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It is theoretically shown that a non-stable thermorecombination wave propagates in semiconductors with the singly and doubly 

negatively charged impurity centers in the presence of constant electric field and constant temperature gradient. The frequency and 

increment of the thermorecombination wave are calculated. An analytic formula for the constant external electric field at which the 

wave instability begins is found.  
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INTRODUCTION 

 

In paper [1], it is shown that hydrodynamic motion 

in non-equilibrium plasma, in which there is a 

temperature gradient 


, results in the magnetic field 

excitation. In that paper, it is found that the plasma with a 

temperature gradient 


 has oscillatory characteristics 

noticeably different from normal plasma. In the absence 

of external magnetic field and hydrodynamic motion in 

the plasma, transverse "thermo-magnetic" waves are 

possible, in which oscillations of the magnetic field alone 

take place. If there is a constant external magnetic field 

0


, then the wave vector of the thermo-magnetic wave 

must be perpendicular to it and lie in the (
0


, 


) plane.  

In paper [2], conditions for the occurrence of 

thermo-magnetic wave instability in solid plasma with a 

single type of charge carriers (electrons) have been 

analyzed theoretically.     

In paper [3-5], the instability conditions in the 

isotropic and anisotropic solid-state media with charge 

carriers of a single type have been theoretically derived. 

However, conditions for the occurrence and instability of 

thermo-magnetic waves in extrinsic semiconductors with 

two types of charge carriers remain indeterminate.  

It is clear that the determination of instability 

condition in specific impurity semiconductors is of great 

scientific interest. In this theoretical paper we investigate 

conditions for the occurrence of non-stable 

thermorecombination waves in extrinsic semiconductors 

with two types of charge carriers.  

 
BASIC EQUATIONS  

In the presence of electric field 


, of gradients of 

the electron n  and hole n  concentrations, and  

 

temperature gradient 


, the current density for 

electrons and holes is of the form [1]: 
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Substituting equations (1), (2) and (3) in the equation (4), 

and using Maxwell equation j
c

rot
 4

 , we obtain 

the following expression for electric field:  
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Here  

 



 
 ;  

2


 
  

  ;  111  ; 

                     ;      

 

A detailed description of mathematical method, 

which enable (5) to be obtained from vector equation     

(1-4) is given in paper [1]. In (5), the quadratic terms in 

magnetic field and the diffusion terms are neglected 

because in semiconductors 
 00 ek  where 

0k  is the 

Boltzmann constant,   mean free path for holes and 

electrons, and 
0  is external constant electric field.  

In extrinsic semiconductors the kinetic equations, 

which take the recombination and generation of charge 

carriers into account, must be added to equation (5) for 

electric field.  

Certain impurities in semiconductors create centers 

which can be in several charged states. For example, Au 
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atoms in Ge can be singly positively charged as well as 

singly, doubly and triply negatively charged centers, and 

besides that they can be in neutral state.  

Several energy levels in the band gap correspond to 

such centers. Depending on their charged states, these 

energy levels (impurity centers) can capture electrons or 

holes. As a result of such capture, concentrations of 

electrons (in the conduction band) and holes (in the 

valence band) change, therefore the electrical conduction 

in semiconductor also changes.  

In various experimental conditions, these impurity 

centers are more or less active, so the recombination and 

generation proceed generally via a certain number of 

impurity centers. For example, in experiment [6] (we will 

use its results), singly and doubly negatively charged Au 

centers in Ge were active centers.  

In the presence of an electric field, electrons and 

holes gain energy on the order of 
 0e  (where e  is the 

positive elementary charge) due to the electric field. 

Therefore, in the presence of the electric field, electrons 

can overcome the Coulomb barrier of the singly charged 

center and be captured. Electrons can also be generated 

owing to thermal transitions from impurity centers to the 

conduction band. The number of holes increases due to 

the capture of electrons from the valence band by 

impurity centers, and decreases due to the capture of 

electrons from impurity centers by holes. The probability 

of charge carrier generation and the probability of charge 

carrier recombination are different, and it leads to the 

change in concentrations of electrons and holes in 

semiconductors. A detailed description of kinetic 

equations for electrons and holes in the above-mentioned 

semiconductor was given in paper [7]. These equations 

are of the following form:     
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Here 0  is a total concentration of the singly negatively  

charged centers   and the doubly negatively charged 

centers  , and 1n  is a characteristic concentration 

found on condition that  
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In equations (6-10), )0(  is the coefficient of 

electron emission by the doubly negatively charged 

centers in the absence of electric field, )(  is the 

coefficient of electron capture by the singly negatively 

charged centers, and )0(  is the coefficient of hole 

capture by the doubly negatively charged centers. The 

variation in the doubly negatively charged traps with time 

determines the variation in the singly negatively charged 

centers. Therefore, the equation determining the variation 

in charged centers with time is of the form:    
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In order to obtain the )(k dispersion relation, the set of 

equations (5), (6), (7), (9) and (10) must be solved 

simultaneously, taking into account the Maxwell equation  
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where с is the velocity of light.  

For this purpose, we linearize the set (5-10) in the 

following way:   
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Here k


 is a wave vector, and   is the wave frequency.   

Substituting equation (11) into (5), we get:  
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Linear zing equation (10), we get:   
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Expanding the vector products in (13), we get:  
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where 


kc  is the frequency of thermo-magnetic waves [1].  Multiplying (15) scalar wise at first by 

0


 and 

after that by k


, we can easily get:     
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It should be noted that a  and so in the expression for a  one cannot assume 
090 . Hereinafter we will 

omit superscript 0 of the equilibrium quantities 0

00 ,, n . Substituting (15-17) into the set (6-9), we get:  
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Let us write equations (18) and (19) in the following form:  
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Substituting 4321 ,,,   from equations (18-19) into (21), we get an equation determining the frequency and 

increment of “thermorecombination” wave:  
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It is too complicated to solve the equation (22) taking into account (23), so we will solve the equation (22) for certain 

analytical expressions of the external electric field. It is easy to verify that if   AA then  
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Taking into account (24-25), from (22) we get:   
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Substituting A  and B , we get the following expressions for the frequency and increment of thermorecombination 
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ANALYSIS OF THE OBTAINED RESULTS 
 

As follows from (26-27), the wave with 

frequency 2 (28) is a damped wave, and there is no 

energy emission from the above-mentioned 

semiconductor at the frequency 2 . Emission from the 

above-mentioned semiconductor occurs if the wave 

increment  

                         1 = )(1 












ku

n

n
                (29)   

 

is positive, and a high hole concentration and a low 

electron concentration are required for that. One can see 

from (27) 
10  i  that a ~



1 . The thermo-

magnetic waves decrease frequencies of 

thermorecombination wave, and the frequency of electron 

capture and the frequency of hole emission increase 

frequencies of thermorecombination wave.  

Probably, there are values of )( 0  and   at 

which semiconductors with the above-mentioned model 

emit energy nearly stable. Such a situation can occur at 

certain values of the external electric field and the 

constant temperature gradient.  

The presence of constant and alternating magnetic 

field can change conditions of the thermorecombination 

wave generation. When energy is emitted from a medium, 

a resistance of the medium decreases and the current 

variations in external circuit occur. For investigation of 

external instability (i.e. when the real part of impedance is 

negative 0Re z ), the impedance of semiconductor has 

to be calculated. This problem requires taking into 

account the boundary conditions across electric field at 

ends of the medium and of course the injection at ends of 

the medium. 

_______________________________ 
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