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In the present paper, we have investigated the magnetization of electrons in a diluted magnetic semiconductor (DMS) 

quantum ring. We take into account the effect of Rashba spin-orbit interaction, the exchange interaction and the Zeeman term 

on the magnetization. We have calculated the energy spectrum and wave function of the electrons in diluted magnetic 
semiconductor quantum ring. Moreover, we have calculated the magnetic moment as a function of the magnetic field for strong 

degenerate electron gas at finite temperature of a diluted magnetic semiconductor quantum ring. 
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1. INTRODUCTION 
 

In the last decade enormous attention has been 

devoted toward control and engineering of spin degree 

of freedom at mesoscopic scale, usually referred to as 

spintronics [3]. Important class of materials for 

spintronics forms diluted magnetic semiconductors 

(DMS). In a previous paper [1] we calculated the heat 

capacity and magnetization of a DMS quantum ring for 

Boltzmann statistics. The aim of this paper is to 

generalize the theory of free-electron Landau 

diamagnetism so as to include parabolic of the Fock-

Darwin type confinement. In this way we move from 

classical statistics to the degenerate Fermi limit.  

 

2. THEORY 
 

We take into account the effects of the Zeeman 

and exchange terms on the magnetic moment of DMS 

quantum ring, the electron is assumed to be moving in 

a parabolic potential of the Fock -Darwin type given by 

[1]: 

 
 

𝑉𝑐(𝜌) =
𝑉0𝜌

2

2𝑅2
,  𝜌 ≤ 𝑅,                     (1)                                                                                

 

where 0V - defines the depth of this potential and  − 

is the distance of electron from the centre of the DMS 

quantum ring. The quantum ring is subjected to a 

uniform magnetic field ( )HH ,0,0=
→

 normal to the 

quantum ring plane. We assume that the spin-orbit 

interaction is described by the Rashba Hamiltonians 

[1]. The total Hamiltonian of the system is given by: 
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 where nm − is the electron mass, z − is the Pauli z 

matrix, 0 is the Rashba spin-orbit coupling parameter, 

g represents the Lande factor. In the mean field 

approximation, the exchange Hamiltonian term can be 

written as: 

                                                 

 𝐻𝑒𝑥 =
1

2
⟨𝑆𝑧⟩𝑁0𝑥𝐽𝑠𝑑𝜎𝑧 = 3𝐴𝜎𝑧       (3)                                                       

where sdJ  is a constant which describes the exchange 

interaction; N0 is the density of the unit cell. For 

uniform magnetic field, H directed along z-axis, the 

vector potentials in cylindrical polar coordinates have 

the components 0,
2

== 



 A
H

A and the solution 

of Schrödinger equation has been known [1]. The 

electron energy levels given by [1, 2]: 
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where   =   and we have used notations: 
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The partition function for the Boltzmann statistics is given by: 

 

𝑧 = ∑
1

2

𝑒
−
𝜎𝑑
𝑘𝐵𝑇

𝑐𝑜𝑠ℎ(
ℏ𝛺𝜎
2𝑘𝐵𝑇

)−𝑐𝑜𝑠ℎ(
𝑏𝜎

2𝑘𝐵𝑇
)

𝜎 ; 𝑏𝜎 = ℏ𝜔𝑐 (1 + 𝜎
2𝛼

ℏ𝜔𝑐𝑅
), 𝑑 =

1

2
𝑔𝜇𝐵𝐻 + 3𝐴,     

(6) 

 

where nlE -is the energy spectrum of considered system,
Bk  is the Boltzmann constant. To calculate 

thermodynamic potential Ω we use an approach based on calculating the classical partition function z of the 

electron gas: 
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where   is the chemical potential of the gas. If we change to the dimensionless variable of integration   

,
2


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b
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=  Eq.(7) takes the form 

 

( ) ( )
,

coshcosh

22

2
sin

2

2

1

4 2
dz

zzB

b
e

z

b
e

z
b

Tk

z
b

Tk

i

b
iv

iv B

B

−

−













−= 

+

− 















                                         (8) 

where .
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 The finite temperature effects are represented by an expansion the functions     











z

b

Tk

z
b

Tk

B

B









2
sin

2

  in powers of the small quantity  z
b

TkB




2

 . 

 

                            ...
3

2
1

2
sin

2

2

222

++










 



 





b

Tk

z
b

Tk

z
b

Tk

B

B

B

                                                                 (9) 

 

For the low fields    ,1
c




 only the small z  behaviour of the non-exponential portion of the integrand in 

(8) contributes significantly: 
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Inserting (9) and (10) into (8) and using the formula 

 

                                      
( )

,
2

1 1





 
=

−+

−


t

e
z

dz

i

tz

iv

iv

                                                                                           (11) 

When   positive, we find 
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where .
2
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The magnetic moment of electrons in the quantum ring at the chemical potential  const=  is 
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where A  is the area of quantum ring, 0m  is the free electron mass. We shall take as the area of the cross-section 

of the potential well where 
2
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3. RESULTS AND DISCUSSION 

 

Thus, the magnetization is independent of the confinement parameter 0 . 

We next turn to de Haas–van Alphen oscillatory behaviour the magnetization in quantum ring with Rashba spin-

orbit coupling. The integrand in (8) has simple poles and the points  ( )1
2




B

il  , ,...2,1 =l  along the 

imaginary axis. Evaluating (8) by closing the integration by a large semicircle to the left, and summing the residues 

we have:  
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The structure of the resulting oscillations is quite complex since B  is strongly field dependent, and includes 

spikes where  
1

1

+

−





B

B   possesses integer values. At very high fields, so B  approaches 1 the amplitude the first 

term in (16) will grow without as expected. Differentiating only the rapidly oscillating factors in Eq. (16) we find 

the magnetization. 
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