство. Пусть [., .]р. — инвариантная скобка Пуассона. В силу общих формул (5.3.14), (5.3.18)

$$\bar{A}_i x_i = [u_i, u_i]_{P} = \sum c_{jk}^k u_k.$$
 (5.3.28)

С другой стороны, из (5.3.13) следует, что

$$A_i x^j = -c^j{}_{ik} x^k. (5.3.29)$$

Поэтому

$$(\widetilde{A}_i + A_i) L = -\sum (-1)^{\alpha(e_i)\alpha(e_j)} x^j (\widetilde{A}_i u_i) - (A_i x^j) u_i =$$

$$= \sum (-1)^{\alpha(e_i)\alpha(e_j)} x^j c_{ji}^k u_k + c_{ik}^j x^k u_i = 0$$

вследствие (5.3.2). Полученное равенство очевидным образом эквивалентно инвариантности функции L(x, z) относительно

представления $A_{oldsymbol{\Lambda}} imes ilde{A}_{oldsymbol{\Lambda}}.$

Перейдем ко второму утверждению. Условие а) гарантирует, что скобка (5.3.27) действительно является скобкой Пуассона, т. е. определяет супералгебру Ли. При этом скобка Пуассона (5.3.27) является четной в первом варианте условия а) и нечетной — во втором варианте. Далее, из инвариантности функции и относительного представления $A_{\Lambda} imes ilde{A}_{\Lambda}$ следует, что $(\tilde{A}_i + A_i)L = 0$. Учитывая (5.3.29), получаем отсюда, что

$$0 = (\widetilde{A}_{i} + A_{i}) L = -\Sigma (-1)^{\alpha(e_{i})\alpha(e_{j})} x^{j} (\widetilde{A}_{i} u_{i}) + c_{ik}^{j} x^{k} u_{i}. \quad (5.3.30)$$

соотношением Приравнивая коэффициенты при x^i и пользуясь (5.3.2), выводим из (5.3.30), что

$$\widetilde{A}_i u_I = \sum c_{jl}^k u_k. \tag{5.3.31}$$

Вспоминая (5.3.27), получаем

$$\widetilde{A}_{l} f = -\sum c_{jl}^{k} z_{k} \frac{\overrightarrow{\partial}}{\partial z_{l}} f(z) = -\sum c_{jl}^{k} z_{k} \left(\frac{\overrightarrow{\partial}}{\partial z_{j}} u_{p} \right) \frac{\overrightarrow{\partial}}{\partial u_{p}} F(u) =
= \sum (\widetilde{A}_{l} u_{p}) \frac{\overrightarrow{\partial}}{\partial u_{p}} F = -\sum c_{pl}^{k} u_{k} \frac{\overrightarrow{\partial}}{\partial u_{p}} F = [u_{l}, f]_{P}.$$
(5.3.32)

Соотношение (5.3.32) означает инвариантность скобки Пуассона (5.3.27).

В заключение сделаем несколько замечаний.

отображение 1) Смысл теоремы 5.7 состоит в том, z
ightharpoonup u(z) пространства $\widetilde{\mathfrak{g}}$ (Л) в себя, не являясь каноническим, переводит скобку Пуассона (5.3.21) в другую скобку Пуассона (5.3.27). При этом если компоненты $u_i(z)$ вектора u(z) удовлетворяют условиям теоремы, то получаемая таким образом скобка является инвариантной. Обратимые отображения такого рода образуют группу, действующую на множестве инвариантных скобок Пуассона. Инфинитезимальные операторы этой группы имеют вид

$$X = \frac{\overleftarrow{\partial}}{\partial z_i} v_i(z), \qquad (5.3.33)$$

где v_i — функции, удовлетворяющие подобно u_i системе уравнений (5.3.31).

Нетрудно проверить, что свойство функций v_i быть решением системы уравнений (5.3.31) эквивалентно перестановочности оператора X со всеми операторами A_i . Таким образом, задача об описании всех инвариантных скобок Пуассона оказывается тесно связанной (по существу эквивалентной) с задачей об описании векторных полей в \hat{g} (Λ), перестановочных с операто-

2) В случае обычных алгебр Ли скобка Пуассона (5.3.21) очевидным образом допускает бескоординатную запись

 $[f, g]_{P} = \langle [\nabla f, \nabla g], z \rangle, \tag{5.3.34}$

где градиент
$$\nabla f = (\nabla f) \ (z) \in \mathfrak{g}$$
 определяется равенством $\nabla f = \Sigma \frac{\partial f}{\partial z_i} \ e_i.$

В суперслучае возможна аналогичная бескоординатная запись, однако здесь имеется характерная дополнительная деталь. Дело в том, что в суперслучае градиент ∇f должен являться элементом не \mathfrak{g} но $\mathfrak{g}(\Lambda)$. Кроме того, легко видеть, что отношение $f{\to}\nabla f$ является инвариантным, т. е. не зависит от выбора несобственного базиса $e_{\mathfrak{t}}$ в $\mathfrak{g}(\Lambda)$ лишь в том случае, если $\mathfrak{g}(\Lambda)$ является грассмановой оболочкой 2-го рода. В этом случае

$$\nabla f = \Sigma \left(f - \frac{\overleftarrow{\partial}}{\partial z_i} \right) e_i = \Sigma e_i \left(- \frac{\overrightarrow{\partial}}{\partial z_i} f \right). \tag{5.3.35}$$

В случае грассмановой оболочки 2-го рода меняется вид операторов $\widetilde{\mathrm{ad}}(x)$, $\widetilde{\mathrm{ad}}(x)$ и связанных с ними операторов \widetilde{A}_i

$$((\operatorname{ad}(x)) y)^{s} = x^{\ell} y^{k} c_{\ell k}^{s} (-1)^{\alpha(e_{\ell})\alpha(e_{k})},$$

$$(\widetilde{\operatorname{ad}}(x) z)_{k} = -x^{i} c_{ik}^{s} z_{s} (-1)^{\alpha(e_{i})\alpha(e_{k})}.$$

Отсюда

рами \tilde{A}_i .

$$(\widetilde{\mathrm{ad}}_{\Lambda}(x)z)_k = -x^l c_{ik}^s z_s, \quad \widehat{A}_i = c_{ik}^s z_s \frac{\overrightarrow{\partial}}{\partial z_k}.$$

Соответственно модифицируется скобка (5.3.21), она приобретает привычный вид

$$[f, g]_{P.} = \sum f \frac{\overleftarrow{\partial}}{\partial z_k} c_{lk}^s z_s \frac{\overrightarrow{\partial}}{\partial z_k} g. \qquad (5.3.36)$$

Аналогично модифицируется инвариантная скобка общего вида (5.3.27). Нетрудно проследить, что скобка Пуассона (5.3.36) может быть записана в бескоординатной форме (5.3.33). Таким образом, в случае грассмановых оболочек 2-го рода для скобок Пуассона получаются по форме в точности те же выражения, что и в обычном случае.

Вернемся к грассмановым оболочкам 1-го рода. Вспомним, что если алгебра Ли \mathfrak{g} (Λ) является грассмановой оболочкой 1-го рода супералгебры Ли \mathfrak{g} , то она естественным образом изоморфна грассмановой оболочке 2-го рода $\mathfrak{g}'(\Lambda)$ супералгебры Ли \mathfrak{g}' , двойственной по Э. Картану по отношению к \mathfrak{g} Поэтому скобка Пуассона (5.3.21) записывается в бескоординатной форме следующим образом:

$$[f, g]_{P.B.} = \langle [\nabla f, \nabla g]', z \rangle, \tag{5.3.37}$$

где $\nabla f = \mathfrak{g}'(\Lambda), [\cdot, \cdot]'$ означает коммутатор в $\mathfrak{g}'(\Lambda)$, $\mathfrak{g}'(\Lambda)$ — грассманова оболочка 2-го рода супералгебры \mathfrak{g}' . Градиент определяется формулой, аналогичной (5.3.35).

$$\nabla f = \Sigma f \frac{\overrightarrow{\partial}}{\partial z_i} e'_i = \Sigma e'_i \frac{\overrightarrow{\partial}}{\partial z_i} f,$$

где e_i' — базис в g', канонически связанный с базисом e_i в g, по которому строятся координаты z_i в g (Λ).

Напомним в связи с этим, что в канонически соответствующих базисах структурные константы c^k_{ij} и c'^k_{ij} супералгебр Ли \mathbf{g} , \mathbf{g}' связаны соотношениями $c^k_{ij} = (-1)^{\alpha(e_i)\alpha(e_j)} c^k_{ij}$.

3) Пусть в пространстве § (Λ) существует симметричная инвариантная относительно коприсоединенного представления невырожденная четная билинейная форма

$$(x, y)_{\sim} = x_i y_k g^{kt}.$$
 (5.3.38)

Предположим далее, что четность в \mathfrak{g} выбрана в соответствии \mathfrak{c} формулой (5.3.2). Невырожденность скалярного произведения (5.3.38) означает обратимость матрицы $\|\mathfrak{g}^{ki}\|$, четность и симметрия — то обстоятельство, что $(x, y) \in \Lambda$ и что (x, y) = (y, x) соответственно. В компонентах

$$\alpha(g^{ik}) = \alpha(\widetilde{e}^i) + \alpha(\widetilde{e}^k), \ g^{ik} = g^{ki}(-1)^{\alpha(\widetilde{e}^k)\alpha(\widetilde{e}^l)}.$$

При наличии такого скалярного произведения и при указанном выборе четности в $\tilde{\mathfrak{g}}$ существует взаимно-однозначное отображение пространства $\tilde{\mathfrak{g}}$ (Λ) в алгебру Ли $\mathfrak{g}(\Lambda)$. Элемент $\tilde{\mathfrak{z}}$

однозначно определяется формулой

$$\langle \overline{z}, x \rangle = \langle z, x \rangle_{\sim} \tag{5.3.39}$$

в координатах $\overline{z}^l = z_k g^{kl} (-1)^{\alpha (\widetilde{s}^l)}$.

Образ элемента $x \in \mathfrak{g}(\Lambda)$ при обратном отображении обозначим x. Он однозначно определяется формулой

$$\langle x, z \rangle = (\overline{x}, Az)_{\sim},$$
 (5.3.40)

в координатах $\overline{x}_i = x^l g_{li} (-1)^{\alpha(\widetilde{e}^{\,l})}$, где $\|g_{li}\| = \|g^{il}\|^{-1}$. При наличии инвариантного скалярного произведения в \widetilde{g} (Λ) возникает возможность описать более явным образом широкий класс преобразований, переводящих инвариантные скобки Пуассона друг в друга.

Теорема 5.8. Пусть $P(z) = \mathcal{B}_{\Lambda}(\widetilde{\mathfrak{g}})$ — функция, инвариантная относительно операторов $\widetilde{A}(\mathfrak{g})$. Тогда функция

$$L(x, z) = \langle x, \overline{\overline{A \nabla P(z)}} \rangle$$

где ${\bf A}$ — автоморфизм четности алгебры ${\mathfrak g}$ (${\bf \Lambda}$), инвариантна относительно представления $A\times \tilde A$.

Доказательство. Пусть $u^i = \frac{\partial}{\partial z_i} P$, $u_k = u^i g_{ik}$. Согласно (5.3.31), (5.3.13) условие инвариантности функции состоит в том, что

$$c_{kl}^{s} z_{s} \frac{\overline{\partial}}{\partial z_{k}} u_{j} = c_{jl}^{s} u_{s}. \tag{5.3.41}$$

Запишем условия инвариантности формы (5.3.38) через матричные элементы g^{ij} . Действуя на квадратичную форму $(z, z) \sim$ оператором A_i , получаем

$$0 = -\widetilde{A}_{i}(z, z) = c_{ki}^{s} z_{s} \frac{\partial}{\partial z_{k}} (z_{p} z_{q} g^{qp}) =$$

$$=c_{ki}^{s}z_{s}z_{q}g^{qk}+(-1)^{\alpha(z_{k})\alpha(z_{p})}c_{ki}^{s}z_{s}z_{p}g^{kp}=2z_{s}z_{q}c_{ki}^{s}g^{qk}.$$

Таким образом,

$$c_{ki}^{s}g^{qk} + (-1)^{\alpha(z_{s})\alpha(z_{q})}c_{ki}^{q}g^{sk} = 0.$$
 (5.3.42)

Умножая обе части равенства (5.3.42) на g^{ip} и суммируя по i, получаем

$$c_{ki}^{s}z \frac{\partial}{\partial z_{k}} u^{p} = u_{s}c_{ij}^{s}g^{jp} = u_{s}c_{ji}^{s}g^{pj} (-1)^{\alpha(z_{p})\alpha(z_{j})} =$$

$$= u_{s}c_{ji}^{s}g^{pj} (-1)^{\alpha(z_{p})(\alpha(z_{s})+\alpha(z_{i}))} = u_{s}c_{ji}^{p}g^{sj} (-1)^{\alpha(z_{p})(\alpha(z_{s})+\alpha(z_{i})+\alpha(z_{s}))+1} =$$

$$= u_{s}c_{ji}^{p}g^{sj} (-1)^{\alpha(z_{p})\alpha(z_{i})+1} = c_{ji}^{p}u^{j} (-1)^{\alpha(z_{p})\alpha(z_{i})+1}, \quad (5.3.43)$$

где $u^j = u_s g^{sj}$.

С другой стороны, дифференцируя по z_i тождество

$$\widetilde{A}_k p = -c_{ik}^s z_s \frac{\overrightarrow{\partial}}{\partial z_i} P = 0,$$

находим

$$c_{ik}^{j} \frac{\overrightarrow{\partial}}{\partial z_{i}} P + c_{ik}^{s} z_{s} \frac{\overrightarrow{\partial}}{\partial z_{i}} \left(\frac{\overrightarrow{\partial}}{\partial z_{j}} P \right) \left(-1 \right)^{\alpha(z_{j})(\alpha(z_{i}) + \alpha(z_{s}))} = 0.$$

Так как $\alpha(z_i) + \alpha(z_s) = \alpha(z_k)$, отсюда следует, что функции $\frac{\partial}{\partial z_i} P$ удовлетворяют тем же уравнениям (5.3.43). С другой стороны, $u^i = u_s g^{si}$ являются компонентами элемента $\mathbf{A}\bar{u}$. Поэтому компоненты v_i элемента $v=\overline{\mathbf{A}igtriangledown}\,\overline{P} \in \widetilde{\mathfrak{g}}\left(\Lambda
ight)$ удовлетворяют уравнениям (5.3.41). Не следует думать, однако, что преобразованиями

$$z \to \overline{A \bigtriangledown P}$$
 (5.3.44)

исчерпываются все преобразования, переводящие скобку Пуассона (5.3.21) в другие инвариантные скобки Пуассона. Если бы это было так, то операторами вида (5.3.33) при $v = \overline{\overline{A igtriangledown} P}$ исчерпывалась бы вся алгебра Ли векторных полей, перестановочных с операторами. Нетрудно проверить, однако, что операторы вида (5.3.33) при $v = \overline{\overline{A} \bigtriangledown P}$ вообще не образуют алгебры Ли. Возможно, однако, что тем не менее скобками Пуассона, получаемыми из (5.3.21) преобразованиями (5.3.44), исчерпывается все множество инвариантных скобок Пуассона в g ($\hat{\Lambda}$). Такую теорему удается доказать для обычных полупростых групп Ли с помощью более специальных соображений. Останавливаться на этом мы не будем.

Отметим в заключение, что существование инвариантного скалярного произведения с описанными свойствами в (Л) эквивалентно существованию аналогичного скалярного произведения в алгебре Ли $\tilde{\mathfrak{g}}$ (Л)

$$(x, y) = (\overline{x}, \overline{y})_{\sim}. \tag{5.3.45}$$

В координатах

ВИД

$$(x, y) = x^j g_{ii} y^i (-1)^{\alpha(e_i) + \alpha(e_j)}.$$

Заметим, что скалярное произведение $(x, y)_1 = (Ax, Ay)$, где A — автоморфизм четности алгебры g (Λ) , также инвариантно. В координатах оно имеет вид

$$(x, y)_1 = x^j g_{ii} y^i.$$

Следовательно, инвариантным является также скалярное произведение $(x, y)_2 = \frac{1}{2}((x, y) + (x, y)_1)$. В координатах оно имеет

$$(x, y)_{n} = x^{j} s_{i,j} y^{i},$$

$$s_{ii} = \frac{1}{2} g_{ji} (1 + (-1)^{\alpha(e_i) + \alpha(e_j)}) = \begin{cases} g_{ji}, \alpha(i) = \alpha(j); \\ 0, \alpha(i) \neq \alpha(j). \end{cases}$$

В силу теоремы 3.1 невырожденность скалярного произведения $(x, y)_2$ эквивалентна невырожденности исходного скалярного произведения (x, y). Таким образом, мы приходим к следующему важному результату.

Теорема 5.9. Если в алгебре Ли g (A) существует невырожденное четное инвариантное скалярное произведение, то существует аналогичное скалярное произведение с дополнительным свойством: подпространства ${}^{1}g$ (Λ) и 0 (Λ) ортогональны.

Учитывая связь (5.3.45) между скалярными произведениями \mathfrak{g} (Λ) и \mathfrak{g} (Λ), находим, что аналогичное утверждение справедливо и для скалярных произведений в 🥫 (Л).

СПИСОК ПЕЧАТНЫХ РАБОТ Ф. А. БЕРЕЗИНА

- 1. Линейные конечномерные представления групп Ли с коммутативным радикалом.— ДАН СССР, 1953, 93, № 5, с. 759-761.
- Однородные расширения комплексного пространства.— ДАН СССР, 1954, 99, № 6, с. 890-892 (совместно с И. И. Пятецким-Шапиро).
- 3. Операторы Лапласа на полупростых группах Ли. ДАН СССР, 1956, 107, № 1, c. 9—12.
- Представления комплексных полупростых групп Ли в банаховом про-странстве.— ДАН СССР, 1956, 110, № 6, с. 897—900.
- 5. Несколько замечаний к теории сферических функций на симметрических римановых многообразиях. - УМН, 1956, 11, вып. 3 (69), с. 211-215 (совместно с И. М. Гельфандом).
- 6. Несколько замечаний к теории сферических функций на симметрических
- римановых многообразиях.— В кн.: Труды Моск. матем. о-ва. Т. 5. М., 1956, с. 311—351 (совместно с И. М. Гельфандом).
 7. Представления групп.— УМН, 1956, 11, вып. 6 (72), с. 13—40 (совместно с И. М. Гельфандом, М. И. Граевым, М. А. Наймарком).
- Операторы Лапласа на полупростых группах Ли.— В кн.: Труды Моск. матем. о-ва. Т. 6. М., 1957, с. 371—463; Т. 12. М., 1963 с. 453—466.
- 9. Операторы Лапласа на полупростых группах Ли и некоторых симметрических пространствах.— УМН, 1957, 12, вып. 1 (73), с. 152—156.
- 10. Зональные сферические функции и операторы Лапласа на некоторых симметрических пространствах.— ДАН СССР, 1958, 118, № 1, с. 9—12 (совместно с Ф. И. Карпелевичем).
- 11. Представления групп Ли.— В кн.: Труды 3-го Всесоюзн. матем. съезда. Т. 3. М., 1958, с. 244-254 (совместно с И. М. Гельфандом, М. И. Граевым, М. А. Наймарком).
- Аналог теоремы Лиувилля для симметрических пространств с отрицательной кривизной.— ДАН СССР, 1959, 125, № 6, с. 1187-1189.
- 13. Замечание об уравнении Шредингера с сингулярным потенциалом.-ДАН СССР, 1961, 137, № 5, с. 1011—1014 (совместно с Л. Д. Фаддеевым).
- 14. Канонические преобразования операторов в представлении вторичного квантования. — ДАН СССР, 1961, 137, № 2, с. 311—314. 15. О модели Тирринга. — ЖЭТФ, 1961, 40, № 3, с. 885—894. 16. О модели Ли. — ДАН СССР, 1962, 143, № 3, с. 811—814.

- 17. О модели Ли.— Матем. сб., 1963, 60, вып. 4, с. 425—446.

18. О канонических преобразованиях в представлении вторичного квантования. __ ДАН СССР, 1963, 150, № 5, с. 959—962.

19. Об одной модели квантовой теории поля.— УМН, 1963, 18, вып. 5,

c. 225—226.

20. Некоторые математические вопросы квантовой механики систем с больним числом степеней свободы. В кн.: Труды 4-го Всесоюзн. матем. съезда. Т. 2. М., 1964, с. 532-541 (совместно с Р. А. Минлосом и Л. Д. Фаддеевым).

21. Об операторах в представлении вторичного квантования. — ДАН СССР,

1964, **154**, № 5, c. 1063—1065.

22. Уравнение Шредингера для системы одномерных частиц с точечным взаимодействием.— Вестн. Моск. ун-та. Сер. матем., 1964, 1, с. 21—28 (совместно с Г. П. Похил, В. М. Финкельбер).

уравнения Шредингера.для многочастичного следов ДАН СССР, 1964, 157, № 3, с. 1069—1072.

24. Асимптотика собственных функций многочастичного уравнения Шредингера.— ДАН СССР, 1965, 163, № 4, с. 795—798.

25. Метод вторичного квантования. М., 1965, 235 с.

26. Релятивистская двумерная модель самовзаимодействующего фермионного поля с ненулевой массой покоя.— ЖЭТФ, 1965, 48, № 5. с. 1293—1306 (совместно с В. Н. Сушко).

27. Применение метода функционалов к некоторым задачам многих тел.-Тезисы сообщений Международного конгресса математиков в Москве.

M., 1966, c. 28.

- 28. Автоморфизмы грассмановой алгебры.— Матем. заметки, 1967, 1, вып. 3, c. 269—276.
- 29. Выражение квантовой статистической суммы через операторы рассеяния. В кн.: Проблемы многих тел и физика плазмы. М., 1967, с. 3-10.

30. Несколько замечаний об ассоциативной оболочке алгебры Ли.— Функц. анализ и его применения, 1967, 1, № 2, с. 1-14.

31. Об одном представлении операторов с помощью функционалов. В кн.: Труды Моск. матем. о-ва. Т. 17. М., 1967, с. 117—196.

32. Системы одномерных частиц с парным взаимодействием. -- В кн.: Проблемы многих тел и физика плазмы. М., 1967, с. 11-17.

 Существование фазового перехода у решеточного газа с притяжением между частицами.— В кн.: Труды Моск. матем. о-ва. Т. 17. М., 1967, с. 197—212 (совместно с Я. Г. Синаем).

34. Об одной модели квантовой теории поля.— Матем, сб., 1968, 76, вып. 3, c. 3—25.

- Алгебры Ли с дополнительной структурой.— Матем. сб., 1968, 77, вып. 2, с. 201-221 (совместно с Ф. И. Карпелевичем).
- 36. Несколько замечаний о представлениях соотношений коммутации. УМН, 1969, 24, вып. 4, с. 65—88.

37. Плоская модель Изинга.— УМН, 1969, 24, вып. 3, с. 3—22.

38. Соотношения между корреляционными функциями в классической статистической физике.— ТМФ, 1970, 3, № 1, с. 115—125.

39. Всесоюзный симпознум по теории голоморфных функций многих комплексных переменных, 24 июня—4 июля 1969.— УМН, 1970, 25, вып. 1, (совместно с С. Г. Гиндикиным, А. А. Кирилловым 219-220 В. П. Паламодовым).

40. Группы Ли с коммутирующими и антикоммутирующими параметрами.— Матем. сб., 1970, 82, вып. 3, с. 343—359 (совместно с Г. И. Кацем). 41. Конспект лекции по анализу III. М., 1970. 62 с.

42. Symbols of operators. Coloquia Mathem.— Soc. Janos Bolyai. 5 Hilbert Tihany (Hungary), 1970, р. 21—25 (совместно space operators. М. А. Шубиным).

43. Число замкнутых несамонересекающихся контуров на плоской решетке.—

Матем. сб., 1971, 85, вып. 1, с. 49-64.

44. Невинеровские континуальные интегралы. — ТМФ, 1971, 6, № 2, с. 194—212.

 Виковские и антивиковские символы операторов.— Матем. сб., 1971, 86. вып. 4, с. 578—610.

 Выпуклые функции от операторов.— Матем. сб., 1972, 88, вып. 2, с. 268— 276.

 Ковариантные и контравариантные символы операторов.— Изв. АН СССР. Сер. матем., 1972, 36, № 5, с. 1134—1167.

48. Лекции по статистической физике. М., 1972, 141 с.

 Лекции по квантовой механике. М., 1972, 294 с. (совместно с М. А. Шубиным).

 Квантование в комплексных ограниченных областях.— ДАН СССР, 1973, 211, № 6, с. 1263—1266.

- Несколько замечаний о распределении Вигнера.— ТМФ, 1973, 17, № 13, с. 305—318.
- Гамильтонов формализм в общей задаче Лагранжа.— УМН, 1974, 29, вып. 3, с. 183—184.
- Спектральные свойства обобщенных теплицевых матриц.— Матем. сб., 1974, 95, вып. 2, с. 305—325.
- 54. Квантование.— Изв. АН СССР. Сер. матем., 1974, 38, № 5, с. 1116—1175.
- 55. Общая концепция квантования. УМН, 1974, 29, вып. 6, с. 200 201.
- General concept of quantization.—Commun. Math. Phys., 1975, 40, N 2,
 p. 153-174.
- 57. Квантование в комплексных симметрических пространствах.— Изв. АН СССР. Сер. матем., 1975, 39, № 2, с. 363—402.
- Классический спин и алгебра Грассмана.—Письма в ЖЭТФ, 1975, 21,
 № 11, с. 678—680 (совместно с М. С. Мариновым).
- Супермногообразия.— ДАН СССР, 1975, 224, № 3, с. 505—508 (совместно с Д. А. Лейтесом).
- 60. Об ассоциативных алгебрах функций.— Вестн. Моск. ун-та. Сер. матем., мех., 1976, № 1, с. 33—38 (совместно с Ф. И. Карпелевичем).
- Representation of the infinite direct product of universal coverings of isometry groups of the complex ball.—Repts Math. Phys., 1976, 9, N 1, p. 15-30.
- 62. Представления супергруппы U(p, q).— Функц. анализ, 1976, 10, № 3, с. 70—71.
- 63. Супермногообразия. УМН, 1977, 32, вып. 1, с. 154.
- 64. Particle spin dynamics as the Grassmann variant of classical mechanics.— 3 Ann. Phys. (USA), 1977, 104, N 2, p. 336—362 (совместно с М. С. Мариновым).
- 65. Строение супералгебр Ли с полупростой четной частью.— Функц. анализ, 1978, 12, № 1, с. 64—65 (совместно с В. С. Ретах).
- Представления непрерывного прямого произведения универсальных накрывающих группы движения комплексного шара. — В кн.: Труды Моск. матем. о-ва. Т. 36. М., 1978, с. 275—293.
- 67. Связь между ко- и контравариантными символами операторов на классических комплексных симметрических пространствах.— ДАН СССР, 1978, 241, № 1, с. 15—17.
- 68. О строении супералгебр Ли с полупростой четной частью.— Вестн. Моск. ун-та. Сер. матем., мех., 1978, № 5, с. 63—67 (совместно с В. С. Ретах).
- 69. Инстантоны и грассмановы многообразия.— Функц. анализ, 1979, 13, № 2, с. 75—76.
- Дифференциальные формы на супермногообразиях.— ЯФ, 1979, 30, № 4, с. 1168—1174.
- Математические основы суперсимметричных теорий поля.— ЯФ, 1979, 29, № 6, с. 1670—1687.
- 72. Теоретико-групповая интерпретация уравнений типа Кортевега де Фриза. Функц. анализ, 1980, 14, № 2, с. 50—51 (совместно с А. М. Переломовым).
- 73. Супермногообразия.— В кн.: Элементарные частицы. Седьмая школа физики ИТЭФ. Вып. 1. М., 1980, с. 119.
- 74. Континуальный интеграл по траекториям в фазовом пространстве.— УФН, 1980, 132, вып. 3, с. 497—548.
- 75. Суперсимметричная модель нескольких классических частиц со спином.— Письма в ЖЭТФ, 1980, 32, № 1, с. 76—78 (совместно с В. Л. Голо).