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LIMIT RELATION BETWEEN PSEUDO JACOBI POLYNOMIALS
AND HERMIT POLYNOMIALS WITH A SHIFTED ARGUMENT
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In this paper, we prove a new limit relation between the pseudo-Jacobi polynomials and Hermite polynomials with shifted
argument.
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1. NEW GENERALIZED FREE HAMILTONIAN

In paper [1], we proposed a new generalized free Hamiltonian with position-dependent mass M = M(x) for
the describing the dynamical quantum systems. This Hamiltonian has the form

— YN (M*p MBpMY + MYp MPHM®). )
It is compatible with Galilean invariance [2] and can be represented in the form

2 M

h? hZMm’

H0=—Ea£ 6 +AN +BNMZ’ (2)
where for the coefficients Ay and B, we have the expressions
2
Ay =774 A= Z(ai +vi+ ayi),
5 i=1
h
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Note that all Hamiltonians used in the literature to describe the quantum dynamics

of particles with mass dependent on the position [2-17]. Further, in the paper [1] on the basis of the Schrédinger
equation, we constructed an exactly solvable model of a linear harmonic oscillator. The wave functions of this
model are expressed in terms of pseudo Jacobi polynomials P,(x; v, N). The model mass function contains some
parameter a. Purpose of this paper is to prove that in the limit a — oo the pseudo Jacobi polynomials go over to
the Hermite polynomials with a shifted argument H, (z — z,).

2. BASIC FORMULAS

Pseudo Jacobi polynomials are defined in terms of hypergeometric functions as follows [18,19]

B,(x;v,N) =

G N gy (710 R 2N =) 2012, N @

(n-2N-1), —N + v )

and satisfy the orthogonality relation
oo
1
2\-N-1,2 . . —
o ] (1+x9) e?varcanxp (x;v,N)B,(x;v,N) =

_ T(2N+1-2n)T(2N+2-2n) 22"~ 2N-1p
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We also write down for them a differential equation
1+ xDy(x; +2(v = Nx)y'(x) — n(n — 2N — 1))y (x) = 0, y(x) = P,(x; v, N) ©)

Similar formulas for the Hermite polynomials are
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_n @ 1
() = Q"F (T2~ ) @
12 e Hy (x) Hy(x)dx = 2" (n) VTS, ®)
y*(x) — 2xy'(x) + 2ny(x) = 0, y(x) = H,(x). )
3. THEOREM
The following limit relation holds between the pseudo Jacobi and Hermite polynomials
- nnsp (X - _
1\111_1)%02 NzP, (\/IV' v\/ﬁ,N) = H,(x —v). (10)
We will prove this theorem in two ways.
Proof 1. To prove (2), we will use the recurrence relations for the pseudo Jacobi and Hermite polynomials
[18,19], which have the form
P,.1(x;v,N) = A,B,(x;v,N) + B,P,,_1(x;V,N), (11)
Hyy4(2) = 2zHy,(z) — 2nHy,_41(2), (12)
where
_ v(N+1) _ nn—-2N-2)(n—-N—-1—iv)(n—N+1+iv)
An(x,v) = x (n—-N-1)(n—-N)’ B,(v) = (2n-2N-3)(n-N-1)2(2n—-2N-1) (13)
Let be
n X ~ .
0, = 2"N"/2p, (ﬁ;v\/ﬁ, N)and Q= lim 0y, (14)
Then from (11) we obtain the following recurrence relation for the polynomials Q,,
Qny1 = /TnQn + EnQn—l: (15)
where
A, =2VN 4, (\/%V\/N) B, = 4NB,(vVN). (16)
Since lim A, =2(x-v) and Jim B,, = —2n, then passing to the limit N — oo in (15) we come to
@n+1 =2(x — V)Qn - 2nén—l- 17)
And this coincides with the recurrence relation for the Hermite polynomials (12) for z = x —v. Hence,

Q,, = H,, (x —v). This completes the proof of (10).

Proof 2. Let us now prove the relation (10) by the method of mathematical induction. To do this, we first write
explicitly the pseudo Jacobi and Hermite polynomials for the first few values of n:

Py(x;v,N) =1, P,(x;v,N) =x —%,

v(N+1) ( _v) NZ 4+ v?

Pz(x;V,N)Z[x—m N —my

Hy(z)=1 H(z)=2z H,(2)=4z%-2. (18)

Using the explicit form of polynomials (18), we can directly verify that for n = 1 and 2, relation (10) is true, i.e.
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X
lim 2VN P (—
N—oo 1 W/N
lim 22N P,
N—-oo

(%;V\/N,N) = H,(x —v).

;V\/N, N) = H;(x —v),

(19)

Assuming now that our relation (10) is true for n, we see that then it is true for n + 1 as well. Indeed, we have

n+1 X
lim 2"*IN"2 P (—;vVN,N) =
Novoo n+1 N
lim 2VvNA ( ad vVN) lim Z"N%P ( ad vVN N) +
= 11 -, 1 r— )
N—oco n \/N N-oo n 1/N

n—1
+ lim 4N B, (vVN) lim 2"INZ P,

Therefore, according to (18), we can write

+1 n+1
: n
1\115202 N2 Py

VN

(7

X

vWN, N) = 2zH,(z) — 2nH,_,(2).

x
(—;V\/N,N) =Hp1(2),z=x—v.

Hence, the limit relation (10) is also true for all values of n. This completes the second proof of the theorem.
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