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In the present paper, we have investigated the magnetization of electrons in a diluted magnetic semiconductor (DMS)
quantum ring. We take into account the effect of Rashba spin-orbit interaction, the exchange interaction and the Zeeman term
on the magnetization. We have calculated the energy spectrum and wave function of the electrons in diluted magnetic
semiconductor quantum ring. Moreover, we have calculated the magnetic moment as a function of the magnetic field for strong

degenerate electron gas at finite temperature of a diluted magnetic semiconductor quantum ring.
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1. INTRODUCTION

In the last decade enormous attention has been
devoted toward control and engineering of spin degree
of freedom at mesoscopic scale, usually referred to as
spintronics [3]. Important class of materials for
spintronics forms diluted magnetic semiconductors
(DMS). In a previous paper [1] we calculated the heat
capacity and magnetization of a DMS quantum ring for
Boltzmann statistics. The aim of this paper is to
generalize the theory of free-electron Landau
diamagnetism so as to include parabolic of the Fock-
Darwin type confinement. In this way we move from
classical statistics to the degenerate Fermi limit.

2. THEORY

We take into account the effects of the Zeeman
and exchange terms on the magnetic moment of DMS

guantum ring, the electron is assumed to be moving in
a parabolic potential of the Fock -Darwin type given by

[1]:
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where V,, - defines the depth of this potential and p —

is the distance of electron from the centre of the DMS
quantum ring. The quantum ring is subjected to a

N
uniform magnetic field H = (0,0, H) normal to the

quantum ring plane. We assume that the spin-orbit
interaction is described by the Rashba Hamiltonians
[1]. The total Hamiltonian of the system is given by:
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where M — is the electron mass, o, — is the Pauli z

matrix, & is the Rashba spin-orbit coupling parameter,

g represents the Lande factor. In the mean field
approximation, the exchange Hamiltonian term can be
written as:
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Whlere J 4 is a constant which describes the exchange

interaction; No is the density of the unit cell. For
uniform magnetic field, H directed along z-axis, the
vector potentials in cylindrical polar coordinates have

the components A¢ = 7’3, Ap =0 and the solution

of Schrodinger equation has been known [1]. The
electron energy levels given by [1, 2]:
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where o=+ 7 and we have used notations:
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The partition function for the Boltzmann statistics is given by:
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where E_,_-is the energy spectrum of considered system, kB is the Boltzmann constant. To calculate

thermodynamic potential Q we use an approach based on calculating the classical partition function z of the
electron gas:
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where u is the chemical potential of the gas. If we change to the dimensionless variable of integration

7= b, &, Eq.(7) takes the form
kT
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where B_ = bt . The finite temperature effects are represented by an expansion the functions
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For the low fields e >>1, only the small z behaviour of the non-exponential portion of the integrand in
Nw,

(8) contributes significantly:
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Inserting (9) and (10) into (8) and using the formula
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where D = b— In the absence of spin degree of freedom the thermodynamic potential
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The magnetic moment of electrons in the quantum ring at the chemical potential £ = CONSt is
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where A is the area of quantum ring, M, is the free electron mass. We shall take as the area of the cross-section
2,2
o, 2
of the potential well where £z = —"—2— and can be written A = 7w2 :
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3. RESULTS AND DISCUSSION

Thus, the magnetization is independent of the confinement parameter @, .
We next turn to de Haas—van Alphen oscillatory behaviour the magnetization in quantum ring with Rashba spin-

orbit coupling. The integrand in (8) has simple poles and the points 2“%8 +1) 1 =+1+2,... along the

imaginary axis. Evaluating (8) by closing the integration by a large semicircle to the left, and summing the residues
we have:
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The structure of the resulting oscillations is quite complex since B, is strongly field dependent, and includes

spikes where B, -1 possesses integer values. At very high fields, so B, approaches 1 the amplitude the first

B, +1

term in (16) will grow without as expected. Differentiating only the rapidly oscillating factors in Eq. (16) we find
the magnetization.
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