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We analyze possibilities of new trapping method of comparatively slow-speed classical particles in the potential well induced 

by the nonhomogeneous electromagnetic field increasing with time (up to some moment). It is assumed that given particles are 

contained in a cell in the high vacuum and acting upon them forces are not dissipative. This trapping method is especially effective at 

inelastic collisions of particles with walls of the cell when necessary preliminary slowdown of particles is possible for their following 

capture even to a highly shallow potential well. Corresponding sufficiently compact and simple electromagnetic traps may be used 

for capture and accumulation not only slow-speed micro- and nano-particles in the high vacuum but also atoms and molecules in the 

ground quantum state. 
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1. INTRODUCTION 

 

Electromagnetic traps of micro- and nanoparticles in 

the high vacuum open new possibilities for contactless 

measurements of forces acting on given particles with 

extremely high accuracy and also allow 

micromanipulations of such particles, for example, in 

hollow waveguides [1]. Even more important is the 

development of effective methods of trapping and 

localization of sufficiently slow-speed atoms and 

molecules, in particular, for ultrahigh resolution 

spectroscopy [2] and for creation of more precise 

standards of time and frequency [3].    

In papers [4,5] we have established the new trapping 

mechanism of comparatively slow-speed classical 

particles in electromagnetic potential wells which are 

induced by an electromagnetic field with a nondecreasing 

strength and  fixed spatial distribution. We consider 

situations when given particles are contained in high the 

vacuum and acting upon them external forces are not 

dissipative (i.e. these particles move without friction). 

Depending on whether particles have electric (magnetic) 

moment, it is possible to use the controllable electric 

(magnetic) field or nonresonance laser radiation for their 

analyzed trapping. 

In the present work we will show that efficiency of 

such a trapping mechanism essentially increases in cases 

of inelastic reflection of given particles from walls of the 

gas cell.  

Then necessary preliminary slowdown of particles is 

possible for their following capture to the electromagnetic 

trap. Probability of such “cooling” collisions increases 

with time and therefore accumulation of trapped particles 

occurs during growth even a highly shallow potential well 

of the trap.  

For visual demonstration of the proposed method, at 

first we will analyze the comparatively simple one-

dimensional model of a cell and the electromagnetic trap 

with a gas of structureless particles (section 2).  

Then we will discuss possible generalization of 

obtained results on real systems, including also atoms and 

molecules of rarefied gases (final section 3). 

2. ONE-DIMENSIONAL MODEL OF THE TRAP 

 

Let us consider a collection of noninteracting 

identical point-like particles, which are under conditions 

of the ultrahigh vacuum between plane-parallel walls of 

the one-dimensional cell with coordinates 𝑥 = ±𝑙. We 

suppose that controllable electromagnetic field is 

superimposed on this cell, which creates the potential well 

for a particle described by the following function  𝑈 𝑥, 𝑡  

of  time t and coordinate x (−𝑙 ≤ 𝑥 ≤ 𝑙): 
 

                           𝑈 𝑥, 𝑡 = 0.5 𝑚 𝜔(𝑡)2𝑥2  ,        (1)                                                   

 

where m is the particle mass and 𝜔(𝑡) is the positive 

value nondecreasing with time t. Corresponding motion 

equation of a particle in the well (1) is characteristic for 

the one-dimensional oscillator with the changing 

frequency 𝜔 𝑡 : 
 

                               
𝑑2𝑥

𝑑𝑡2 + 𝜔(𝑡)2𝑥 = 0.                  (2)                                                

 

Let us consider any particle, which reflects with a velocity 
𝑑𝑥

𝑑𝑡 = 𝑣1 from the cell wall with the coordinate  

 𝑥 = −𝑙. For example, we present the following time 

dependence  𝜔 𝑡 : 
 

𝜔 𝑡 = 𝜔0 + 𝜎 ∙ 𝑡 ∙ 𝜂 𝑇 − 𝑡 + 𝜎 ∙ 𝑇 ∙ 𝜂(𝑡 − 𝑇), 

(𝑡 ≥ 0),                                                                       (3) 

 

where 𝜔0  is the value 𝜔(𝑡) in the initial moment t=0, 

𝜎 > 0 is the constant parameter, 𝜂 𝑦  is the step function 

(𝜂 𝑦 = 1 if  𝑦 ≥ 0 and  𝜂 𝑦 = 0 when 𝑦 < 0), and T is 

the moment when growth of the frequency 𝜔 𝑡  stops and 

further 𝜔 𝑡 = (𝜔0 + 𝜎 ∙ 𝑇) is the constant. Fig.1 shows 

the example of the particle motion 𝑥 𝑡 , calculated on the 

basis of the Eq.(2) with corresponding boundary 

conditions, at the change of the potential well (1) 

according to the time dependence (3). We see that, after 

reflection of the particle with a comparatively small 

velocity 𝑣1 from the cell wall (with the coordinate 
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𝑥 = −𝑙), this particle does not reach the opposite wall 

(with the coordinate 𝑥 = 𝑙) and turns back (in the point z 

in Fig.1) because of intensifying (with time) gradient 

force, which is directed to the center 𝑥 = 0 of the 

potential well (1). Following motion of the particle is 

oscillations with the increasing frequency and decreasing 

amplitude up to the moment t=T, after which the value 

𝜔 𝑡  (3) is constant. Then the particle undergoes usual 

harmonic oscillations (with the constant frequency and 

amplitude) already without collisions with cell walls 

(Fig.1). Thus it is possible to realize the trapping of 

sufficiently slow-speed particles by the nonhomogeneous 

electromagnetic field increasing with time (up to the 

definite moment). It is obvious, that such a trapping will 

not be possible for comparatively fast particles, which fly 

between cell walls overcoming the potential well (1).  

     Now we will determine the  maximum velocity  𝑣1
∗(𝑡1) 

of particles departing from a cell wall in some moment 𝑡1, 

when given particles still may be captured in the 

electromagnetic trap. Corresponding analytical 

calculations may be carry out for adiabatic increase of the 

potential well (1), when a change of the frequency 𝜔 𝑡  is 

negligible during the characteristic oscillation period 

2𝜋/𝜔 𝑡  of a trapped particle, that is 

  

                        
2𝜋

𝜔(𝑡)
 
𝑑𝜔 (𝑡)

𝑑𝑡
≪ 𝜔(𝑡).                            (4)             

   

 

Then, for any trapped particle in our one-

dimensional model, the following adiabatic invariant is 

constant [6]: 

 

                    𝐼 𝑡 =  (𝑚 2𝜋)  𝑑𝑣 𝑑𝑥,                   (5)                               

 

where the two-dimensional integral is taken over the 

coordinate 𝑥 and velocity 𝑣 of a moving particle. Phase 

trajectory equation of such a particle for the potential well 

(1) has the known form: 

 

   0.5 𝑚 ∙ 𝑣2 + 0.5 𝑚 ∙ 𝜔(𝑡)2 ∙ 𝑥2 = 𝐸(𝑡, 𝑡1),   (6)                             

 

where 𝐸(𝑡, 𝑡1) is the  energy in the moment t for a 

particle, which is captured by the trap after reflection 

from any cell wall (with the coordinate 𝑥 = 𝑙 or – 𝑙) in the 

moment 𝑡1 < 𝑡. Then we receive the following adiabatic 

invariant (5) for such particles [6]: 

 

                          𝐼 = 𝐸(𝑡, 𝑡1) 𝜔(𝑡) .                          (7)                             

     

 According to the invariant (7) and formula (6), the simple 

connection takes place between particle coordinate  𝑥 = 𝑙 
or (– 𝑙)   and its velocity   𝑣1 in the moment 𝑡1 of its 

reflection from a cell wall with corresponding values 𝑥(𝑡) 

and 𝑣(𝑡) in following moments 𝑡 > 𝑡1 of  particle motion 

in the trap: 

 

                      𝑣(𝑡)2 + 𝜔(𝑡)2 ∙ 𝑥(𝑡)2 = [𝜔 𝑡 𝜔(𝑡1)] ∙ 𝑣1(𝑡1)2 + 𝜔(𝑡1) ∙ 𝜔(𝑡) ∙ 𝑙2 .                            (8) 

 

At the adiabatic change of the frequency 𝜔 𝑡  (4), the first turn of a trapped particle (for example in the point z in 

Fig.1) after reflection from a wall in the moment 𝑡1 occurs approximately in the moment  [𝑡1 + 𝜋/𝜔(𝑡1)]. The limitary 

initial velocity  𝑣1
∗(𝑡1)  for particles trapping is determined from the condition that such a particle touches the opposite 

wall of the cell (for example with the coordinate  𝑥 = 𝑙  in Fig.1) in the indicated moment [𝑡1 + 𝜋/𝜔(𝑡1)].  Thus, after 

substitution of values 𝑣 = 0, 𝑥2 = 𝑙2   and  𝑡 = [𝑡1 + 𝜋/𝜔(𝑡1)] in Eq.(8), we receive the following limitary 

velocity 𝑣1
∗(𝑡1): 

 

                       𝑣1
∗(𝑡1) = 𝑙 ∙  𝜔 𝑡1   𝜔 𝑡1 + 𝜋/𝜔(𝑡1) − 𝜔(𝑡1) ≈ 𝑙 ∙  𝜋 ∙  

𝑑𝜔 (𝑡1)

𝑑𝑡1
  .                           (9) 

 

We note that, in case of the stationary potential well 

(1), it is impossible to capture particles in such a trap 

because they will fly between walls of the cell even when 

their initial departure velocity (from a wall) is close to 

zero. It is confirmed also by the formula (9) where the 

velocity 𝑣1
∗ = 0 for the constant value 𝜔. 

During sufficiently slow growth even a highly 

shallow potential well (1), it is possible to accumulate a 

large number of captured particles in this well if given 

particles are slowed up to velocities 𝑣 < 𝑣1
∗ because of 

inelastic collisions with cell walls directly before their 

trapping. Indeed, let us analyze the case of the diffuse 

reflection of particles from a wall surface, after which the 

equilibrium (Maxwell) distribution 𝐹(𝑣) on particles 

velocities establishes [7]: 

 

                   𝐹 𝑣 =
1

𝑢 𝜋  
𝑒𝑥𝑝  − 

𝑣

𝑢
 

2

 ,                (10)                                   

 

where 𝑢 = (2𝑘𝐵𝑇𝑤 𝑚 )0.5 is the most probable speed of 

free particles in the gas in the absence of the 

electromagnetic trap, 𝑘𝐵  is the Boltzmann constant and 

𝑇𝑤  is the temperature of the cell walls. We will assume 

that the potential well (1) is so shallow that the 

relationship 𝜔 𝑡 ∙ 𝑙 ≪ 𝑢 takes place and it is possible to 

neglect an electromagnetic trap influence on a distribution 

of comparatively fast particles which overcome the 

potential depth. Then the probability of capture of 

particles in the trap after their unitary collisions with cell 

walls in the moment t is determined by the value: 

 

        𝑝 𝑡 = 2  𝐹 𝑣 𝑑𝑣
 𝑣1

∗(𝑡)

0
≈

 2𝑣1
∗(𝑡)

𝑢 𝜋  
,             (11) 

 

where the limitary velocity 𝑣1
∗(𝑡) is determined by the 

formula (9) in  case of the adiabatic growth of the 

potential well (1). A number of such trapped particles 

𝑁(𝑡) in some cylindrical volume of our one-dimensional 

gas cell in the moment t has the form: 



TRAPPING OF SLOW-SPEED PARTICLES IN A GAS CELL BY NONHOMOGENEOUS ELECTROMAGNETIC FIELDS … 

5 

                      𝑁 𝑡 = 2𝑙 ∙ 𝑆 ∙ 𝑛 ∙ 𝜃(𝑡),                  (12)                               
 

where 𝑆 is the area of the corresponding part of cell walls 

in the selected volume, 𝑛 is the equilibrium density of 

free particles in the absence of the electromagnetic trap, 

𝜃(𝑡) ≤ 1 is the fraction of trapped particles in the cell and 

𝜃 𝑡 = 0 = 0 in the initial moment t=0 of the trapping 

process. We receive the following balance equation on the 

basis of relationships (11) and (12):  
 

           
𝑑𝑁(𝑡)

𝑑𝑡
= 𝐽 ∙ 𝑝 𝑡 ∙  1 − 𝜃(𝑡) ∙ 𝑛 ∙ 𝑆,         (13)                    

 

where 𝐽 = 2  𝐹 𝑣 ∙ 𝑣 ∙ 𝑑𝑣 ≈ 0.564 𝑢
∞

0
, and                    

𝐽 ∙  1 − 𝜃(𝑡) ∙ 𝑛 ∙ 𝑆 is the flow of still nontrapped 

particles, which falls on the indicated part of cell walls 

with the area 𝑆 in the moment t. Then from Eq. (11)-(13) 

we receive the fraction 𝜃(𝑡) of particles in the cell, which 

are captured in the electromagnetic trap up to the moment 

t:   

 𝜃 𝑡 = 1 − 𝑒𝑥𝑝  −
0.564

𝑙∙ 𝜋  
  𝑣1

∗(𝑡1)𝑑
𝑡

0
𝑡1 .         (14) 

In particular, for the linear time dependence (3) of 

the frequency 𝜔 𝑡 = (𝜔0 + 𝜎 ∙ 𝑡) , the limitary velocity 

 𝑣1
∗ = 𝑙 ∙  𝜋 ∙ 𝜎  (9) is constant and the function 𝜃(𝑡) (14) 

has the form: 

 

            𝜃 𝑡 = 1 − 𝑒𝑥𝑝 −0.564 ∙  𝜎 ∙ 𝑡 .         (15)                                          

 

It is important also to analyze the following average 

kinetic energy 𝐾𝑎 𝑡  of particles captured in the 

electromagnetic trap up to the moment t:  

 

       𝐾𝑎 𝑡 =
0.5

𝜃 𝑡 
  𝐸 𝑡, 𝑡1 

d𝜃(𝑡1)

d𝑡1
 d𝑡1

𝑡

0
            (16) 

 

In Eq.(16) the energy 𝐸 𝑡, 𝑡1  is determined by the 

relationship (6) and under our conditions may be 

presented in the following form on the basis of the 

adiabatic invariant (7): 

 

                                  

                              𝐸 𝑡, 𝑡1 =  
𝑚∙𝜔(𝑡)∙𝑣1

2

2𝜔 𝑡1 
+

𝑚∙𝜔 𝑡1 ∙𝜔(𝑡)∙𝑙2

2
≈

𝑚∙𝜔 𝑡1 ∙𝜔(𝑡)∙𝑙2

2
 ,                                               (17) 

 

where we used the relationship 𝑣1
2  ≪ 𝜔 𝑡1 

2 ∙ 𝑙2, which 

proceeds from the formula (9) at the adiabatic change of 

the frequency 𝜔(𝑡) (4). According to eqs. (16) and (17), 

the initial average energy of trapped particles 𝐸𝑎 𝑡  →
0.5𝑚 ∙  𝜔(𝑡 = 0) ∙ 𝑙 2 when  𝑡 → 0.  

Fig.2 presents time dependences of the relative 

depth [𝜔(𝑡) 2 𝜔 
0

2
] of the potential well (1) and also the 

fraction 𝜃(𝑡) (15) and the average kinetic energy 𝐾𝑎 𝑡  

(16) of particles captured in the trap at the linear growth 

of the frequency 𝜔 𝑡  3 . We can see that about 97% of 

particles in the cell are trapped during the indicated period 

(Fig.2b), while the potential depth increases only on the 

factor 2.25 (Fig.2a). It is important, that in spite of growth 

approximately on the factor 1.7 during this time, the 

average kinetic energy 𝐾𝑎 𝑡  of given trapped particles 

still is much less that the mean kinetic energy  0.25 𝑚 ∙
𝑢2 of free particles without electromagnetic trap (Fig.2c). 

Such a “cooling” of trapped particles is caused by their 

inelastic collisions with cell walls, when their speeds may 

lower up to magnitudes available for following capture of 

these particles.  The considered process may occur 

sufficiently quickly. For example, in Fig.2 the indicated 

time interval 2*10
4
 (l/u)~1s when the  length of the one-

dimensional cell 2l~1 cm and the most probable speed of 

free particles u~10
2
 m/s. 

 

3. DISCUSSION OF RESULTS 

 

Results of the previous section were obtained for the 

comparatively simple one-dimensional model of the gas 

cell and the definite potential well (1). Corresponding 

calculations are much more complicated for real two- and 

three-dimensional systems. However numerical 

calculations carried out by author for gas cells with 

cylindrical and spherical symmetry and various spatial 

dependences of increasing (in time) potential wells 

confirmed following qualitative results 1-4 obtained in the 

section 2. 

1). Even a highly shallow but increasing with time 

potential well will continuously capture sufficiently slow-

speed particles of a strongly rarefied gas in a cell. 

2). Such trapped particles will remain in the potential well 

and will not collide with cell walls even after going out of 

the corresponding nondecreasing electromagnetic field on 

a stationary value. 

3). These electromagnetic traps are especially effective in 

cases of inelastic collisions of still nontrapped particles 

with walls of the gas cell. Then necessary slowdown of 

given particles is possible for their following capture in 

the potential well. The accumulation process of 

comparatively slow-speed particles in the trap takes place 

during intensification of the electromagnetic field because 

a  probability of such slowdown collisions increases with 

time. 

4). At definite conditions, an average speed of particles 

captured in considered electromagnetic traps will be much 

less than the most probable speed of such free particles in 

the gas cell without given traps. 

  Of course, given results 1-4 are valid only in the 

absence of an interaction between particles in the gas cell. 

However such an interaction may be essential at a 

sufficiently high concentration of captured particles in a 

comparatively small volume of the trap.  

We have considered new electromagnetic traps for 

structureless particles having an electric or magnetic 

moment. In practice such situations may take place, in 

particular, for a collection of micro- or nano-particles, 

which fly in a cell under conditions of the ultrahigh 

vacuum at action of the controllable nonhomogeneous 

electric (magnetic) field or nonresonance laser radiation.
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Fig.1. The one-dimensional motion of a particle, which is reflected with the velocity 𝑣1 from the cell wall with the coordinate 𝑥 = −𝑙    

      in the moment t=0 in case of the time change of the frequency 𝜔(𝑡) according to the formula (3), when 

  𝑣1 = 5 𝑙 𝑇  , 𝜔0 = 20 𝑇  and  𝜎 = 25 𝑇2  . 

 

 
 

Fig.2. Time dependences of the relative potential depth~[𝜔(𝑡) 2 𝜔 
0

2
]  (a), the fraction 𝜃(𝑡) (b) and the average kinetic energy 𝐾𝑎 𝑡      

      (c) of particles captured in the trap in case of  the  linear  growth  of  the  frequency  𝜔 𝑡 = 𝜔0 + 𝜎 ∙ 𝑡, when  

 𝜔0 = 4 ∙ 10−3  𝑢 𝑙    and  𝜎 = 4 ∙ 10−7  𝑢 𝑙  2. 
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For analysis of possible capture of atoms and 

molecules in proposed traps, consideration of their 

quantum structure is necessary. Meanwhile, in definite 

cases, results obtained in this paper may be generalized 

also on such quantum objects. Thus, for example, it is 

possible creation of two- and three-dimensional traps for 

atoms and molecules by the nonhomogeneous laser 

radiation with frequencies essentially detuned from 

resonances with atomic (molecular) transitions [8-10]. 

Then the gradient force acts on atoms (molecules) in the 

direction to the point of minimum of the light induced 

potential well. However such a well is usually so shallow 

that a preliminary slowdown of particles up to very low 

speeds is necessary for their trapping.  Unlike some atoms 

[1,8], such an effective “cooling” can not be realized for 

most molecules because of their complicated structure 

[9,10]. However it is possible to realize the necessary 

slowdown and following trapping of a large number of 

ground state molecules in a compact gas cell by the more 

universal method proposed in the present paper. Indeed, 

then an inelastic (in particular diffuse) reflection of 

nontrapped molecules from cell walls is necessary. A 

collection of captured molecules by the proposed method 

will have much less characteristic speed in comparison 

with free molecules in the absence of the electromagnetic 

trap. Thus, in particular, an essential decrease of Doppler 

widths of absorption (or fluorescence) spectral lines of 

trapped molecules in the gas cell may be recorded by the 

additional probe radiation.  
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