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1. INTRODUCTION

It is well known that the exact energy eigenvalues 

of the bound state play an important role in quantum 

mechanics. The non-relativistic harmonic oscillator 
remains the most typical example of these solvable 

systems and several authors have attempted to 

formulate for it an analogous relativistic extension. 

This has led to the construction of the so-called Dirac 

oscillator, as initially introduced by Ito et al.[1] and 

later revived by Moshinsky and Szczepaniak.[2]. They 

gave it the name Dirac oscillator because it reduces to 

the standard harmonic oscillator with a strong spin-

orbit coupling in the non-relativistic limit. The 

parabolic confining potential can be introduced through 

the so-called minimal substitution [2]:  

p p i r   (1) 

 where β is the diagonal matrix with the elements ±1. 

Here, we applied the above approach in deriving the 

oscillatory equation from the Kane 6-band 

Hamiltonian, in which the interaction between the 

valence and conduction bands is considered through a 
single matrix element of the Kane parameter P [3]. We 

referred to the obtained equation as the Kane oscillator 

by analogy with the Dirac oscillator. In the case Dirac 

equation, we do not include a harmonic potential in the 

usual way, as we do for the non-relativistic quantum 

mechanical harmonic oscillator. Instead, we start 

postulating a rather odd form for vector potential. 

The energy spectrum of electrons in narrow-gap 

semiconductors (NGS) is analogous to that of 

relativistic electrons in a vacuum [4]. The energy 

spectrum and wave functions of the Kane oscillator 

were determined in the paper [5]. 
The paper [6] proposed a class of exactly solvable 

relativistic systems and found that the generalized (1 + 

1)- dimensional Dirac oscillator in an electric field. In 

the paper [7] authors were considering the thermal 

properties of one-dimensional Dirac in the framework 

of the theory of superstatistics. The paper [8] analyzed 

the one-dimensional Dirac oscillator in a thermal bath 

and found that the heat capacity is two times greater 

than the heat capacity of the one-dimensional harmonic 

oscillator for higher temperatures. 

Authors of the paper [9] studied (2+1)-dimensional 
Dirac oscillator in the presence of a transverse external 

magnetic field by defining suitable creation and 

annihilation operators in terms of properly chosen 

canonical pairs of coordinates and momenta.  

2. THEORY

The non-relativistic harmonic oscillator potential 

is used for describing the confinement of quantum dots 

[10]. In this paper, we analyze the thermodynamic 

properties of a one-dimensional Kane oscillator. The 

Kane equations described the spectra of carriers in A3B5 

type semiconductors. In the three-band Hamiltonian, 

the valence and conduction bands interaction is taken 

into account via the only matrix element. Let us 

consider the case in plane wave vector 𝑘𝑥 = 𝑘𝑦 = 0.

For these states, the Kane Hamiltonian has the form 

[3,5]: 

𝐻 =
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(2) 

Here P is the Kane parameter,  the band gap 

energy . The zero energy is chosen at the 

bottom of the conduction band. Replacing operator 

𝑘𝑧 → 𝑘𝑧 + 𝑖𝛽
𝑚𝑒𝜔

ℏ
𝑧  (3) 

where 

11 22 33 44 55 661, 1               (4) 

The wavefunctions of the Hamiltonian in equation 

(2) can be expressed as a four-spinor wavefunction

 1 2 3 4 5 6, , , , ,
T

        . By solving the 

Kane equation   0H E   , we obtain the

following two equations for heavy holes, electrons, and 
light holes: 
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Ehh=0 

(𝐸𝑔 −𝐸 +
2

3

𝑃2

𝐸
(𝑘 + 𝑖

𝑚𝑒𝜔

ℏ
𝑧) (𝑘 − 𝑖

𝑚𝑒𝜔

ℏ
𝑧))𝛷1,2 = 0

The energy spectrum of the Kane oscillator is 2 

times fold degenerate. Taking into account 

relationships [5] 

2 22

3 2g e

P

E m
  (5) 

we obtain 

  22
2

1,2 0
2 2 2

g ez

g e

E E E mP
z

E m

    
      
   

    

(6) 

This equation is similar to the Schrödinger 

equation for a one -dimensional harmonic oscillator, 
whose eigenvalues are given by 

  1

2 2

g

g

E E E
n

E




   
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 
           (7)

From Eq. (7) we get 

 g

g

E E E
n

E


 
   (8) 

If we choose zero of energy in the middle of the energy 

gap 𝐸 → 𝐸 +
𝐸𝑔
2
⁄ , the energy levels of electrons and 

light holes 

2

,
4

g

e lh g

E
E n E    (9) 

Given the energy spectrum of electrons, we can 

define the partition function as a sum of all possible 
states of the system 
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

    (10) 

where
1

Bk T
  , 

Bk is the Boltzmann constant and T 

is the thermodynamic equilibrium temperature, and 

factor 2 considers degeneracy for the spin. To evaluate 
this function, we use the Euler-MacLaurin formula 

defined as follows [11]: 

     
 
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where are the 
2 pB  Bernoulli numbers, 

 2 1p
f


is the derivative of order (2p − 1). As a result, for the Kane 

oscillator statistical sum, we get: 
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                (12) 

where 

2

,
4

g

g

E
a E b  . The heat capacity can be 

determined from the partition function [12], 

2
2
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ln
B

Z
C k 







 (13) 

The numerical values of the reduced specific heat 
𝐶

𝑘𝐵
 of the one-dimensional Kane oscillator as a function 

of the reduced temperature are displayed in Fig. 1,

1
4

gE


 . Fig.1. The reduced specific heat 

𝐶

𝑘𝐵
 of the one- 

           dimensional Kane oscillator as a function of the 

reduced temperature 2 B
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.From Fig. 1 it is also seen that the heat capacity 

for the Kane oscillator is forth times greater than the 

heat capacity for the harmonic oscillator, result that was 

anticipated by the analytical calculations presented 

above. Since the energy spectrum of the Kane oscillator 

is 2 folds degenerate, the specific heat of Kane 

electrons is 4 times the specific heat of harmonic 

oscillators. For high temperatures regime 1  , the 

partition functions become 

𝑍 = 2𝑒−𝛽√𝑏 (
2

𝑎𝛽2
)  (14) 

Using the partition function (14), the heat capacity 

for the Kane case can be written as:  

𝐶 = 4𝑘𝐵  (15) 

In this work, we analyzed the Kane harmonic 

oscillator for electrons in one dimension. The heat 

capacity of Kane oscillators is investigated by 

employing the Euler-MacLaurin approximation. 

3. CONCLUSIONS

In the present paper, we have found the complete 

energy spectrum of the Kane oscillator in one spatial 

dimension. It is shown that the specific heat of Kane 

electrons is 4 times greater than the specific heat of 

harmonic oscillators. 
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