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We reexamine the complete solutions of the Schrödinger equation for a particle with time-dependent mass moving in a time-

dependent linear potential on the base of the evolution operator method. We solve the problem in both, configuration and momentum 

spaces. Appropriately choosing the initial wave functions we can obtain from the representation (t)=U(t)(0) all kinds of wave 

functions of the system under consideration, in particular, those solutions which are known in the literature. For example, it is shown 

that evolution operator can be used to obtain the Gaussian-type, Airy-type and oscillator-type wave-packet solutions of the time-

dependent system. The explicit form for the inital momentum and coordinate operators (two linear independent invariants) )(ˆ
0 tp  

and )(ˆ
0 tx  are found. We show that the problem of a particle moving in a linear potential is unitary equivalent to that of a free 

particle. 
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1. INTRODUCTION 

 

During the past several decades the analytical 

solutions of the Schrödinger equation with the time-

dependent linear potential have attracted much attention 

of physicists [1-8]. To study the time-dependent quantum 

systems there are many methods, such as LR invariant 

method [9, 12], path-integral method [10], space-time 

transformations method [5], evolution operator method 

[11], etc. For instance, in Ref. [1] using the Feynman’s 

path-integral method the solution of the time-dependent 

linear potential problem in the form of the Airy function 

was presented and was shown that the Airy packet 

propagates without change of form. The Wigner function 

and exact transition amplitude between energy eigenstates 

for a particle in a general time-dependent linear potential 

was calculated in Ref. [3]. In Ref. [4], Guedes with the 

help of the LR invariant method solved the time-

dependent Schrödinger equation for the linear potential of 

the particular form V(x,t)= qx(ε0+ εcosωt). Feng [5] 

followed the space-time transformations of the 

Schrödinger equation and found plane-wave type and the 

Airy-packet type solutions. Later Luan et al. [6] used a 

non-Hermitian linear LR invariant to obtain Gaussian-

type wave-packet solutions of the system. Bekkar et al. 

[7] gave a general solution of the Schrödinger equation 

with the time-dependent linear potential, which 

corresponds to the linear LR invariant 

)(ˆ)(ˆ)(1 tCxtBptAI  .  

The purpose of the present paper is to undertake a 

completely analytical solution for the problem above by 

means of the evolution operator method. This method has 

long time been used         

to solve problems in quantum mechanics and quantum 

field theory. We demonstrate that the evolution operator 

method allows us to find, in principle, all (infinitely 

many) solutions of this problem, including those solutions 

which are known in the literature [1-7]. Therefore, it can 

be argued that all known solutions [1-7] are in fact partial 

solutions to the problem under consideration. We show 

that a complete set of Lewis-Riesenfeld (LR) invariants 

for this problem is not limited to linear and quadratic 

invariants.The reason for this may formulate as follows: 

according to the evolution operator method, the solutions 

of the time-dependent Schrödinger equation 0)()(ˆ ttS   

can be represented as )0()()(  tUt  , where 

)()(ˆ tHitS t    and )0(  is any function (initial 

wave function). The evolution operator U(t) satisfies the 

Schrödinger equation 0)()(ˆ tUtS  with the initial 

condition 1)0( U . One can expand the function )0(  

over some complete set of the orthogonal functions

 :)0(n 
n

nnc )0()0(  . Then the wave function at 

arbitrary time t can be given as 
n

nn tct )()(  , where  

)0()()( ntUtn   . (In the case of expansion in the 

Fourier integral   deg xi

 )()0(  for the wave 

function at time t we obtain an expression

  dtgt  )()()( , where xietUt 
 )()(  .)  

It is well known [12] also that one can construct two 

(for one-dimensional system) linearly independent simple 

invariants )(ˆ
0 tp and )(ˆ

0 tx , provided that the evolution 

operator for a quantum system exists:     

 

                    )(ˆ)()(ˆ 1

0 tUptUtp  ,                              

                    )(ˆ)()(ˆ 1

0 tUxtUtx   .                    (1.1) 

 

They are the operators of initial momentum and 

coordinate. All other invariants can be expressed in terms 

of these operators. Recall that the invariant I(t) is the 

operator which should commute with the Schrödinger 
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operator 0)](),(ˆ[ tItS , yielding the analogous to (1.1) 

expression for I(t):      

                                                                                                                             

                        )()0()()( 1 tUItUtI   .             (1.2)  

                                      

It is clear that if )ˆ,ˆ()0( xpGI  , then 

))(ˆ),(ˆ()( 00 txtpGtI  .  

On the other hand, according to the LR invariant 

method [9], the solutions of the time –dependent 

Schrödinger equation can be constructed in terms of the 

eigenstates )(tn  of the LR invariant )(tI  with the time-

independent eigenvalues n : )()()( tttI nnn   . The 

function )(tn  does not satisfies the Schrödinger 

equation, but it is an eigenfunction of the operator :)(ˆ tS

)()()()(ˆ ttsttS nnn   . A solution of the Schrödinger 

equation is chosen as  
 

                      ),()(
)(

tet n

ti

n
n  


                      

(1.3)
                            

 

 

where the phase )(tn  is a function of time only.  It 

follows from the Schrödinger equation for )(tn  that 

)(tn  satisfies the relation 

                         

t

nn tdtst
0

1 )()(  .                (1.4)                              

One can obtain the state (1.3) also from the 

eigenstate )0(n  of the operator  I(0) with the same 

eigenvalue 
n  by means of the evolution operator )(tU : 

                                

        
)()0()()(

)(
tetUt n

ti

nn
n  

 .          (1.5)   

                 

Thus, the evolution operator )(tU  transforms any 

eigenstate of  I(0) into an eigenstate of )(tI , or, more 

precisely, into a solution of the Schrödinger equation. 

The initial wave function )0(  can be expand over 

the complete set of the eigenfunctions  )0(n  of the 

operator I(0), thereby the solution of the Schrödinger 

equation is obtained as: 

 

  
n

n

ti

n

n

nn tectUct n )()0()()(
)(  

.   (1.6)              

 

The solution, obtained in [7], corresponds to an 

expansion over the eigenfunctions of the linear invariant 

0001
ˆˆ)0( CxBpAI   at 00 B , i.e. over the plane 

waves, which can be understood as a usual Fourier 

transformation.  

           It is clear that there may exist other operators I(0), 

with complete set of the eigenfunctions, and one can 

expand )0( over this complete set. One of such kind 

operator is   

  



pa

eiaxxB
pa

AI

ˆ

003 )(
ˆ

cosh)0(










 ,      (1.7) 

 

which is Hamiltonian of the relativistic linear harmonic 

oscillator [14,15]. The eigenfunctions of )0(3I  are 

expressed through the Meixner-Pollaczek polynomials    

                                           

       )2/;()0( 0   axPaixAN n

aix

nn  
,  (1.8)                         

 

where   21

00

2

0 2,
4

1

2

1 
 BAaA . The 

operators ),0(30 IK  axK 1
 and 













pa
AIK

ˆ
exp)0( 032

 form the Lee algebrasu (1.1), 

i.e.     021210 ,,, iKKKiKKK  .  

Thus, now it becomes clear that the complete 

solution of the Schrodinger equation with the time-

dependent linear potential is not exhausted by the results 

of [1-8]. We will consider, as in [5], a more general case, 

i.e., a particle with time-dependent mass moving in the 

time-dependent linear potential. This time-dependent 

dynamical problem could be solved in either 

configuration or momentum space. It can be found that 

the all known in the literature solutions [1-8] are merely 

the particular cases in comparison with our result. We 

also note that in the evolution operator method there is no 

further problem of finding time-dependent phase, inherent 

LR invariant method. The derivation of the exact wave 

functions is straightforward and is obtained with much 

less effort than other results       [1-7] based on the other 

methods.  

The main results of this paper are as follows. First, 

we give an explicit form of the evolution operator )(tU  

in the х- and р-representations for the Schrödinger 

equation describing the motion of a particle with the time-

dependent mass in the time-dependent linear potential 

Sec. II). Second, we show that all known solutions can be 

derived from a general representation for the wave 

function )0()()(  tUt  (Sects. II, III, IV). Since the 

time-dependent system in the initial time can be in any 

state, the corresponding Schrodinger equation has 

infinitely many solutions.  

However, appropriately choosing an initial wave 

function, one can always construct a solution of the 

Schrodinger equation with the required properties. For 

example, in Sec. V we obtained the square-integrable 

oscillator-like solutions. Third, we find the explicit form 

of the initial momentum and the initial coordinate 

operators )(ˆ
0 tp  and )(ˆ

0 tx , through of which all other 

invariants can be expressed (Sec. III). 

 We show that the complete set of the LR invariants 

for the system under consideration is not restricted by the 

linear and quadratic invariants (Sec. VI).  

Fourth, we have shown that a problem of a particle 

that moves in a linear potential and a free particle problem 

are unitarily equivalent.  
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2. CONFIGURATION SPACE 

 

The Schrödinger equation for describing the motion 

of a particle with time-dependent mass in the presence of 

time -dependent linear potential is of the from    

  

),()(
)(2

),( 2
2

txxtF
tM

txi xt  












(2.1)                            

 

where M(t) and F(t) are arbitrary time-dependent 

functions. The solution of the equation (2.1) may be 

obtained from the evolution operator ),( txU   

         

                  )0,(),(),( xtxUtx   .              (2.2)                                              

 

The explicit form of the operator ),( txU
 
was found in 

[15] 

      

 







t

x tdti
tM

i
tix

eetxU 0

2
)(

)(2

1
)(

),(
 




,   (2.3)                                              

in which the notation tdtFt

t

 
0

)()(  is used. Now 

taking into account (2.3) in (2.2), one gets  a following 

general representation for the solution of the Schrodinger 

equation (2.1) 

                                           

 
)0,(),(

2
21

0 )()(
)()(

xeeetx xx tsits
tstx

i










 ,                                
                                                                                     (2.4) 

where    )(tsi   (i=0, 1, 2)  are  defined, respectively, as  

td
tM

t
ts

t





 

0

2

0
)(2

)(
)(


,      td

tM

t
ts

t





 

0

1
)(

)(
)(


,           

                            




t

tM

td
ts

0

2
)(2

)(

 

.                      (2.5) 

If we set M(t)=m, we will find that  

           
m

t
ts

2

)(
)( 2

0


 ,      

m

t
ts

)(
)( 1

1


 ,              

                           m

t
ts

2
)(2    ,                               (2.6) 

Where      tdttdtFtdt

ttt

 


000

1 )()()(  ,    

                tdttdtFtdt

ttt









 



)()()(
0

2

2

00

2  . 

A particular form of the evolution operator

),( txU , when mtM )(  and 
0)( FtF   was given in 

[8]. In this case we have tFt 0)(  , 2)( 2

01 tFt  ,

3/)( 32

02 tFt  . Now choosing in (2.4) different initial 

wave functions )0,(x  one can construct different wave 

functions ),( tx  at time 0t . 

For example, appropriately choosing the initial 

wave function we obtained from (2.4) all known in the 

literature solutions [1-8] of the equation (2.1) as the 

special cases:     

1) Nx )0,( . In this case we easily get  

                                                                

                    

 )()( 0

),(
tstx

i

Netx





 
 ,                (2.7) 

 

where N is a normalization constant. To compare with the 

solution in Ref. [4], we let F(t) take the form  

)cos( 0 tq   , and set mtM )( , which yields  

 

 tt
q

t 


 sin)( 0  , 

                    







 )2sin

2

1
(

2

1
)cos(sin2

3

)(

2
)( 2

0

3

0

3

2

0 ttttt
t

m

q
ts 




.              (2.8) 

 

Substituting these expressions in (2.7), we obtain the solution of (18) in [4] 

 

                 

 

.)2sin
2

1
(

2

1
)cos(sin2

3

)(

2
exp

sinexp),(

2

0

3

0

3

2

0





























ttttt
t

m

iq

xtt
iq

Ntx














            (2.9) 

  

2)  2/)0,( iAxex  , where A is an arbitrary real number. In this case using (A.3) one can obtain the following 

expression for the wave function  
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   )()(
)()( 02

21

2

1
),(

tstx
i

AtsitsxiA
eeetx








 

   ,                     (2.10) 

 

which coincides with the formula (6) in [5]. 

3) )()0,( BxAix  , where B is an arbitrary constant and )(xAi  denotes the Airy function. In this case, after 

some simple transformations in (2.4) with the help of the formula (A6) can be shown that  

 

                                                       

   

  .)()(

),(

32

2

2

1

)(
3

2
)()()()(

63
2

3
1

3
20

BtstsxBAi

eetx
BtsitsxBtsitstx

i












                              (2.11)

 

 

This result is equivalent to formula (8) of Ref. [5]. 

Note that the formula (15) of Ref. [1] [17] corresponds to the following initial condition 

 32/)0,( BxAix   and, therefore, it is obtained from (2.11) by replacing 
32/BB   and mtM )( . By 

choosing the initial wave function in the form )0,(x     0

3/12

0 //2 FExmFAi    one gets the formula (24) of 

Ref. [3].   

         In the next two Sections we obtain a general solution of the Schrodinger equation (2.1) by the evolution operator 

method, which yields the results of [6, 7] as a particular cases.   

 

3.  INVARIANTS FOR THE TIME-DEPENDENT LINEAR POTENTIAL 

 

Knowledge of the evolution operator (2.3) allows us to find not only the wave functions, but also to construct the 

LR invariants for the system. In the case of the time-dependent linear potential we have the following general 

expressions for the invariants (1.1) 

 

                                                                  
 tptp  ˆ)(ˆ

0 , 

                                                                   
  )()()(2ˆ2ˆ)(ˆ

1220 tststptsxtx  
.                                                (3.1) 

 

All other invariants are expressed through them. For example,  

 

                                                 )(ˆ)(ˆ)()(ˆ)(ˆ)( 000001 tCxtBptACtxBtpAtI  ,                                    (3.2а) 

                                 
  ),(ˆ)(ˆ)(ˆ)(ˆˆˆˆ)(ˆ)(

)(ˆ)(ˆ)(

22

2

00

2

0

2

02

tCxtBptAxtKpxxptEptD

txKtpDtI




                 (3.2b) 

                                   



)(ˆ

000
0

03

0

)(ˆ)(ˆ
)(ˆ

cosh)(

tpa

eiatxtxB
tpa

AtI










   .                                 (3.2c) 

 

At mtM )(  the invariants constructed in Refs.[4, 6, 7] are obtained from (3.1) and (3.2a). 

a) Let us find with the help of the evolution operator a particular solution of the Schrodinger equation (2.1), 

corresponding to the linear invariant (3.2a) at 00 B . For this purpose, as the initial wave function we choose the 

eigenvector of the operator )0(1I  at 00 B  corresponding to the eigenvalue , which has the form  

                                                               
x

i

ex
1

)0,(



 ,   001 AC  .                                                          (3.3) 

                                                

From (2.3), (2.4) and (3.3), we then get the solution of the equation (2.1): 

 

             ,
)(

exp
)(

)(2

1
exp),(),(

00

2

0

1








 















 






 


 x

A

tCi
td

A

tC

tM

i
etxUtx

tx
i










    (3.4) 
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where 
00 )()( CtAtC   . To derive the relation (3.4) 

we have used the formula  

                    
x

i
x

i

x efeif
11

)()( 1



      .            (3.5) 

 

If we set mtM )( , we will find that (3.4) coincides 

with the formula (12) of Ref . [7] [17]. 

     b) We now find the general solution of equation (2.1) 

corresponding to the linear invariant (3.2 a) at 00 B . 

To this end we expand the initial wave function over the 

plane waves (3.3), i.e. 

                 


degx
x

i







1

)()0,( 
     ,            (3.6) 

where )(g  is an arbitrary weight function (Fourier 

transform of )0,(x ). Then from (2.4), (3.4) and (3.6) 

we obtain the desired solution of equation (2.1) 

  dtxgtx 




 ),()(),(      ,           (3.7) 

(3.7) is a generalization of the formula (13) of Ref. [7] to 

the case of the time-dependent mass. If we now choose 

   23exp)( 33 Big    and use the integral 

representation of the Airy function (A.12), then we find 

after integrating (3.7):

 

 

                                      

.
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)(1
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)(1

)(2
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2
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)(exp),(

2

0

3

0

3

000

0

2

0

3
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3
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A

B
td

tM

tC

A
x

tM

td

A

iB

td
tM

tC

A
xtC

A

i
Btx








                (3.8) 

When mtM )(  one gets from the equation (3.8) the following formula [18]                                                                           

                                              

,
4

)(
1

6
)(

1

2
exp

)(
2

1
)(exp),(

3

0

23

000

3

0

23

00

3

0

2

3

0

2

00












































































A

SB
tdtC
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x
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B
Ai

A
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tdtC

mA
x

A

SiB

tdtC
mA

xtC
A

i
Btx

t

t

t








                               (3.9) 

where mtS / . 

One can easily check that the functions (3.4) and (3.8) satisfy the Schrödinger equation (2.1). 

  

4. MOMENTUM SPACE  

 

We can solve the problem in the momentum p-space by evolution operator method.  We write the Schrödinger 

equation (2.1) in the momentum space  

 

                              ),()(
)(2

),(
2

tptFi
tM

p
tpi pt 








   .                                         (4.1) 

 

The evolution operator in the p-space has the simple form [15]:  

 

                                                       


