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ABSTRACT 
Data classification is one of the primary tasks in 
Geocomputation. Traditionally, data classification tasks are 
based on statistical methodologies such as minimum distance-to-
mean (MDM), maximum likelihood classification (MLC) and 
linear discrimination analysis (LDA). These classifiers have 
developed over the last century from the mathematical 
disciplines of set theory and control theory. Over the last 20 
years, classification tools have also developed from the 
emerging fields of connectionism and inference nets within the 
discipline of Artificial Intelligence (AI); the more notable being 
the neural network based multi-layered perceptron (MLP), the 
decision tree and genetic algorithms (GA) such as differential 
evolution (DE). This paper seeks to compare the advantages and 
disadvantages of the various classifier types. The results show 
that, for simple tasks, MDM, LDA and similar classifiers are the 
best compromise of efficiency and classification ability, whilst 
for more complex datasets, variants based on the MLP and 
decision trees are the classifiers of choice. 
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1. INTRODUCTION 
 Within the Earth Sciences, classification is the process of 
identifying areas of the Earth's surface, given a particular 
phenomenological output domain and some different 
input domain (a set of attributes).  
Classification of raw datasets is an important step in the 
analysis and understanding of geographical features and 
their relationships. Such data can be remotely sensed, 
gathered from ground surveys, or even culled from some 
previous classification.  

A classifier's function can be formulated in terms of 
a mapping of its input variables to its (given) output 
conditions. We can write:  

 
( ) qnp Π⎯⎯→⎯ℜ Γ ,                              (1)  

 
where p is the number of attributes, q is the number 

of classes and n is the number of samples. The goal of 
classification is to select an output class from a different 
phenomenological domain (Π , the classification 
scheme) to that of the input attributes (ℜ ) for each input 
vector px . These transformation models can be 
categorized as unsupervised or supervised classifiers. In 

the case of supervised classification, the user chooses the 
scheme Π  and the classifier learns an approximation 

( )pn,Γ ′  to the ideal transfer function ( )pn,Γ . This is 
accomplished by examining a small set (the training set) 
of the data for which the correct classification has already 
been determined (by ground survey, or a previous 
classification). Hence the (common) scheme of ground 
cover type is often derived from an attribute domain that 
may comprise several bands of LANDSAT data, as well 
as ancillary data such as digital elevation models, rainfall, 
etc.  

 
II. MAIN TEXT 

Traditionally, classification of geographic datasets 
has been based on well-known statistical methods, as 
implemented in classifiers such as Maximum Likelihood 
Classification (MLC) or Minimum Distance to Mean [8]. 
More recently, the discipline of Computer Science has 
developed classifiers based on machine learning 
techniques such as decision trees and artificial neural 
networks. This has lead to a greater choice of 
classification techniques available to the Earth Scientist. 
In this paper, we will examine the relative strengths and 
weaknesses of these various supervised classifiers, giving 
some comparative results.  

Bayesian Classifiers: MLC and MDM. Many 
statistical classifiers are based on some approximation to 
the ideal Bayesian classifier, as in most practical 
applications the optimal Bayesian classifier can never 
actually be realized. The popular MLC and MDM 
classifiers are examples of such approximations derived 
from the following theory of Bayesian probability.  

For acceptable classification, a classifier must 
contain sufficient complexity to enable encoding of the 
approximated transformation function ( )pn,Γ ′  of (1). 
Bayesian estimation is a process of determining the 
probable outcome of an event (the a posteriori 
probability) given some new piece of evidence and the 
original (a priori) probability of that outcome. The Bayes 
Theorem can be restated in terms of classification of data 
as [3]:  

( ) ( ) ( )
( ) qi
xρ

iρixρ
xiρ ,...1== ,           (2)  



where q - the number of classes, ( )xiρ - the 

probability of class i given the input vector x, ( )ixρ - the 
probability of an input vector with characteristics of x 
given class i, ( )iρ  - the probability that class i is present 

in the dataset, ( )xρ - the probability of an input vector 
with characteristics of x given any class.  

Intuitively, to assign a class membership for a given 
x, we would calculate ( )xiρ  for all classes and assign x 

to that class i for which ( )xiρ  is a maximum. However 
for real-world data, it is generally the case that the 
prerequisite ( )ixρ  is not known and is therefore 
estimated from the training set as a probability density 
function (pdf). The specific form of the pdf used for this 
estimation of ( )ixρ  defines the type of approximation 
model. The pdf is used as a discriminate rule to identify a 
given vector x as belonging to a particular class i.  

If we make the assumption that the cost of 
misclassifying class i as class j is the same for all i and j , 
we can rewrite (2) as:  

 
ifix∈  

( ) ( ) ( ) ( ) ., ijallforjρjxρiρixρ ≠>       (3) 
 

This can be alternatively expressed, by taking the 
logarithm of both sides of the inequality, as:  

 
ifix∈  

( ) ( ) ( ) ( )

.

,lnlnlnln

ijallfor
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≠

+>+
   (4)  

and for the normal case where the priors are unknown, or 
assumed equal, reduces to: 
 

ifix∈  

( ) ( ) .,lnln ijallforjxix ≠> ρρ           (5) 
 

The Maximum Likelihood discriminate rule uses (5). 
The term "maximum likelihood" may be seen as more 
appropriate if we rewrite (5) as:  

 
ifix∈ ( ) ( )( ).lnmaxln jxix

j
ρρ =           (6) 

Consider the case where ( )ixρ  is estimated as a 
multivariate normal (Gaussian) distribution:  

 

( ) { }12/12/2
f

eix i
p −−− Σ≅ πρ ,                 (7) 

 
where p is the dimensionality of the input vector x, 

with  iΣ  and iu ui the sample covariance matrix and 

sample mean vector, respectively, for class i. This 
assumption of normality underlies the Maximum 
Likelihood classifier (MLC, more correctly the Gaussian-
based Maximum Likelihood Classifier, see [7], the most 
common statistical classifier for GIS/RS datasets [9]. 
Substituting (7) into (6) and tidying terms gives the MLC 
discrimination rule:  

 
( ) ( ) ( )iiiii uxuxxd −Σ−−Σ−= −1ln  ,       (8)  

 
From (8) it is easier to see how the methodology 

implicitly sets a lower limit to the sample class size for 
each i. To ensure that the inverse of iΣ  remains non-
singular, the number of representative patterns in each 
class i. In practice, it is recommended to maintain size(i) 
> 10p, for all i, so as to provide a minimal set of 
construction points in each dimension for the Gaussian 
curves. The Minimum-Distance-to-Mean (MDM) 
classifier simplifies the discrimination rule of (8) by 
dropping the covariance term iΣ  and implementing a 
simpler Euclidean distance-to-mean metric to give a 
discriminate function:  

( ) ( ) ( )i
T

ii uxuxxd −−−= .              (9)  
 
This produces spheroid decision boundaries in 

(Euclidean) feature space, rather than the ellipsoid 
boundaries of the MLC.  

Linear Discriminate Analysis. The preceding 
Bayesian approximation functions are quadratic in nature, 
as can be seen by examining (8) and (9). They model a 
volume – that of the particular class distribution. Linear 
discrimination, as the name suggests, looks for linear 
combinations of the input variables that can provide an 
adequate separation for the given classes. Rather than 
look for a particular parametric form of distribution, LDA 
uses an empirical approach to define linear decision 
planes in the attribute space i.e. it models a surface. The 
discriminate functions used by LDA are built up as a 
linear combination of the variables that seek to somehow 
maximize the differences between the classes:  

xaxaxaxaz pp ′=+++= ...2211 .        (10)  
 
The problem then reduces to finding a suitable vector 

a. There are several popular variations of this idea, one of 
the most successful being the Fisher pair wise Linear 
Discriminate Rule1.  

Fisher’s Rule is considered a ‘sensible’ 
classification, in the sense that it is intuitively appealing. 
It makes use of the fact that distributions that have a 
greater variance between their classes than within each 
class, should be easier to separate. Therefore, it searches 
for a linear function in the attribute space that maximizes 
the ratio of the between-group sum-of-squares (B) to the 
within-group sum-of-squares (W)2. This can be achieved 
by maximizing the ratio  



 
Waa
Baa
′
′

,                           (11)  

and it turns out that the vector that maximizes this ratio, a, 
is the eigenvector corresponding to the largest eigenvalue 
of W1B i.e. the linear discriminate function z is equivalent 
to the first canonical variety. Hence the discriminate rule 
can be written as:  
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The standard LDA can only form linear decision 

surfaces, although there is no restriction on the orientation 
of these in the feature space. In the case where the class 
distributions are unknown, or we have reason to believe 
they are not normally distributed, we can expect more 
satisfactory results than the MLC or MDM methods, as it 
is unconstrained by any prior statistical model.  

Decision Trees.  Decision trees have evolved from 
both a statistical consideration [5] and from development 
in the field of AI [8]. Decision trees are an example of 
inductive learning and, as such, implement a rule-based 
classifier. They involve a recursive partitioning of the 
feature space, based on a set of rules that are learned by 
an analysis of the training set. A tree structure is 
developed where, at each branching, a specific decision 
rule is implemented, which may involve one or more 
combinations of the attribute inputs. A new input vector 
then “travels” from the root node down through 
successive branches until it is placed in a specific class. In 
essence then, the classification is determined by 
describing the path from the root node of the tree to a leaf 
node - each nodal set of rules progressively refining the 
classification in a hierarchical manner. The tree encodes 
high levels of complexity where necessary and more 
simplistic rule combinations when appropriate, so that the 
tree only becomes complex (deep) where class separation 
is difficult. Likewise, only attributes that appear to aid the 
classification problem are considered when rules are 
defined; other attributes are simply ignored.  

The thresholds used for each nodal decision are 
chosen using minimum entropy or minimum error 
measures. It is based on using the minimum number of 
bits to describe each decision at a node in the tree based 
on the frequency of each class at the node. Alternatively, 
some minimum error function based on statistics or 
algebraic distance can be used, although this is not 
popular in decision trees. This threshold is set by the user, 
again by experimentation. At some stage the process must 
be terminated and the criterion used to determine when a 
class is adequately described has been the subject of much 
research. With minimum entropy, the stopping criterion is 
based on the amount of information gained by a rule (the 
gain ratio).  

 Artificial Neural Networks – the MLP. MLP’s have 
become increasingly popular as classification tools in a 
number of fields. They are highly parametric, in the sense 
that they must be fitted with a large parameter set (their 

weights and biases) but, similar to decision trees, they do 
not depend on knowledge of the class distributions, as 
they use an inductive, data-driven approach to modeling 
class discrimination. Like the LDA approach, they model 
decision surfaces, not class distribution volumes. Their 
main perceived drawback is the complexity and time 
involved in choosing and setting up the initial network.  

MLP’s consist of a number of layers of 
computationally simple units (nodes), that process their 
input via a non-linear activation function. The layers are 
attached to each other by a set of plastic weighted 
connections. The learning phase is devoted to varying the 
weights in such a way as to produce a classification with 
minimal error. The error is calculated by implementing 
some error function E.  

This is minimized via some routine or algorithm S. 
The cost function is generally of the form:  

( )∑∑
= =

−=
n

i

q

j
jj ztE

1 1

2

2
1

,            (13)  

 
where tj represents the output at output node j and zj 

represents the expected output at that node (given by the 
training set). S is generally some common numerical 
minimisation routine, such as gradient descent or 
conjugate gradient descent.  

The use of a cost function such as (13) places a 
constraint on the MLP classifier that is often overlooked. 
This “least-squares” form of E assumes a normally 
distributed noise component within the data, so it is not 
strictly true to say that the MLP works independently of 
any distribution trends within the data. This can be 
alleviated by the implementation of a cost function of a 
different form, but many of the more effective 
minimization routines assume such a noise distribution 
and are hence ineffective unless E is of a similar form to 
(13). Despite this, MLP’s are adept at producing 
acceptable classification schemas where the class 
distributions are unknown, sample sizes are small, or 
there is a high level of noise in the data. Their technique 
for classification can be viewed in terms of decision 
surfaces within the attribute space, as can both the LDA 
and decision tree classifiers. Each decision surface is 
formed/controlled by each hidden-layer node (and its 
associated input weights).  

However, unlike the decision tree, there is no 
constraint on the orientation of the surfaces and unlike the 
LDA classifier, there is no constraint on the number of 
surfaces or in the way they can be superimposed to 
produce complex, piecewise linear boundaries.  

A Comparison of the Techniques. Comparisons of 
classification tools are problematic, as there are any 
number of ways to set-up a given classifier.  

Performance of these classifiers can be measured in 
terms of their: Learning ability; Generalisation ability; 
Speed.  

The first criterion can be determined from measuring 
the performance on the training set. The second can be 
determined from measurement on some validation set, 
which is statistically independent of the training set. The 



speed is simply measured as the time taken to converge to 
the figures given by the second criterion.  

The datasets used are described in table 1. Dataset 1 
comprises of LANDSAT TM data only. The output 
classes are well defined crop types and form large, 
homogeneous regions within the image.  

Dataset 2 comprises of LANDSAT TM data plus 7 
ancillary layers of data, including digital elevation, 
geology and flow accumulation. The output classes 
represent the dominant vegetation cover and, unlike 
dataset 1, the training sites do not represent contiguous 
regions in larger target objects, but are instead isolated 
and ‘random’ samples (pixels). As such, it provides a 
much “harder” classification problem and none of the 
classifiers can be expected to produce a high level of 
accuracy on this dataset. Table 1 also shows the number 
of samples in the smallest class within the training sets.  

 
Table 1. Datasets used for these comparisons 

 
Data 
set 

Attributes Classes Samples Min/
class

1  6 – Landsat TM 
imagery 

8 – crop 
cover  

3630 165

2  11 – 4 Landsat 
TM +ancillary 
data 

9 – 
floristic 
classifica
tion 

1160 53 

 
Table 2 lists the performance on dataset 1, whilst the 

more complex dataset 2 is used in table 3. Rather than 
simply adding up the total number of correctly classified 
samples, all % figures are calculated as the averaged 
performance over every class in the dataset, thereby 
removing any bias associated with varying class sample 
sizes (remembering that these are real-world datasets).  

Table 2  
Classifier performance on dataset 1 

 
Classifier  Training 

Set (%)  
Validation 
Set (%)  

Time 
(min:sec) 

MDM  53.55  51.25  0:25 
MLC  70.65  69.70  1:45 
LDA  68.75  65.15  0:35 
Decision 
Tree  

73.35  70.05  0:15 

MLP  71.60  70.30  3:20 
 
As the tables show, there is quite a difference in 

performance across the various types of classifiers and 
datasets. The decision tree produces a useful combination 
of speed and classification ability. It’s ability to 
generalize is somewhat hampered by the restriction of 
orthogonal decision surfaces, but the computational 
complexity of growing the tree is only of the order of 
O(n). It performs equally well on both the simple and 
more complex datasets.  

 
 

 
 

Table 3. Classifier performance on dataset 2 
 

Classifier  Training 
Set (%)  

Validation 
Set (%)  

Time 
(min:sec) 

MDM  38.55  37.25  1:30 
MLC  46.50  41.00  2:45 
LDA  48.05  43.15  0:45 
Decision 
Tree 

 65.30  52.35  0:35 

MLP  70.75  63.10  6:10 
 
Of the statistical methodologies, the MLC gives the 

best performance on datasets where the assumption of 
normality can be said to be reasonable. However, in 
dataset 2, where some of the class samples are quite 
sparse (remembering that the MLC would require a 
minimum of 110 samples per class for this dataset) and 
where much of the ancillary data is either multi-modal or 
severely skewed, it starts to show it’s shortcomings and 
the empirical approach of statistical classifiers such as 
LDA can actually outperform it. In these cases, the LDA 
classifier is more adept at generalization than either of the 
Bayesian-based classifiers and also gives a useful speed 
improvement. The LDA is restricted by the number of 
decision surfaces it can generate (as it can only generate 
so many covariance matrices) and the positioning of these 
surfaces is (generally) fixed by the distribution (these 
arguments also apply, to a lesser extent, to the MDM and 
MLC).  

This is more noticeable when dealing with complex, 
overlapping distributions such as is present in dataset 2, 
but it’s non-reliance on a known set of class distributions 
more than compensates, when compared to the Bayesian 
approximation techniques.  

The MLP shows the best learning and generalizing 
ability, but at a speed sacrifice that may be prohibitive in 
some instances.  

Other Classification Techniques.  Although the 
classifiers presented here are fairly representative of the 
types of approaches currently available, there are several 
other methodologies emerging that require some 
comment.  

Logistic Discriminate Analysis is similar to LDA, 
but with the ability to construct non-linear decision 
boundaries. Several classifiers based on this technique 
have been developed and have been shown to give results 
comparable to the decision tree approach. They are, 
however, quite complex in implementation, hence rather 
oblique to analysis .  

The self-organising map (SOM) is a variant of the 
unsupervised Kohonen neural network that is being used 
with some success as an alternative neural network 
approach. It essentially does a vector search in attribute 
space to find a set of “key” vectors that represent each 
class and then runs a clustering routine to develop 
decision boundaries. It is a much faster technique than 
neural networks based on back propagation, giving 
training times on par with optimized decision trees. It 
does not provide quite the same generalizing ability as the 
MLP used here, however, so at this stage, it is hard to see 



any distinct advantage that it might have over an 
optimized decision tree technique, although current 
research is encouraging .  

Genetic algorithms (GA) have recently restirred 
research interest, particularly a variant known as 
Differential Evolution . The technique is based on a 
model of the biological system of splitting and 
recombining chromosomal sequences. Combinations of 
attributes are represented as “chromosomes” and those 
that provide the best class separation per iteration (or 
“generation”) are selected to “evolve” through to the next 
iteration. The technique provides a truly global attribute 
search strategy, rather than the local strategies used in 
decision trees and neural networks. However, the price is 
efficiency.  

 
III. CONCLUSIONS 

When generalization ability is the dominant criterion 
for success, unconstrained by efficiency considerations, 

the MLP is a consistently superior classifier. It can work 
with sparse, noisy data and does not require any 
assumptions on the population distribution or the 
sampling process. By contrast, the popular MLC classifier 
is not significantly faster, becomes rapidly more 
inefficient as the number of attribute dimensions increases 
and gives poorer classification accuracy on real-world 
problems due to its underlying statistical data 
requirements. The MDM classifier has a significant 
benefit in terms of speed, but if this is what is required, 
the LDA classifier is a better choice; it outperforms the 
MDM and even the MLC on the more complex dataset.  

The decision tree classifier is perhaps the best all-
round choice. It is as fast as LDA, approaches the MLP in 
terms of learning ability and still maintains useful 
generalizing ability. As long as the noise in the dataset to 
be classified has been well-modeled in the training set, it 
is a quite robust classifier that does not require any 
knowledge of the data distribution.  
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