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Dirac cones show many extraordinary properties, like phase reconstruction, topological edge state, and pseudo-diffusive 
behavior. A Dirac-cone-like dispersion at the center of the Brillouin zone where the wave number k = 0, is rare and only 

happens due to accidental degeneracy. At certain frequencies, the Dirac cone breaks the time-reversal symmetry of acoustic 
waves, which has not yet been fully explored. In present report, microarchitecture of phononic crystals (PnCs) in a periodic 
structure can be modulated to obtain the accidental triple degeneracies that make a Dirac-like cone at the k = 0. While doing 
so, it was observed that the frequency of a nondispersive "deaf" band obtained from any arbitrary periodic structure made of 
similar PnCs remains unaltered. Then, a deaf band based predictive modulation of the PnCs is realized, and multiple 
occurrences of the Dirac-like points are demonstrated. In addition, the Dirac cone frequency decreases gradually with increasing 
filling ratio, which indicates a possible way to control wave propagation on the subwavelength scale.  Numerical simulation 
results show that acoustic metamaterials can behave like zero-refractive-index media and can be applied to acoustic tunnelling. 
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1. INTRODUCTION

Acoustic metamaterials are periodic, semi-

periodic or non-periodic artificial structures with 
acoustic properties not found in materials in nature. 

These materials have a wide variety of potential 

applications, including acoustic lens, [1-3], acoustic 

cloaking, [4,5] subwavelength resolution imaging [6–

9], and acoustic super-tunneling, [10,11]. 

One of the reasons for band formation, which is 

the most important feature of acoustic metamaterials, is 

Bragg scattering that occurs in composite materials 

with different material densities and different elastic 

modulus [12–16]. 

Another reason for band formation is local 

resonance in acoustic metamaterials [17]. Locally 
resonant materials using a combination of high-density 

materials and soft coating materials can create band 

gaps with lattice constants two times smaller than the 

respective wavelength [17]. 

The most well-known locally resonant acoustic 

metamaterials, mass-spring systems [18–21], 

Helmholtz resonators [22–26], materials with Mie 

resonances [27,28] are stretched membranes [25,29–

31]. 

Dirac cone structures showed many new 

extraordinary properties such as topological edge states 
[32-36], quantum Hall effect, [37,38]. Dirac cones in 

acoustic wave systems can be divided into three 

different categories: Dirac-like cone,[39] Dirac cone, 

[40-43] and double Dirac cone [44,45,47]. 

The first of these categories is the Dirac-like cone, 

which has triple degeneration of two linear distribution 

bands. A two-dimensional phononic crystal with a 

square lattice has been shown to have an effective zero 

mass density around the Dirac-like cone [39]. 

The second category is structures with a double 

degenerate Dirac cone located at the Brillouin region 
corner of the hexagonal or triangular lattice. [40–43] 

The third category is structures with double Dirac cones 

in the center of the Brillouin region [44–48]. 

In this study, the formation of sub-wavelength 

Dirac cones and the effect of the angle of the triangular 

resonators on the formation of Dirac cones in acoustic 

metamaterials consisting of circular, triangular and 

hexagonal Helmholtz resonators with hexagonal lattice 

were investigated using the finite element method.  

2. MATERIAL AND METHODS

Phononic Crystal (PnC) consists of Helmholtz 

resonators made of different geometries BiTeI, BiTeCI 

and BiTeBr materials arranged in a triangular lattice 

shape in air. The elastic constant for BiTeBr is c44 =14.9 

GPa, its density is 6760 kg/m3, for BiTeI its elastic 
constant is c44 = 24.3 GPa, its density is 6869 kg/m3, for 

BiTeCl its elastic constant c44 = 1.7 GPa and its density 

6414 kg/m3. According to the formula   𝐜𝐦𝐚𝐭 = √
𝒄𝒊𝒋

𝝆
 , 

the formula of advance in the material was calculated 

as 1484 m/s for BiTeBr, 1881 m/s for BiTeI, and 514 

m/s for BiTeCI respectively. 

In Fig.1 for triangular inclusion b=26 mm, c=9.37 

mm, w=1 mm, t=1 mm, for circular inclusion R=15 

mm, w=1 mm, t=1 mm, for hexagonal inclusion 1 b=15 
mm, c=7 mm, w=1mm t=1, mm and for hexagonal 

inclusion 2 b=18.85 mm, c=8.5 mm, w=1mm t=1, mm 

respectively. 

https://cpb.iphy.ac.cn/EN/article/showCorrelativeArticle.do?keyword=double%20Dirac%20cone
https://cpb.iphy.ac.cn/EN/article/showCorrelativeArticle.do?keyword=topological%20edge%20state
https://cpb.iphy.ac.cn/EN/article/showCorrelativeArticle.do?keyword=rectangular%20phononic%20crystal
https://cpb.iphy.ac.cn/EN/article/showCorrelativeArticle.do?keyword=topological%20phase%20transition
https://cpb.iphy.ac.cn/EN/article/showArticleBySubjectScheme.do?code=43.30.+m
https://cpb.iphy.ac.cn/EN/article/showArticleBySubjectScheme.do?code=43.20.+g
https://cpb.iphy.ac.cn/EN/article/showArticleBySubjectScheme.do?code=42.70.Qs
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Fig. 1. Resonator sections and dimensions. 

Fig. 2. Unit cell with triangular lattice. 

a) b) 

Fig. 3. a) Periodic boundary conditions applied to the unit cell b) 1. Brillouin zone of triangular lattice. 

The geometry of the resonators is triangular, 

circular and hexagonal as shown in Fig.1. 
The unit used to obtain the band structure of the 

triangular lattice PnC is as in Fig.2 and given for the 

circular resonator, the lattice constant is a=40 mm and 

other dimensions are as in Fig.1. To obtain the band 

structure, Floquet boundary conditions applied to the 

edges of the rhombic unit cell (Fig.3a). Fig.3b shows 

the 1st Brillouin region of the reciprocal lattice and the 

high symmetry  

3. RESULTS AND ANALYSIS

We begin with the acoustic system that is shown

in Fig. 4, which is a two-dimensional acoustic 

metamaterial that consists of a triangular array of 

regular columns with Helmholtz resonators. This 

acoustic metamaterial consists of six Helmholtz 

resonators. The first Brillouin zone of the triangular 

lattice is shown in Fig. 3, where the blue shading 

indicates the irreducible Brillouin zone. 

Figure 4(a) shows that the dispersion relation 

becomes linear in the vicinity of the Dirac cone, which 

corresponds to the normalized frequency of 0.4346 

(3727 Hz).  For comparison, we also calculated the 

band structure of the complete triangular lattice with 

90° rotation of resonant cavity, with results as shown in 

Fig. 4b. The phononic crystal has a Dirac cone at the 

normalized frequency of 0.4597 (3942 Hz). These 
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results show that Helmholtz resonators can be used 

successfully to reduce the Dirac cone frequency. The 

introduction of acoustic metamaterials, therefore, 

offers the possibility that low-frequency Dirac cones 

can be obtained on a subwavelength scale. 

To investigate the effects of the different space 

group symmetries on the Dirac cone, we discussed the 

unit cells with three different types of space group 

symmetry. As plotted in Fig. 2(a), the acoustic 
metamaterial with the space group symmetry p6 mm is 

arranged in a hexagonal lattice with a lattice constant 

a=40 mm. It should be noted that the gapless band 

structure has a Dirac cone at a normalized frequency of 

0.2549 (2186 Hz). The band structure of the acoustic 

metamaterial with a rotation angle shows a Dirac cone 

at a normalized frequency of 0.2423 (1979 Hz). We 

observed that the Dirac cone frequency decreased after 

rotation; this reduction was induced by the spatial 

compression distribution after the rotation process. The 

angular dependence of the Dirac cone frequency is 

shown in Table 2 These results show the weak angular 

dependence of the Dirac cone frequency and indicate 

that when the acoustic metamaterial has the p6 mm 

space group symmetry, the Dirac cone remains robust 

to rotation. 

We obtained the band structure when I rotate the 
triangular resonator 90° to the left is as follows. As seen 

in the picture, the band narrowed by 60% from the 

range of 0.4-0.55 (Fig.4a) to the range of 0.47-0.5 

(Fig.4b). 

Bands between 0.3514 and 0.3558 are formed in 

the circular resonator (Fig.5). A narrow band between 

0.265-0.27 was formed in the hexagonal resonator 

(Fig.6). 

a) b) 

Fig. 4. Band structure of BiTeI triangular resonator. 

Fig. 5. Band structure of BiTeI circular resonator. 
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Fig. 6. Band structure of BiTeI hexagonal resonator. 

Table 1. 

Mid gap-gap size of different materials and cross-section of resonator. 

BiTeI BiTeCI BiTeBr 

Mid Gap (a/c) Gap Size (%) 
Mid Gap 

(a/c) 
Gap Size (%) 

Mid Gap 
(a/c) 

Gap Size 
(%) 

Triangular resonator 0.475 31.579 0.395 1.113 0.468 20.771 

90° rotated triangular resonator 0.485 6.186 - - - - 

Circular resonator 0.354 1.244 0.353 1.160 0.353 1.104 

Hexagonal resonator 0.268 1.869 0.254 3.072 0.256 1.054 

Table 1 shows the mid-gap, gap size values of the 

resonators in different sections made from BiTeI, 

BiTeCI and BiTeBr. As seen table 1 In the triangular 

resonator made of BiTeI, a band of 31.58% was 

observed in the range of 0.40-0.55, while a band of 6% 

was formed in the range of 0.47-0.50 when the 

resonator was rotated 90 degrees. While 1.2% band was 

formed in the range of 0.351-0.356 in the circular 

resonator, 2% band was formed in the range of 0.265-
0.270 in the hexagonal resonator. 

The resonator made of BiTeBr, a band of 1.11% 

was observed in the range of 0.393-0.397 in the 

triangular, 1.16% band was formed in the range of 

0.351-0.356 in the circular resonator and 3% band was 

formed in the range of 0.250-0.258 in the hexagonal 

resonator. 

The resonator made of BiTeCI, a band of 20.7% 

was observed in the range of 0.420-0.517 in the 

triangular, 1.1% band was formed in the range of 0.351-

0.355 in the circular resonator and 1.05% band was 

formed in the range of 0.255-0.257 in the hexagonal 
resonator. 

Table 2. 

Dirac cone frequencies and normalized frequencies 

BiTeI BiTeCl BiTeBr 

(Hz) (f.a/c0) (Hz) (f.a/c0) (Hz) (f.a/c0) 

Triangular resonator 3727 0.4346 3369 0.3929 3569 0.4162 

Triangular (90° rotated) 
resonator 

3942 0.4597 - - - - 

Circular resonator 3012 0.3513 3013 0.3514 3368 0.3928 

Hexagonal resonator 2186 0.2549 2187 0.2551 2187 0.255 
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4. CONCLUSIONS

In this study, the band structure of PnCs 

consisting of Helmholtz resonators of different cross-

sections with triangular lattice was obtained and the 

Dirac cone formation frequencies were investigated. 

Acoustic metamaterials composed of Helmholtz 

resonators enable Dirac cones to be obtained at the sub-

wavelength scale. To investigate the effects of 

inclusions of different cross-sections on the Dirac cone, 

we created a unit cell in three different cross-sections, 

as shown in Fig. 2. Dirac cone frequencies in table 2 

shows that rotation angle of inclusions affect the Dirac 

cone frequency. 
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