HEAT CONDUCTIVITY OF AQUEOUS SYSTEMS AS A MAIN TRANSPORT PROPERTY OF WORKING FLUIDS OF THE THERMAL POWER INDUSTRY

L.A. Akhmedova-Azizova, V.S.Eldarov

Azerbaijan State Oil Academy, Baku, Azerbaijan

ABSTRACT

The results of the experimental investigations of the thermal conductivity of aqueous solutions of CsCl, aqueous solutions CsBr and aqueous rgeup to 473 K, are given in the article. An equation for thermal conductivity was derived for correlation of experimental data.

Keywords: aqueous systems, power industry, thermal conductivity, electrolytes

I.INTRODUCTION

Aqueous solutions of electrolytes are widely used as heat bearers in the different branches of industrial thermal engineering, setups of heat and nuclear power stations, geothermal energetic and hallurgs. Aqueous solutions of salts are used practically in production of all inorganic substances and reagents in which the chemical process are preceded.

One of the main problems of studying of electrolyte solutions is the investigations of their thermal properties and setting of the guantative regularities between thermophysical characteristics of aqueous solutions and electrolyte concentrations. One of properties is the thermal conductivity.

Thermal conductivity of solutions plays an important part in the calculation constructions of thermal setups and heat exchangers. Knowledge of thermal conductivity and other properties of aqueous system allow solving many problems connected with equipment design amid technology optimization by calculation.

At present investigations of thermal conductivity of solutions becomes actual in connections with the progress achieved in studying of water structure on the basis of ion hydrations in solutions.

II. BODY OF THE TEXT

Measurements of thermal conductivity of solutions have been carried for a long time and great number of our works is devoted to them [1-6].

Thermal conductivity of five a aqueous CsCl solutions of molality (0.660, 1.485, 2.546, 3.960, 5.940) $mol \cdot kg^{-1}$, five aqueous CsBr solutions of molality (0.5372, 1.209, 2.072, 3.224, 4.836) $mol \cdot kg^{-1}$ and five aqueous CsI solutions of molality (0.2026, 0.4275,

0.9620, 1.650, 2.566) mol·kg⁻¹ have been measured with a concentric-cylinder (steady-state) technique [4]. The thermal conductivity at temperatures from 20 to 473 K was measured at atmospheric pressure, after which all measurements were performed at the saturations pressure of solutions under study (this pressure varied versus temperature from 0.5 to about 5 MPA). All solutions of salt have been prepared from the reagents market "chemically pure" on common received methodic. The measurements principle of thermal conductivity layer is based on the fact that in constant power of heating element temperature differences ΔT in the investigated substance layer meared by differential thermocouple, are defined by thermal conductivity of the investigated liquid, that is

$$\Delta T = \varphi(\lambda) \tag{1}$$

where λ is a coefficient of thermal conductivity. Using the theory of similarity [7] instead of (1), we get

$$y = f(x) \tag{2}$$

where $x - u^2 / \Delta E$, $y - x / \lambda$ here u is the heater voltage; ΔE is the thermo electromotive force of differential thermocouple.

The relationship (2) is established by graduating the instrument with the respect to liquids with the known values of thermal conductivity. In this case water was used to graduate the setup. The data of thermal conductivity of water were taken from [8]. The setup was also graduated at pressures 10, 20, 30, 40 and 50 MPa. The error of experimental data been estimated as 0.14 %.

III. RESULTS

The experimental values of thermal conductivity near the saturation line for aqueous solutions of CsCl, CsBr, CsI are shown in table 1.As it seen from the table thermal conductivity of investigated solutions decreases by increasing electrolyte concentration. Decrease of thermal conductivity of solutions by increasing electrolyte concentration and increase of λ in dependence on temperature about 140 0 C - are explained according to the theory of thermal conductivity of water.

It has been found on the basic of the experimental data that the ratio of the thermal conductivity of solutions λ_{S} to that of water λ_{W} or "relative thermal conductivity" for the given concentrations of electrolyte with the maximum error of 0.4 % is dependent of temperature, that is,

$$\lambda_S / \lambda_W = \Lambda \neq f(T)$$
where Λ -relative thermal conductivity. (3)

IV. CORRELATION

In order to approximate the experimental results versus the concentrations, the dependence of λ_s / λ on square root of molality \sqrt{m} is theated, this dependence being described within $\pm 0.5\%$ by the equation

$$\lambda_s = \lambda_W \left(1 + Am + Bm^{3/2} + Cm^2 \right) , \quad (4)$$

where the coefficients *A*, *B* and *C* do not depend on temperature.

For the $H_2O + CsCl$, $H_2O + CsBr$, $H_2O + CsJ$ systems under study, the coefficients A, B and C have the following values:

$H_2O + CsCl$:	A= -0.03181 B= -0.00385 C= 0.00243
$H_2O + CsBr$:	A= - 0.05698 B= 0.00572 C= 0.00179
$H_2O + CsJ$:	A = -0.07083 B = 0.00869 C = 0.00274

The calculated values of thermal conductivity by formula (4) differ from our experimental results by 0.6 % at most. Formula (4) makes it possible to use a simple method (without long and labor-consuming experiments) to determine the thermal conductivity of little studied mixed solutions in a wide range of temperatures.

V. CONCLUSION

1. The experimental data on the thermal conductivity of aqueous CsCl, CsBr, CsJ solutions have been received in the temperature range of 293-473 K at the saturation pressure of solutions under study (this pressure varied versus temperature from 0.5 to about 5 MPa).

2. It is shown that the heat solvent water plays a definite role in heat transfer in the aqueous solutions of electrolytes. The new equation for thermal conductivity of aqueous of salts has been received.

Table 1. The experimental values of thermal conductivity of $H_2O + CsCl$, $H_2O + CsBr$, $H_2O + CsJ$ system nearly saturation line, λ , $W \cdot m^{-1} \cdot K^{-1}$

m, mol·kg ⁻¹	Т, К	λ , $W \cdot m^{-1} \cdot K^{-1}$
	$H_2O + C_2$	sCl
0.660	292.78	0.577
	303.12	0.590
	313.01	0.604
	332.69	0.626
	352.47	0.644
	373.32	0.658
	393.21	0.661
	402.83	0.660
	423.30	0.659
	472.68	0.633
1.485	292.47	0.550
	303.74	0.563
	313.51	0.579
	331.77	0.597
	352.83	0.614
	373.63	0.627
	393.90	0.630
	402.01	0.630
	424.12	0.629
	472.54	0.60
2 546	293.53	0.519
2.0.10	302.37	0.530
	314.22	0.530
	333.04	0.562
	353.59	0.578
	372.83	0.591
	394.11	0.593
	401.88	0.593
	424 51	0.593
	471.92	0.592
3 960	293.88	0.388
3.900	302.79	0.402
	314.05	0.504
	334.69	0.504
	352.17	0.525
	373.24	0.530
	303.58	0.552
	401.54	0.551
	401.34	0.550
	422.79	0.530
5.04	4/1./3	0.328
5.94	291.93	0.440
	212.52	0.450
	313.33	0.439
	352.47	0.478
	354.18	0.492
	3/3.63	0.501
	392.14	0.505
	404.18	0.505
	422.17	0.502
	473 79	0.483

$H_2O + CsBr$				
0.5373	292.21	0.572		
	303.88	0.5860		
	312.59	0.600		
	334.31	0.6215		
	353.87	0.639		
	371.73	0.653		
	392.17	0.655		
	402.82	0.656		
	424.24	0.654		
	473.18	0.628		
1.209	293.48	0.542		
	304.11	0.556		
	312.28	0.568		
	334.05	0.589		
	352.19	0.606		
	374.25	0.618		
	394.33	0.622		
	403.58	0.622		
	424.72	0.619		
	472.11	0.595		
2.072	294.16	0.508		
	303.94	0.521		
	312.53	0.533		
	332.48	0.552		
	353.82	0.568		
	372.67	0.580		
	393.48	0.583		
	403 38	0.583		
	421.99	0.581		
	472.35	0.558		
3.224	293.78	0.471		
	302.11	0.483		
	312.49	0.494		
	334.59	0.512		
	352.12	0.527		
	372.87	0.538		
	394.72	0.541		
	402.37	0.540		
	424.28	0.539		
	472.22	0.518		
4.836	291.97	0.429		
	305.01	0.442		
	313.59	0.453		
	331.82	0.469		
	352.78	0.483		
	373.12	0.492		
	394.61	0.495		
	401.18	0.498		
	423.17	0.492		
	471.77	0.473		

$H_2O + CsJ$				
0.2026	294.19	0.586		
	303.23	0.600		
	312.78	0.613		
	334.42	0.636		
	352.17	0.654		
	373.57	0.668		
	392.18	0.671		
	401.78	0.669		
	424.13	0.669		
	473.04	0.643		
0.4275	293.13	0.572		
	304.09	0.586		
	332.64	0.621		
	354.19	0.639		
	372.14	0.652		
	392.14	0.656		
	403.61	0.656		
	405.01	0.635		
	472.16	0.635		
0.962	292.47	0.542		
0.902	302.47	0.542		
	312.08	0.550		
	224.15	0.508		
	252.02	0.589		
	332.92	0.000		
	201.21	0.018		
	403 70	0.021		
	403.70	0.021		
	422.32	0.019		
1 650	201.91	0.595		
1.030	291.87	0.5079		
	212.49	0.521		
	224.71	0.555		
	354./1	0.552		
	352.90	0.585		
	3/4.18	0.580		
	392.08	0.583		
	403.19	0.582		
	422.71	0.581		
0.544	471.42	0.558		
2.566	292.48	0.471		
	303.21	0.483		
	314.17	0.494		
	332.71	0.512		
	354.01	0.527		
	372.53	0.537		
	394.27	0.540		
	402.71	0.541		
	422.56	0.538		
	473.03	0.578		

REFERENCES

- Abdulagatov I. M; Akhmedova-Azizova L. A, Azizov N. D. Thermal Conductivity of Aqueous Sr(NO₃)₂ and LiNO₃ Solutions at High Temperatures and High Pressures. J.Chem. Eng.Data 2004, 49, 688-703.
- Abdulagatov I. M; Akhmedova-Azizova L.A., Azizov N.D. Thermal Conductivity of Binary Aqueous NaBr and KBr and Ternary H₂O+NaBr Solutions at temperatures from (294 to 577) K and Pressures up to 40 MPa. J. Chem Eng. Data 2004, 49, 1727-1737.
- 3. Akhmedova-Azizova L. A., Guseinov K. D. Heat Conductivity of Solutions the Main Components of Working Fluids of the Thermal Power Industry. Conference proceeding. Second International Conference on Technical and Physical Problems in Power Engineering. Tabriz-Iran, 2004.
- 4. *Eldarov V.S.* Thermal Conductivity of Aqueous Solutions System KCl-NaCl₂ at high temperatures and pressures. *High Temperature*. 2003, Vol.41, 3, 381. (in Russian)

- Eldarov V.S. Thermal Conductivity of Aqueous Solutions System NaCl, CaCl₂ and KCl near the saturated line // Energy. 2004. .№1, p.57(in Russian)
- 6. Abdullayeva G.K; Eldarov V.S; Mustafayev A.M. Thermal Conductivity of Aqueous Solutions of NaCl-CaCl₂ system. High Temperature, Vol.36, 3, 375-378. (in Russian)
- 7. Novikov I.I; Borishanovskiy V.M. The similarity theory in thermodynamics and themocond, Moscow. Atom publish, 1979, 184(in Russian)
- Kestin J.; Sengres J.V.; Kamgar-Parsi B.; Levelt Sengres J. M. H. Thermophysical Properties of Fluid H₂O. J. Phys. Chem. Ref. Data 1984, 13, 175-189.