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It is theoretically shown for the first time that in an external electric and weak magnetic fields, when there is a 
temperature gradient, an impurity semiconductor radiates energy from itself with a certain frequency. The values of the 
frequency of current oscillations and the limit of change of the external electric field are found. It is shown that the resistance 
in the medium has only ohmic character. It is stated that in the above semiconductor, when the concentration of electrons and 
holes are determined from the obtained expression in theory, the injection of contacts plays a major role for the appearance of 
the indicated current oscillation in the circuit. 
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INTRODUCTION 
  

In conducting media under the influence of an 
external electric field, charge carriers receive 
additional energy of the order of 𝑒𝑒𝑒𝑒𝑙𝑙 from the electric 
field (e is the elementary charge, E is the electric field 
strength, l is the mean free path of charge carriers). In 
this case, charge carriers have an energy of the order 
of 3

2
𝑘𝑘0𝑇𝑇 +  𝑒𝑒𝑒𝑒𝑙𝑙 (𝑘𝑘0− is the Boltzmann constant, T is 

the lattice temperature) and the redistribution of 
charge carriers over the medium occurs in an uneven 
manner. This redistribution of charge propagates as a 
wave inside the medium. These waves can be 
unstable, and therefore energy radiation begins from 
the crystal. The mechanism and cause of the 
appearance of unstable waves in different conducting 
media are different. Therefore, the theoretical study of 
unstable states requires different mathematical 
approaches. If the excited wave inside the medium 
does not go outside (ie, there is no current oscillation 
in the external medium), then the frequency of this 
wave is a complex value, and the wave vector is a real 
value. In the opposite case (ie, frequency ω=ω0, wave 
vector 𝑘𝑘 = 𝑘𝑘0 + 𝑖𝑖𝑘𝑘′), current fluctuations occur in the 
external circuit and the medium radiates energy with 
frequency ω0. 

In [1-6], we theoretically studied various 
instabilities in semiconductor media and obtained 
some analytical formulas for an external electric field 
and for the current oscillation frequency. However, in 
impurity semiconductors, the excitation of unstable 
waves depends on many factors due to the presence of 
various impurity centers in the medium. Impurity 
centers, depending on the charge states, are capable of 
capturing (recombination) or emitting (generation) 
charge carriers. These recombination and generation 
processes can excite unstable waves inside the 
medium. 

Gold atoms in germanium, in addition to the 
neutral state, can be singly, doubly, and triply 
negatively charged centers. These impurity levels are 

located at different distances from the conduction 
band of the semiconductor. Depending on the 
temperature of the semiconductor, these energy levels 
are more or less active levels. In the experimental 
work [7], singly and doubly negative levels were 
active. In what follows, we will use the experimental 
model [7]. It is clear that there is a Coulomb barrier 
around the negative charge. Electrons that have 
received energy from an external electric field can 
overcome this Coulomb barrier and be captured. As a 
result of thermal transfer, electrons can escape from 
the impurity center into the conduction bands. Due to 
the capture of electrons by impurity centers from the 
valence band, the number of holes increases. As a 
result of recombination and generation of electrons 
and holes, the electrical conductivity of the 
semiconductor changes. In [1-6], analyzes of kinetic 
equations in a semiconductor with singly and doubly 
negatively charged centers are presented in detail. 
These papers present the results of a theoretical study 
of internal and external instability. However, the 
equilibrium values of the electron and hole 
concentrations were arbitrary. 

In this theoretical work, we will investigate 
current oscillations (i.e., external instability) in 
semiconductors with singly and doubly negative 
impurity centers in an external electric field E0 - in the 
presence of weak magnetic fields (i.e.,  𝜇𝜇±𝐻𝐻0 << 𝑐𝑐 , 
𝜇𝜇±- are the mobility of holes and electrons, c is the 
speed of light). Taking into account the injection at the 
contacts of the semiconductor, when the 
concentrations of electrons η_- and holes η+ -are 
determined from the relation 𝜂𝜂+𝜇𝜇− = 𝜂𝜂−𝜇𝜇+ . In 
addition to the above conditions, the semiconductor 
has a constant temperature gradient ∆T=const. 

 
BASIC EQUATIONS OF THE PROBLEM 

 
The kinetic equations for electrons and holes in 

semiconductors by the above impurity centers have 
the form [1-7]. 



ESMIRA O. MANSUROVA     

44 

𝜕𝜕𝜂𝜂−′

𝜕𝜕𝜕𝜕
+ 𝑑𝑑𝑖𝑖𝑑𝑑𝑗𝑗−′ = 𝜈𝜈−𝜂𝜂−′ −

𝜈𝜈−′

𝜈𝜈−𝑖𝑖𝑖𝑖
�𝜈𝜈+𝜂𝜂+′ + 𝜈𝜈−𝜂𝜂−′ + �𝜈𝜈+𝐸𝐸𝜂𝜂+𝛽𝛽+

𝛾𝛾+𝜈𝜈−𝜂𝜂−𝛽𝛽−𝛾𝛾�
𝑒𝑒�𝜇𝜇+𝜂𝜂+′ +𝜇𝜇𝜂𝜂−′ �

𝜎𝜎+𝜎𝜎1
� +

+ 𝜈𝜈−𝜂𝜂−𝛽𝛽−𝛾𝛾
𝑒𝑒�𝜇𝜇+𝜂𝜂+′ +𝜇𝜇𝜂𝜂−′ �

𝜎𝜎+𝜎𝜎1
     (1) 

𝜕𝜕𝜂𝜂+′

𝜕𝜕𝜕𝜕
+ 𝑑𝑑𝑖𝑖𝑑𝑑𝑗𝑗+′ = −𝜈𝜈+𝜂𝜂+′ + 𝜈𝜈+′

𝜈𝜈−𝑖𝑖𝑖𝑖
�𝜈𝜈+𝜂𝜂+′ + 𝜈𝜈−𝜂𝜂−′ + �𝜈𝜈+𝐸𝐸𝜂𝜂+𝛽𝛽+

𝛾𝛾+𝜈𝜈−𝜂𝜂−𝛽𝛽−𝛾𝛾�
𝑒𝑒�𝜇𝜇+𝜂𝜂+′ +𝜇𝜇𝜂𝜂−′ �

𝜎𝜎+𝜎𝜎1
� −

−𝜈𝜈+𝐸𝐸𝜂𝜂+𝛽𝛽+
𝛾𝛾 𝑒𝑒�𝜇𝜇+𝜂𝜂+′ +𝜇𝜇𝜂𝜂−′ �

𝜎𝜎+𝜎𝜎1
    (2) 

             𝛽𝛽± = 2 𝑑𝑑 ln𝜇𝜇±
𝑑𝑑 ln�𝐸𝐸02�

, �⃗�𝑑± = 𝜇𝜇±𝑒𝑒�⃗ 0, 𝛽𝛽±
𝛾𝛾 = 2 𝑑𝑑 ln𝛾𝛾±

𝑑𝑑 ln�𝐸𝐸02�
; 𝜂𝜂±

′ ≪ 𝜂𝜂±
0 , 𝑒𝑒′ ≪ 𝑒𝑒0, 𝑇𝑇 ≪ 𝑒𝑒𝑒𝑒0𝑙𝑙 

 
𝑇𝑇 = 𝑘𝑘0𝑇𝑇0, 𝑇𝑇0- grating temperature, l - mean free path. 𝜈𝜈− = 𝛾𝛾−(𝑒𝑒0)𝑁𝑁0- electron capture frequency, 𝜈𝜈+ =

𝛾𝛾+(𝑒𝑒0)𝑁𝑁0 - hole capture frequency,𝜈𝜈+𝐸𝐸 = 𝛾𝛾+(𝑒𝑒0)𝑁𝑁0 - hole emission frequency,  𝜂𝜂₋ = 𝜂𝜂₋⁰𝑁𝑁₀
𝑁𝑁₋⁰

,  𝜂𝜂₊ = 𝜂𝜂₊⁰𝑁𝑁₋⁰
𝑁𝑁₀

, 𝑁𝑁0 =
𝑁𝑁+𝑁𝑁− total concentration of impurities, N- singly negatively charged centers,  𝑁𝑁− - doubly negatively charged 
centers, 𝑁𝑁 >> 𝑁𝑁− , 𝜎𝜎 = 𝜎𝜎+ + 𝜎𝜎− = 𝑒𝑒(𝜂𝜂+𝜇𝜇+ + 𝜂𝜂−𝜇𝜇−) , 𝜎𝜎1 =  𝑒𝑒 (𝜂𝜂+𝜇𝜇+𝛽𝛽+ +  𝜂𝜂−𝜇𝜇−𝛽𝛽−) , 𝜈𝜈 = 𝜈𝜈+′ + 𝜈𝜈−′ - combined 
frequencies of capture and emission of electrons and holes by no uniform traps (𝑁𝑁0,𝑁𝑁−0) >> (𝜂𝜂±

0 ). 
 

THEORY 
 

In the presence of an external magnetic field and a temperature gradient, the current densities for electrons 
and holes have the form: 

 
𝚥𝚥−���⃗ = −𝜂𝜂−𝜇𝜇−𝑒𝑒∗ − 𝜂𝜂−𝜇𝜇𝑙𝑙−[𝑒𝑒∗𝐻𝐻] − 𝛼𝛼−∇𝑇𝑇�����⃗ − 𝛼𝛼−′ � ∇𝑇𝑇�����⃗  𝐻𝐻��⃗ �
𝚥𝚥+���⃗ = 𝜂𝜂+𝜇𝜇+𝑒𝑒∗ + 𝜂𝜂+𝜇𝜇𝑙𝑙+[𝑒𝑒∗𝐻𝐻] + 𝛼𝛼+∇𝑇𝑇�����⃗ + 𝛼𝛼+′ � ∇𝑇𝑇�����⃗  𝐻𝐻��⃗ �

               (3) 

 
 𝐽𝐽 ���⃗ = 𝑒𝑒(𝚥𝚥+���⃗ − 𝚥𝚥−���⃗ )     (4) 

 
Substituting (3) into (4) we find 

𝑒𝑒∗ =  𝐽𝐽 ���⃗

𝜎𝜎
− 𝜎𝜎1

𝜎𝜎
�𝑒𝑒�⃗ ∗𝐻𝐻��⃗ � − 𝛼𝛼

𝜎𝜎
∇𝑇𝑇�����⃗ + 𝛼𝛼1

𝜎𝜎
� ∇𝑇𝑇�����⃗  𝐻𝐻��⃗ �   (5) 

 
Here 𝜎𝜎 = 𝜎𝜎+ + 𝜎𝜎−, α = α+ + α−, α1 = α+′  + α−′ . 
It was proved in [8] that in the presence of a magnetic field and a temperature gradient, hydrodynamic 

motions of charge carriers arise, and the electric field inside the medium has the form: 
 

𝑒𝑒∗ = 𝑒𝑒�⃗ + �𝜈𝜈��⃗  𝐻𝐻��⃗ �
𝑒𝑒

+ 𝑇𝑇
𝑒𝑒
�∇𝜂𝜂

′

𝜂𝜂0
− ∇𝜂𝜂+′

𝜂𝜂+0
�    (6) 

 
First, we find 𝑒𝑒∗����⃗   from the vector equation (5) as follows. We write (5) in the following form 
 

𝑒𝑒∗����⃗ = 𝐴𝐴 ���⃗ + 𝜎𝜎1
𝜎𝜎
�𝐻𝐻��⃗  𝑒𝑒∗����⃗ �     (7) 

Denote  𝐵𝐵�⃗ = 𝜎𝜎1
𝜎𝜎
𝐻𝐻��⃗ , them 

𝑒𝑒∗����⃗ = 𝐴𝐴 ���⃗ + �𝐵𝐵 ���⃗  𝑒𝑒∗����⃗ �     (8) 
 

From the vector equation (8) we can easily obtain: 

𝑒𝑒∗����⃗ = 𝐴𝐴 ���⃗ + �𝐵𝐵 ���⃗  𝐴𝐴 ���⃗ � + �𝐵𝐵 ���⃗ �𝐵𝐵 ���⃗  𝑒𝑒∗��    (9) 
 

Expanding the vector product in (9) at 𝜇𝜇±𝐻𝐻0 ≪ 𝐶𝐶 and substituting the resulting expression for 𝑒𝑒∗����⃗   in (6), 
we easily obtain the expressions for the electric field 

 
𝑒𝑒�⃗ = − �𝜈𝜈��⃗  𝐻𝐻��⃗ �

𝑒𝑒
− Λ′

𝜎𝜎
� ∇𝑇𝑇�����⃗  𝐻𝐻��⃗ � +  𝐽𝐽 ���⃗

𝜎𝜎
− 𝜎𝜎1

𝜎𝜎2
�𝐽𝐽 ��⃗  𝐻𝐻��⃗ � + Λ∇𝑇𝑇 + 𝑇𝑇

𝑒𝑒
�∇𝜂𝜂−

′

𝜂𝜂−0
− ∇𝜂𝜂+′

𝜂𝜂+0
�  (10) 
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Substituting (3-4), taking into account (10) in (1-2), we obtain the following dispersion equations for 
determining the wave vectors 𝑘𝑘1  and  𝑘𝑘2  

 
𝑥𝑥4 − 𝑢𝑢𝑥𝑥2 + 𝑓𝑓𝑥𝑥 − 𝛿𝛿0 + 𝑖𝑖𝛿𝛿1 = 0, 𝑥𝑥 = 𝐿𝐿𝑥𝑥𝑘𝑘   (11) 

 
Here                        𝑢𝑢 = 1

𝜑𝜑−𝜑𝜑+𝛼𝛼2
; 𝜑𝜑± = 𝜇𝜇±𝐻𝐻0

𝑐𝑐
; 𝛼𝛼2 = 1

8𝜑𝜑−𝜑𝜑+
∙ 𝑖𝑖
𝜈𝜈+

; 
 
                 𝑓𝑓 = 𝐿𝐿𝑥𝑥𝑢𝑢𝑖𝑖

𝜇𝜇−𝜇𝜇+𝐸𝐸22𝛼𝛼2
; 𝛿𝛿0 = 𝐿𝐿𝑥𝑥2�𝜈𝜈−𝜈𝜈+−𝑖𝑖2�

𝜇𝜇−𝜇𝜇+𝐸𝐸22𝛼𝛼2𝜑𝜑−𝜑𝜑+
; 𝛿𝛿1 = 𝐿𝐿𝑥𝑥2𝑖𝑖𝜈𝜈−

𝜇𝜇−𝜇𝜇+𝐸𝐸22𝛼𝛼2𝜑𝜑−𝜑𝜑+
; 𝑒𝑒2 = 𝑇𝑇

𝑒𝑒𝐿𝐿𝑥𝑥
 

 
The solution of equation (11) in general form is very difficult. Therefore, we will investigate oscillations in 

the considered medium with frequencies 
ω =  ±(𝜈𝜈−𝜈𝜈+)1/2      (12) 

 
Taking into account (12), from (11) we easily obtain: 

𝑥𝑥1 = 𝑢𝑢1/2 − 𝑖𝑖 𝛿𝛿1
2𝑢𝑢3/2; 𝑥𝑥2 = −𝑢𝑢1/2 − 𝑖𝑖 𝛿𝛿1

2𝑢𝑢3/2    (13) 

 
After finding the dimensionless wave vectors 𝑥𝑥1 and 𝑥𝑥2, we can calculate the impedance of the medium as 

follows 
 

𝑍𝑍 = 1
𝐽𝐽1
∫ 𝑒𝑒′(𝑥𝑥, 𝑡𝑡)𝑑𝑑𝑥𝑥𝐿𝐿𝑥𝑥
0        (14) 

 
Find 𝑒𝑒′(𝑥𝑥, 𝑡𝑡) from (10) 

 
𝑒𝑒𝑥𝑥′ = 𝐽𝐽𝑥𝑥′

𝜎𝜎0𝜑𝜑
+ 𝑖𝑖𝑇𝑇

𝑒𝑒𝜑𝜑
(𝑘𝑘1 + 𝑘𝑘2) �𝜂𝜂−

′

𝜂𝜂−0
− 𝜂𝜂+′

𝜂𝜂+0
�     (15) 

𝜑𝜑 = 1 − 𝐸𝐸1
𝐸𝐸0

; 𝑒𝑒1 = Λ0𝛾𝛾∇𝑇𝑇; 𝛾𝛾 = 2 𝑑𝑑 lnΛ
𝑑𝑑 ln(𝐸𝐸2)

. 
 

𝜂𝜂−′  и 𝜂𝜂+′  must be found, taking into account injection, on the contacts of the medium as follows 
 

𝜂𝜂−′ = с1−𝑒𝑒𝑖𝑖𝑘𝑘1𝑥𝑥 + с2−𝑒𝑒𝑖𝑖𝑘𝑘2𝑥𝑥, 𝜂𝜂+′ = с1+𝑒𝑒𝑖𝑖𝑘𝑘1𝑥𝑥 + с2+𝑒𝑒𝑖𝑖𝑘𝑘2𝑥𝑥    (16) 
 

Considering that at 𝑥𝑥 = 0,  𝜂𝜂±
′ = 𝛿𝛿 ±0  𝐽𝐽𝑥𝑥′      and that 𝑥𝑥 = 𝐿𝐿,   𝜂𝜂±

′ = 𝛿𝛿±
𝐿𝐿  𝐽𝐽𝑥𝑥′                                      (17)  

we find from (16) taking into account (17) for the constants 𝐶𝐶1,2
−  and 𝐶𝐶1,2

+  the following expressions 
 
𝐶𝐶1− = 𝐽𝐽𝑥𝑥′

𝛿𝛿 −0 𝑒𝑒𝑖𝑖𝑘𝑘2𝐿𝐿𝑥𝑥−𝛿𝛿−𝐿𝐿

𝑒𝑒𝑖𝑖𝑘𝑘2𝐿𝐿𝑥𝑥−𝑒𝑒𝑖𝑖𝑘𝑘1𝐿𝐿𝑥𝑥
 ; 𝐶𝐶2− = 𝐽𝐽𝑥𝑥′

𝛿𝛿−𝐿𝐿−𝛿𝛿 −0 𝑒𝑒𝑖𝑖𝑘𝑘1𝐿𝐿𝑥𝑥

𝑒𝑒𝑖𝑖𝑘𝑘2𝐿𝐿𝑥𝑥−𝑒𝑒𝑖𝑖𝑘𝑘1𝐿𝐿𝑥𝑥
; 𝐶𝐶1+ = 𝐽𝐽𝑥𝑥′

𝛿𝛿 +0 𝑒𝑒𝑖𝑖𝑘𝑘2𝐿𝐿𝑥𝑥−𝛿𝛿+𝐿𝐿

𝑒𝑒𝑖𝑖𝑘𝑘2𝐿𝐿𝑥𝑥−𝑒𝑒𝑖𝑖𝑘𝑘1𝐿𝐿𝑥𝑥
; 𝐶𝐶2+ = 𝐽𝐽𝑥𝑥′

𝛿𝛿+𝐿𝐿−𝛿𝛿 +0 𝑒𝑒𝑖𝑖𝑘𝑘1𝐿𝐿𝑥𝑥

𝑒𝑒𝑖𝑖𝑘𝑘2𝐿𝐿𝑥𝑥−𝑒𝑒𝑖𝑖𝑘𝑘1𝐿𝐿𝑥𝑥
;  (18)   

 
or  𝐶𝐶1− = 𝛿𝛿1−𝐽𝐽𝑥𝑥′ ; 𝐶𝐶2− = 𝛿𝛿2−𝐽𝐽𝑥𝑥′ ; 𝐶𝐶1+ = 𝛿𝛿1+𝐽𝐽𝑥𝑥′ ; 𝐶𝐶2+ = 𝛿𝛿2+𝐽𝐽𝑥𝑥′    (19)  

 
Substituting (15) taking into account (18-19) we obtain the following expressions for the impedance of the 
medium 

𝑍𝑍 = 𝑇𝑇
𝑒𝑒𝜑𝜑
�1 + 𝑘𝑘2

𝑘𝑘1
� �𝛿𝛿1

−

𝜂𝜂−0
− 𝛿𝛿1+

𝜂𝜂+0
� �𝑒𝑒𝑖𝑖𝑘𝑘1𝐿𝐿𝑥𝑥 − 1� + 𝑇𝑇

𝑒𝑒𝜑𝜑
�1 + 𝑘𝑘1

𝑘𝑘2
� �𝛿𝛿2

−

𝜂𝜂−0
− 𝛿𝛿2+

𝜂𝜂+0
� �𝑒𝑒𝑖𝑖𝑘𝑘2𝐿𝐿𝑥𝑥 − 1� + 𝐿𝐿𝑥𝑥

𝛿𝛿0
 (20) 

 
When deriving (15), we take into account that 𝐻𝐻′ = 0, т.е. 𝑘𝑘�⃗ ∥ 𝑒𝑒′���⃗ . 
When obtaining the values of the wave vectors k1 and k2, we take into account the inequality 

𝑓𝑓0 > 𝛿𝛿1
𝑢𝑢12

  or  𝑒𝑒0 > 𝐿𝐿𝑥𝑥𝜈𝜈
𝜇𝜇

𝑐𝑐
𝜇𝜇𝐻𝐻0

1
2√2

�𝜇𝜇−
𝜇𝜇+
�
1
4 = 𝑒𝑒𝑥𝑥𝑥𝑥𝑥𝑥   (21) 

Substituting 𝐶𝐶1,2
±  into (20), taking into account (21), we obtain: 

 

𝑍𝑍 = 𝑇𝑇
𝑒𝑒𝜑𝜑

(𝑢𝑢 − 1) �𝛿𝛿−
𝐿𝐿

𝜂𝜂−0
− 𝛿𝛿+𝐿𝐿

𝜂𝜂+0
+ 2 �𝛿𝛿+

0

𝜂𝜂+0
− 𝛿𝛿−0

𝜂𝜂−0
��, 𝑢𝑢 = 4 �𝜇𝜇−

𝜇𝜇+
�
2
�𝜈𝜈−
𝜈𝜈+
�
1
2, 𝑢𝑢 ≫ 1   (22) 
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It can be seen from (22) that the impedance of the medium is purely real, i.e. 𝐽𝐽𝑚𝑚𝑍𝑍 = 0. This means that 
when oscillation (12) appears, there is no capacitive and inductive resistance inside, i.e. resistance is ohmic. To 
find the electric field when the current fluctuates in the circuit, we must solve the following equation 

 
𝑍𝑍 + 𝑅𝑅 = 0       (23) 

Thus, equation (23) ν has the form: 
 

𝑍𝑍 = ± 𝑇𝑇
𝑒𝑒𝜑𝜑𝑍𝑍0

4 �𝜇𝜇−
𝜇𝜇+
�
3
2 �𝛿𝛿−

𝐿𝐿−2𝛿𝛿−0

𝜂𝜂−0
− 𝛿𝛿+𝐿𝐿−2𝛿𝛿+0

𝜂𝜂+0
� + 1 + 𝑅𝑅

𝑍𝑍0
= 0,  𝑍𝑍0 = 𝐿𝐿𝑥𝑥

𝜎𝜎0
  (24) 

 
From (24) we can easily obtain the following expression for the electric field at the appearance of current 

oscillations with frequency (12) 
𝑒𝑒0 = 𝐸𝐸1

1± 4𝑇𝑇
𝑒𝑒𝑍𝑍0𝑟𝑟

 𝜇𝜇−𝜇𝜇+
�𝛿𝛿−
𝜂𝜂−0
−𝛿𝛿+
𝜂𝜂+
0�

     (25) 

 
Here 𝑟𝑟 = 1 + 𝑅𝑅

𝑍𝑍0
, 𝛿𝛿− = 𝛿𝛿−𝐿𝐿 − 2𝛿𝛿−0, 𝛿𝛿+ = 𝛿𝛿+𝐿𝐿 − 2𝛿𝛿+0  

 
RESULTS AND DISCUSSION  

 
For a positive value of E0 with frequency (12) shows the following limiting cases 

1) 𝛿𝛿−
𝜂𝜂−

= 𝛿𝛿+
𝜂𝜂+

,  2𝛿𝛿−0 > 𝛿𝛿−𝐿𝐿   and  2𝛿𝛿+0 > 𝛿𝛿+𝐿𝐿 ,  𝜂𝜂−
𝜂𝜂+

= 𝛿𝛿−0

𝛿𝛿+0
   or 

            𝜂𝜂−
0

𝜂𝜂+0
= 𝛿𝛿−𝐿𝐿

𝛿𝛿+𝐿𝐿
;  𝑒𝑒0 = 𝑒𝑒1,  𝜔𝜔 = ±(𝜈𝜈−𝜈𝜈+)

1
2 

 

2) 
𝜂𝜂−0

𝜂𝜂+0
< 𝛿𝛿−𝐿𝐿

𝛿𝛿+𝐿𝐿
  or 𝜂𝜂−0

𝜂𝜂+0
< 𝛿𝛿−0

𝛿𝛿+0
;  𝑒𝑒0 < 𝑒𝑒1,  𝜔𝜔 = +(𝜈𝜈−𝜈𝜈+)

1
2 

 

3) 
𝜂𝜂−0

𝜂𝜂+0
> 𝛿𝛿−𝐿𝐿

𝛿𝛿+𝐿𝐿
  or 𝜂𝜂−0

𝜂𝜂+0
> 𝛿𝛿−0

𝛿𝛿+0
;  𝑒𝑒0 < 𝑒𝑒1,  𝜔𝜔 = −(𝜈𝜈−𝜈𝜈+)

1
2 

 

4) 
𝜂𝜂−0

𝜂𝜂+0
< 𝛿𝛿−𝐿𝐿

𝛿𝛿+𝐿𝐿
  or 𝜂𝜂−0

𝜂𝜂+0
< 𝛿𝛿−0

𝛿𝛿+0
;  𝑒𝑒0 > 𝑒𝑒1,  𝜔𝜔 = −(𝜈𝜈−𝜈𝜈+)

1
2 

 
Thus, the value of the external electric field in all listed cases exceeds the characteristic field Ecar, but does 

not exceed the value of E1. Then the radiation of the medium occurs when E0 changes from Ecar to E1. 
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