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ABSTRACT 
It is theoretically investigated the magnetoresistance of layered 
crystals in a longitudinal quantizing magnetic field taking into 
account the spin splitting. It has been obtained the general 
expression for the electrical conductivity of a quasi two-
dimensional electron gas at the scattering on the deformation 
potential. It has been revealed peaks in the behavior of the 
specific resistance, at that a number of the peaks and their 
positions are dictated by the spin splitting magnitude. 
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I. INTRODUCTION 
At present, electronic transport phenomena in low-

dimensional systems such as layered crystals, 
superlattices, quantum wells, nanocomposites and 
heterostructures are intensively under investigation both 
experimentally  and theoretically. An interest in the 
systems is connected with the possibility to control their 
band structure, giving them a number of special features. 
Among these is, in particular, the sharp spectrum 
anisotropy. The anisotropy leads to an unusual behavior 
of the electron gas specific resistance in a magnetic field 
what could be used on making high sensitive magnetic 
sensors. In works [1-5] the specific resistance of an 
electron gas of lowered dimensionality in strong magnetic 
fields was examined, but therewith the spin splitting was 
not taken into account. However, in the last years, there 
are experiments (e.g., [1,3]) for explaining results of 
which account must be taken of the spin splitting in the 
energy spectrum. fields.  

 
II. RESULTS 

In the present work it is theoretically studied the 
longitudinal magnetoresistance of an electron gas with 
the cosinodal dispersion law in the case when 
perpendicular to crystal layers electrical and magnetic 
fields are parallel each other taking into account the spin 
splitting in a quatizing magnetic field. It has been 
obtained the general expression for the longitudinal 
specific resistance of quasi two-dimensional systems. In 
the case of a degenerate electron gas in the quantum limit 
it has been investigated the analytical dependence of the 

longitudinal magnetoresistance on the magnetic field 
magnitude, effective mass and spin splitting. It has been 
shown that the specific resistance behavior substantially 
depends on the relation between the Fermi level, Landau 
level position and one-dimensional conduction band 
width. It has been revealed the peak-like behavior of the 
resistance in a magnetic field on which the spin splitting 
has significant influence.  

In layered systems, electrons when passing across the 
layers along the z  axis overcome a rather large potential 
barrier of width a  and the energy spectrum of an electron 
in this direction can be described in the strong coupling 
approximation. In the plane of the layers electrons are 
practically free and it is held the dispersion law in the 
approximation of the effective mass [6]. In a strong 
magnetic field, parallel to the z  axis, directed transverse 
to the layers, it is quantized the electron motion in the 
layer plane and removed the spin degeneracy, bringing 
about to the familiar electron energy spectrum in the form 
[7,8]  
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where N  is the occupied Landau level number, zk  is the 
wave vector component along the z  axis, B  is the 
magnetic field induction, ( ) 00 μmmμ ⊥= ,  cmeμ 00 2h=  
is the Bohr magneton, 0m  is the free electron mass,  ⊥m  
is the electron mass in the plane of the layer,  0ε   is the 
one-dimensional conduction band half-width in the zk  
direction, a  is a lattice constant along the z  axis, 

21±=σ  is the electron spin quantum number, ∗g  is the 
spin splitting factor. The energy spectrum (1) describes 
an electron gas in layered crystals, transition metal 
dichalcogenides, in semiconductor compounds with a 
superlattice and in semiconductor heterostructures with 
deep wells between large barriers. In [4,5] it was 
examined the longitudinal magnetoresistance in 
semiconductors with a superlattice, the electron energy 
spectrum in which is similar to that being considered in 
this paper. As  00 εTk <  and TkBμ 0>  conditions 
compiled, it can be restricted to consideration of the 



 

 

transport in the lowest subband, so the flat dispersion in 
the z direction takes place. The conditions are adequately 
realized for a strongly degenerate gas at low temperatures 
and strong magnetic fields when only the lowest subband  
is occupied. 
For the energy spectrum of the form (1) we shall have the 
following expression for the density of states       
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introduced the notation BμNσkNεε zz )12(),,( +−= - 

Bσμg 0
∗− . It is seen that the density of states has a 

peculiarity each time as 02εε z = . 
It has been known that a longitudinal magnetic 

field has no effect on the electron motion along it and it 
can be applied the Boltzmann kinetic equation. Then the 
current density in the direction of electrical and magnetic 
field takes the form [8] 
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where  )(1 εf  is the nonequilibrium addition to the Fermi-
Dirac distribution function  )(0 εf , h)sin(0 zz akaεv = .  
If in the sample there is an electrical field E , directed in 
the z  axis,   
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Here )(ετ B is the relaxation time of impulses in a 
quantizing magnetic field. As it is known when the 
condition BμTk ≤0  is met, one can introduce the 
relaxation time, in doing so, it is inverse proportional to 
the density of states of electrons in a magnetic field 

)(εg B  and equals [4,8]   
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here qN is the Plank function. In the paper, there are 
considered the scattering on the deformation potential and 
( ) ⊥⊥ = qDqD 0 , where 0

2
0 2 uρD Ξh= , 0u  is the speed 

of sound, ρ  is the crystal density, Ξ  is the deformation 
potential.  

Inserting nonequilibrium distribution function (4), 
obtained from the kinetic equation solution, into 
expression for the current density (3) and passing to the 
integration over   energy for the electrical conductivity of 
strongly degenerate electron gas we shall receive 
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From expression (9) it is evident that the resistance 
)()( 1 BσBρ zzzz

−=  assumes an infinitely large value when it 
is fulfilled the condition BσμgBμNεζ 0

*
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In [9,10] there is an indication on the experimental 
observation of turning )(Bσ zz  into zero at certain values 
of the magnetic field. It should be noted that with 
increasing a magnetic field quantum levels lying below 
the Fermi level cross it, which results in the jump-wise 
decrease of the specific resistance magnitude. However, 
in the intervals between the jumps (offsets) the density of 
states rises and the resistance increases.  
In [10] it was noticed that the spin splitting is 
experimentally observed when 3≤N , consequently 
based on formula  (7) it has been investigated the 
dependence of )(Bρzz  on B  where N  varies from 0 to 
3. Results of these calculations are displayed in Fig. 1 for 
the following parameters meVε 10 = , nma 1= , 

32310 −= mn , 02.0 mm =⊥ , 03.0 mm =⊥ , 2=∗g . As seen 
from the Figure the resistance oscillates in a magnetic 
field when the Fermi level exceeds the one-dimensional 
conduction band width zk . It might be noted that these 
oscillations weaken, as the effective mass along the layer 
decreases, and vanish at all when 02εζ < . For 
comparison the dependence of )(Bρzz  on B  without 
taking into account spin splitting are displayed in Fig. 2. 

 
 

 
 
 

Fig.1 Dependence of the ratio )0()( zzzz ρBρ  on a magnetic field at 

02εζ >  and 02.0 mm =⊥ (solid curve), 03.0 mm =⊥ (dotted 
curve), with taking into account the spin splitting. 
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Fig.2.  Dependence of the ratio )0()( zzzz ρBρ  on a magnetic field at   

        02εζ >  and 02.0 mm =⊥ (solid curve), 03.0 mm =⊥ (dotted  
          curve) without taking into account the spin splitting. 

 
III. CONCLUSION 

Point out that comparing the experimental data with 
theoretical calculations it can be determined physical 
characteristics such as the spin splitting factor ∗g , band 
parameters of the layered crystal and magnetic field 
regions where the jumps of the specific resistance occur. 
These results in turn could be used on making high 
sensitive magnetic sensors. 
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