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Weyl semimetal based locally resonant metamaterials, which have applications such as imaging and sound / vibration 

isolation, wave focusing, are high performance materials with superior properties that are obtained artificially. 
In this study, second harmonic generation due to the energy induced in nonlinear locally resonant metamaterials is demonstrated 
by the finite element method. The second energy transfer mechanism has recently been arises from a nonlinear interaction 
between propagating and evanescent waves triggered by autoparametric resonance manifesting itself through the appearance 
of a subharmonic transmission attenuation zone. 
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INTRODUCTION 

Metamaterials are artificial materials designed to 

achieve unusual properties not found in natural 

materials [1,2]. These materials, which have band gaps 

in which the propagation of acoustic/elastic waves at 
certain frequencies are prevented, have attracted the 

attention of researchers because of their potential 

application areas [3-5]. These materials have potential 

applications such as wide band gap at low frequencies, 

noise and vibration reduction [5], wave reduction, and 

high-resolution acoustic imaging. 

In these periodic structures band gaps at lower 

wavelengths can be obtained by using locally resonant 

unit cells where band gaps are formed due to multiple 

scattering [6-8]. Locally resonant metamaterials have 

enabled new applications such as acoustic diodes [14], 

logic gates [15] due to their non-linear operating region 
[9-13]. 

Despite the great interest of researchers, there are 

few studies on nonlinear metamaterials due to the 

difficulty of modeling [16-20]. In some of these limited 

studies, resonator structures with irreversible energy 

transfer mechanism triggered by non-linear energy 

sinks have been studied [21-24]. 

Also, few papers have examined wave 

propagation in materials with nonlinear periodic 

resonators. In such structures, two types of 

mechanisms, called intermodal and modal inner 
tunneling, can occur. This mechanism [25-30], which 

is based on the energy transition between modes in 

propagating waves, which was first put forward by 

Lazarov and Jensen [31], has been theoretically studied 

[25] and confirmed experimentally [26]. 

The other theoretically predicted [32] energy 

transfer mechanism arises from the formation of a sub-

harmonic transmission attenuation region, which 

provides new, advanced tools for wave attenuation and 

control, resulting from the non-linear interaction 

between propagated and vanishing waves generated by 

the resonance mechanism. Nonlinear locally resonant 

metamaterials consisting of rubber between the 

resonator and the base material were investigated 
theoretically and numerically [32].  

In this study, a locally resonant structure made 

of ZrTe5 – Weyl semimetal was designed, inspired by 

the locally resonant designs commonly used in 

micromechanical systems [43-48], and the existence of 

second harmonic generation was investigated by the 

finite element method. 

MATERIAL METHOD 

The designed metamaterial with spring-mass 

mechanism with local resonance consists of the 
periodic arrangement of the unit cells in figure 1.a. In 

this structure, the resonator springs must be non-linear 

in order for the sub-harmonic weakening region to 

occur. Silva et al. demonstrated by [32]. It can be 

accomplished by different methods [39] such as contact 

dynamics [36-38], electrostatic actuation [33-35]. 

Examples of studies on second-order non-linear 

resonators are micromechanical cantilever system [40], 

hanging cables [41], M-shaped resonator [42] arc 

resonators [43-48] not connected with metamaterials. 

According to the Bloch-Floquet periodicity 
condition [49], the displacement field u can be 

expressed as: 

𝑢(𝑥, 𝑘, 𝑡) = 𝑈𝑒𝑖(𝑘.𝑥−𝜔𝑡)  (1) 

where U denotes a periodic Bloch displacement vector, 

x position vector, k wave vector, ω frequency. Since the 

longitudinal waves propagating in the chain of unit 
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cells are taken into account, the band structure of the 

Brillouin region along the Γ-X path was obtained using 

the commercial software COMSOL Multiphysics. 
Bloch-Floquet periodic boundary conditions are 

applied along the x-direction on the left and right sides 

of the 3D unit cell, while all other surfaces are released. 

The unit cell of the locally resonant structure seen 

in Figure 1.a consists of an internal mass of Weyl 

semimetal – ZrTe5 (Young modulus E = 63 GPa and 

density ρ = 3.400 kg/m3) connected to the main frame 

with a single beam. In the unit cell, h=40 mm, w=20 

mm, d=2.75 mm, r=4 mm, s=0.25 mm, l=13.25 mm 

and its thickness in the z direction is 5 mm. 

a) b) 

Fig. 1. a) Unit cell of a metamaterial with nonlinear local resonance b) resonance mode of the 3D unit cell 

 (416.89 MHz) 

Due to the design of the unit cell, the properly 

excited structure transmits the wave in the x-direction. 

The source of the nonlinear terms in force-

displacement relations is the beams holding the mass in 

the unit cell. 

As seen in Figure 1.b, the back-and-forth 

movements of the beam-bound mass in the unit cell 
explain the nonlinear behavior of the structure required 

to provide the sub-harmonic resonance energy 

exchange mechanism. 

The degree of freedom in the unit cell is important 

for designing nonlinear locally resonant metamaterials. 

By changing the parameter h, which determines the 

preliminary deflection of the beam in the unit cell, the 

magnitude of the quadratic term relative to the cubic 

term can be controlled and thus the desired design can 

be obtained. The second harmonic is obtained by 

changing the desired h parameter in the proposed 

structure. 

LINEAR BEHAVIOR 

The locally resonant unit cell shown in Figure 1.a 

was designed and simulated in COMSOL. Floquet 

Periodicity Boundary conditions were applied to the x-

direction walls of the unit cell, while the other surfaces 

were released. 

In Figure 2.a, the band structure of the unit cell 

obtained by using COMSOL Multiphysics software 

[50-54] is shown, it is seen that the band gap occurs 

around the natural frequency of the in-plane bending 

mode according to the band structure. Figure 2.b shows 
the mode shapes of the unit cell at different frequencies. 

A finite structure in the form of a chain consisting 

of 50-unit cells was designed to ensure the interaction 

between the propagating and disappearing waves and 

to represent the dynamic behavior of the resonators. 

The finite structure would be excited with a 

prescribed displacement from the left end with a 

displacement of 10-6 m in the x direction. Parametric 

scanning was performed between 200-900 Hz to obtain 

the transmission diagram. By obtaining the 

displacements on the left and right sides of the finite 

structure in Figure 2, the transmission diagram in 
Figure 3 was obtained according to the relation 

20.log10(U2/U1).

Here, U1 denotes the displacement at the left 

margin, and U2 the displacement at the right margin. As 

seen in Figure 3, there are two modes that result in an 

increase in the input signal around the frequency at 

which the transmission decreases. 
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a) 

 b) 

Fig. 2 a) The band structure of the unit cell in the Γ − X direction, b) the mode shapes of the unit cell 

NONLINEAR BEHAVIOR 

In locally resonant metamaterials, the resonator 

generates a band gap and a vanishing wave. Harmonic 
excitation at one end of the metamaterial generates the 

same frequency wave propagation and near-field waves 

[32]. 

When there is a second-order non-linear 

interaction between the local resonator and the main 

frame and there is a resonance frequency around half 

the excitation frequency, the sub-harmonic wave and 

the propagating waves match, and in nonlinear systems, 

the energy is transferred from the advancing wave to 

the vanishing wave [32]. In this study, the propagating 

initial wave around 850 Hz was transformed into a 

vanishing wave at a quasi-harmonic frequency around 

440 Hz in the band gap close to the local resonance 

frequency. 
The chain-like finite structure consisting of unit 

cells with resonators excited from the left side reflects 

elasto-acoustic waves and prevents their progression in 

a finite structure. Thus, the energy flow to the other 

(right) end of the metastructure is significantly reduced. 

The transmission diagram of the finite structure 

consisting of 50-unit cells, obtained by using COMSOL 

Multiphysics, is shown in figure 3. The normalized 

displacement obtained at the rightmost edge of the 

finite structure is shown in Figure 3.b. 
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 a) 

b) 

Fig. 3. a) Transmission diagram of the finite structure b) normalized displacement of the right edge of the finite structure. 

CONCLUSION 

In conclusion, we numerically investigated 
nonlinear propagation and second harmonic generation 

in acoustic metamaterial with periodic array of elastic 

plates with nonlinear resonators. According to the 

results obtained, the energy exchange between the sub-

harmonic wave and the first wave is seen with the effect 

of autoparametric resonance. A unit cell metastructure 

consisting of a nonlinear resonator frame with 

autoparametric resonance to provide sub-harmonic 

attenuation is designed. The results showed that 

 High performance nonlinear locally resonant
metamaterials can be developed. 

 Tunable metamaterials with amplitude-

dependent attenuation regions can be developed. 

 New applications such as multi-harmonic

tunable filters and display devices can be developed. 
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