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Exactly-solvable model of the quantum harmonic oscillator is proposed. In this work we propose a new generalized 

Hamiltonian, to describe variable mass systems. Wave functions of the stationary states and energy spectrum of the model are 
obtained through the solution of the corresponding Schrödinger equation with the positive position-dependent effective mass. 

We have shown that the wave functions of the stationary states of the model under consideration are expressed through the 

pseudo Jacobi polynomials  𝑃𝑛(𝜉;  𝜈, �̅�). The parameter 𝑎 of the model is quantized in terms of  �̅�. As a consequence of it, the 

number of the its energy spectrum is finite. Under the limit  𝑎 → ∞ the system recovers the known non-relativistic quantum 

harmonic oscillator in the quantum mechanics. We also obtained the limiting relation between the pseudo Jacobi and Hermite 

polynomials. 

 
Keywords: Position-dependent effective mass, new generalized free Hamiltonian, quantum harmonic oscillator, pseudo Jacobi 

polynomials, non-equidistant energy levels. 

PACS: 03.65.-w, 02.30.Hq, 03.65.Ge  

 
1. INTRODUCTION 

 
The number of exactly solvable problems in 

quantum mechanics is limited, but they play an 

important role in the study of the properties of various 

dynamical systems. This is, firstly, due to the fact that 

the exact solutions play the role of the foundation on 

which the solution of many other problems is built, 

secondly, they allow, from the point of view of 

symmetry, to understand their essence, and thirdly, they 
themselves can have directly various applications in 

many areas of theoretical physics. It should also be 

noted that exactly solvable problems are also 

interesting from the point of view of mathematics, since 

in many cases they can lead to the establishment of new 

properties of various special functions. For example, 

the problem of a harmonic oscillator, being exactly 

solvable, is widely used in atomic and nuclear physics, 

in the theory of crystals, in quantum field theory, etc. 

[1-4]. For this reason, the construction of exactly 

solvable quantum mechanical models, including 

models of a harmonic oscillator, for describing various 

physical systems has always attracted and continues to 

attract the attention of physicists [5-11]. 

On the other hand, various quantum mechanical 

systems described by the Schrödinger equation in cases 

where the Hamiltonian of the system contains the 
position-dependent mass [12-29]. These systems have 

found applications in a wide range of fields of the 

material science and condensed matter physics. A 

number of papers [14, 17, 19, 20, 22-29] are devoted to 

the construction of exactly solvable potentials for the 

Schrödinger equation with the position-dependent mass 

mass, and in [15] was obtained exact solution of the 

Dirac equation for a charged particle with position-

dependent mass in the Coulomb field.   

Our goal is to construct a quantum-mechanical 

exactly solvable model of a linear harmonic oscillator 

with the the position-dependent mass in an external 

uniform gravitational field. Our construction is based 

on the Schrödinger equation with a free Hamiltonian, 

generalizing the free Hamiltonian von Roos with the 

position-dependent mass. We show that the wave 

functions of our model are expressed in terms of 

pseudo-Jacobi polynomials. For this reason, we will 

call it the pseudo-Jacobi oscillator. 

This article is organized as follows. Section 2 

contains brief review of the nonrelativistic quantum-

mechanical linear harmonic oscillator model. 

 

2. NONRELATIVISTIC LINEAR HARMONIC 
OSCILLATOR WITH CONSTANT MASS 

 
Let us write the one-dimensional Schrödinger 

equation describing the motion of a nonrelativistic 

quantum particle with constant mass 𝑚0 in the external 

field 𝑉(𝑥). 

It has the form 

 

           [
�̂�2

2𝑚𝑒
+ 𝑉(𝑥)] 𝜓(𝑥) = 𝐸𝜓(𝑥),        (2.1) 

                                             
where �̂� = −𝑖𝜕𝑥 is the momentum operator. A linear 

harmonic oscillator with frequency ω corresponds to 

the following potential energy 

 

                    𝑉(𝑥) =
𝑚0𝜔2𝑥2

2
.                (2.2)   

                                             
Let us rewrite equation (2.1) with potential (2.2) as 

 
𝑑2𝜓

𝑑𝑥2
+

2𝑚0

ℏ2
(𝐸 −

𝑚0𝜔2𝑥2

2
) 𝜓 = 0.      (2.3)                                       

 

The solution and energy spectrum of this equation are 

well known [1] 

 

𝜓𝑛
0𝑆(𝑥) = 𝐶𝑛

0𝑆𝑒−
1
2𝜆0

2𝑥2

𝐻𝑛(𝜆0𝑥), 
 

      𝐸𝑛
0𝑆 = ℏ𝜔 (𝑛 +

1

2
) , 𝑛 = 0,1,2, …,  (2.4)  
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where 𝐻𝑛 (𝑥) are Hermite polynomials, and 

 𝜆0 = √𝑚0𝜔 ℏ⁄ .  Normalizing constants 
 

𝐶𝑛
0𝑆 =

𝐶0
0𝑠

√2𝑛𝑛!
, 

  𝐶0
0𝑆 = (

𝜆0
2

𝜋
)

1
4⁄

= (
𝑚0𝜔

𝜋ℏ
)

1
4⁄
             (2.5)   

                     
found from the orthogonality condition for the Hermite 

polynomials [30, 31] 

       

  ∫ 𝑒−𝑥2∞

−∞
𝐻𝑚(𝑥)𝐻𝑛(𝑥)𝑑𝑥 = √𝜋2𝑛𝑛! 𝛿𝑛𝑚.                                     (2.6) 

 
3. GENERALIZED FREE HAMILTONIAN 

WITH THE POSITION-DEPENDENT MASS 

 
In this paper, we will construct a new model of a 

nonrelativistic linear harmonic oscillator, namely with 

the position-dependent mass pseudo-Jacobi oscillator. 

It should be noted that the construction of models of 

quantum physical systems with the position-dependent 

mass 𝑀 ≡ 𝑀(𝑥) starts with choosing the form of the 

free Hamiltonian to describe the position-dependent 
mass systems and with the subsequent selection of the 

mass function 𝑀(𝑥). The point is that due to the non-

commutativity of the momentum operators �̂� = −𝑖ℏ𝜕𝑥 

and the function 𝑀(𝑥), the question arises of their 

ordering in the expression for the free Hamiltonian 

 

𝐻0 =
1

2𝑀(𝑥)
 �̂�2.                (3.1) 

                                                            

In this regard, we note that this issue was analyzed in 

[13], where it is proposed to restrict ourselves to a 

specific class of the form of the Hamiltonian with the 

position-dependent mass. According to this paper the 

free Hamiltonian operator must depend only on the 

mass function 𝑀(𝑥). Accordingly, it will take the 

following general form  

 

    𝐻0  =
1

2
�̂�

1

𝑀(𝑥)
 �̂� +  𝑊kin(𝑥),            (3.2)    

                                 

with the condition that the term   𝑊kin  be a functional 

of  M, possibly involving its derivatives. Further the 

dimensional arguments require this term to be 

homogeneous of degree (-1) in M and of degree (-2) in 
x. Analyticity conditions precluding nonintegral 

powers of the derivatives of M and, finally, the 

condition that for a constant function 𝑀(𝑥) = 𝑚 one 

recovers the usual expression, implying that the 

derivatives of M must appear with positive (integral) 

powers, lead to two possible terms only in 𝑊kin:   
 

                𝑊kin = 𝐴1
𝑀′2

𝑀3
+ 𝐵1

𝑀′′

𝑀2
 .           (3.3)  

                                                                                                                     

In this paper is also stated that under the above 

conditions the most general free Hamiltonian is 

precisely the von Roos Hamiltonian of the form [12] 

                                        

𝐻0  =
1

4
 (𝑀𝛼�̂� 𝑀𝛽�̂�𝑀𝛾 + 𝑀𝛾�̂� 𝑀𝛽�̂�𝑀𝛼),                                   (3.4) 

 

where the real parameters 𝛼, 𝛽 and 𝛾 satisfy the natural 

condition 𝛼 + 𝛽 + 𝛾 = −1,  but otherwise they are 

arbitrary. The von Roos free Hamiltonian (3.4) has the 

form (3.2) with (3.3), where the coefficients  𝐴1 and 𝐵1 
are 

𝐴1 =
1

2
(𝛼 + 𝛾 + 𝛼𝛾),𝐵1 = −

1 

4
(𝛼 + 𝛾). (3.5) 

                                                                                    

In this section, we propose a new (generalized) free 

Hamiltonian to solve the problems with mass 

depending on the position as  

                            

   𝐻0 =
1

4𝑁
∑ (𝑀𝛼𝑖�̂�𝑀𝛽𝑖 �̂�𝑀𝛾𝑖 + 𝑀𝛾𝑖�̂�𝑀𝛽𝑖 �̂�𝑀𝛼𝑖),𝑁

𝑖=1                          (3.6) 

 

where 𝑁 = 1,2,3 … is an arbitrary positive integer and 

the parameters 𝛼𝑖 , 𝛽𝑖 , 𝛾𝑖  (𝑖 = 1,2, … , 𝑁) satisfy the 

conditions(3.7) 

𝛼𝑖 + 𝛽𝑖 + 𝛾𝑖 = −1, 𝑖 = 1,2, … , 𝑁.                                         
The Hamiltonian (3.6) is more general than the 

Hamiltonian (3.4) von Roos [12] and the Hamiltonian 
 

𝐻0 =
1

6
(

1

𝑀
�̂�2 + �̂�

1

𝑀
�̂� + �̂�2 1

𝑀
),        (3.8)  

proposed in [24]. Consequently, the free Hamiltonians 
used in the literature [12-29] for dynamical systems 

with the position-dependent mass are special cases 

(3.6). For example, for 𝑁 = 3, 𝛼1 = −1,    𝛽1 = 𝛾1 =
0, 𝛼2 = 𝛾2 = 0,  𝛽2 = −1  and  𝛼3 = −1, 𝛽3 = 𝛾3 =
0 from (3.6) follows (3.8). If we represent (3.6) in the 

form (3.2) and (3.3), i.e. 

 

𝐻0 = −
ℏ2

2𝑀
𝜕𝑥

2 +
ℏ2𝑀′

2𝑀2
𝜕𝑥 + 𝐴𝑁

𝑀′2

𝑀3
+ 𝐵𝑁

𝑀′′

𝑀2
,                                (3.9) 

 

then for the coefficients 𝐴𝑁   and  𝐵𝑁  we get the 

following expressions 𝐴𝑁 =
ℏ2

2𝑁
𝐴,   𝐴 = ∑(𝛼𝑖 + 𝛾𝑖 + 𝛼𝑖𝛾𝑖),

𝑁

𝑖=1
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  𝐵𝑁 = −
ℏ2

4𝑁
𝐵,   𝐵 = ∑ (𝛼𝑖 + 𝛾𝑖).𝑁

𝑖=1      (3.10)  

                                     
From the requirement that the Hamiltonian  𝐻0 (3.6) (or 

(3.9)) be Hermitian, it follows that the coefficients 𝐴𝑁 

and  𝐵𝑁  (3.10) must be real. Therefore, in the general 

case, the parameters 𝛼𝑖 , 𝛽𝑖 , 𝛾𝑖  (𝑖 = 1,2, … , 𝑁) can be 

complex, provided that the relations 𝛾𝑖 = 𝛼𝑖
∗ (𝑖 =

1,2, … , 𝑁) are satisfied, i.e. 𝛼𝑖  and  𝛾𝑖must be mutually 

complex conjugate. 

      Taking into account now (3.9), the Schrödinger 

equation for quantum systems with the position-

dependent mass in the potential field 𝑉(𝑥) is written in 

the form 

 

{𝜕𝑥
2 −

𝑀′

𝑀
𝜕𝑥 −

𝐴

𝑁

𝑀′2

𝑀2 +
𝐵

2𝑁

𝑀′′

𝑀
+

2𝑀

ℏ2
[𝐸 −

       −𝑉(𝑥)]} 𝜓(𝑥) = 0.                (3.11) 

 
4. PSEUDO-JACOBI OSCILLATOR WITH THE 

POSITION-DEPENDENT MASS 
 

For building pseudo-Jacobi oscillator with the 

position-dependent mass we define position-dependent 

mass function  𝑀(𝑥)  as follows 

 

                            𝑀(𝑥) =
𝑎2𝑚0

𝑎2+𝑥2
,              (4.1) 

  

where 𝑎 > 0  is some parameter with the dimension of 

length. Obviously, in the limit 𝑎 → ∞  , the dependence 

of the mass (4.1) on the coordinate x disappears, i.e. 
 

                   lim
𝑎→∞

𝑀(𝑥) = 𝑚0.             (4.2)    

                                           
Let's write the potential energy of our model in the 

usual form 

 

                𝑉(𝑥) =
𝑀(𝑥) 𝜔2 𝑥2

2
.             (4.3)   

                                           
It is also clear that the following limit relations will take 

place both for the generalized free Hamiltonian (3.6) 

(or (3.9)) and for the potential energy of the model (4.3) 

 

lim
𝑎→∞

𝐻0 = −
ℏ2

2𝑚0
𝜕𝑥

2, lim
𝑎→∞

𝑉(𝑥) =
𝑚0  𝜔2 𝑥2

2
.(4.4)  

                           
i.e., in the limit when the model parameter 𝑎 tends to 

infinity (𝑎 → ∞ ), these quantities coincide with the 

corresponding quantities of nonrelativistic quantum 

mechanics 

      Substituting the expression for mass (4.1) into 

(3.11), we obtain the Schrödinger equation describing 

the motion of our oscillator model 

 

 

{𝜕𝑥
2 +

2𝑥

𝑎2+𝑥2
𝜕𝑥 −

𝐴

𝑁

4𝑥2

(𝑎2+𝑥2)2
+

𝐵

𝑁

3𝑥2−𝑎2

(𝑎2+𝑥2)2
+

2𝑎2𝑚0

ћ2(𝑎2+𝑥2)
[𝐸 −

𝑎2𝑚0𝜔2𝑥2

2(𝑎2+𝑥2)
]} 𝜓 = 0.          (4.5) 

 

In terms of the new dimensionless variable ξ = 
𝑥

𝑎
, the 

equation (4.5) takes the form  

 
 

               (𝜕𝜉
2 +

�̃�

𝜎
𝜕𝜉 +

�̃�

𝜎2
) 𝜓 = 0,      (4.6)  

                                            
where we have introduced the following notations  �̃� =
2𝜉,  𝜎 = 1 + 𝜉2,   �̃� = 𝑐0 − 𝑐2𝜉2. For the coefficients 

𝑐0 and 𝑐2 we have  
 

𝑐0 =
2𝑎2𝑚0𝐸

ћ2
−

𝐵

𝑁
, 

𝑐2 =
𝑎4𝑚0

2𝜔2

ћ2
−

2𝑚0𝑎2𝐸

ћ2
−

𝐴2

𝑁
, 

 

         𝐴2 = ∑ (𝛼𝑖 +  𝛾𝑖 − 2𝛼𝑖𝛾𝑖)𝑁
𝑖=1 .     (4.7)  

                                        
Let us look for solution ψ of equation (4.6) as follows 

[32]: 
 

𝜓 = 𝜑(𝜉)𝑦(𝜉),  𝜑(𝜉) = 𝑒
∫

𝜋(𝜉)

𝜎(𝜉)
𝑑𝜉

 .    (4.8)  
                                   

Here, 𝜋(𝜉) is an arbitrary polynomial of at most first 

degree and  𝜎 ≡ 𝜎(𝜉). Then, by performing simple 

straightforward computations, one obtains the 

following second-order differential equation for 𝑦 ≡
𝑦(𝜉): 

                  𝑦′′ +
�̅�

𝜎
𝑦′ +

 �̅�

𝜎2
𝑦 = 0,          (4.9)                                                   

with   

             𝜏̅ = �̃� + 2𝜋,  �̅� = �̃� + 𝜋2 + 𝜎𝜋′. 
 
It is seen that  𝜏̅(𝜉) and   �̅�(𝜉)  are polynomials, 

respectively, not higher than the first and second 

degrees. We now choose a polynomial 𝜋(𝜉) from the 

condition that the polynomial  �̅�(𝜉) be divided without 

remainder by  𝜎(𝜉), i.e. 

 

              �̅� = 𝜆𝜎, 𝜆 = const.                (4.10)  

                                          
Now, equation (4.9) takes the form 

 

                    𝜎𝑦′′ + 𝜏̅𝑦′ + 𝜆𝑦 = 0.       (4.11) 

                           
Condition (4.10) gives a quadratic equation for the 

definition of a polynomial  𝜋(𝜉)  and a constant  𝜆: 
 

𝜋2 − (𝜎′ − �̃�)𝜋 − 𝜇𝜎 + �̃� = 0, 

𝜇 = 𝜆 − 𝜋′.                 (4.12) 

From here, we find 

𝜋 =
𝜎′−�̃�

2
+ 𝑒√(

𝜎′−�̃�

2
)

2
+ 𝜇𝜎 − �̃�  ,   𝑒 = ±1.                           

(4.13) 
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In our case  𝜎′ − �̃� = 0  and we have  𝜋 =  𝑒√𝜇𝜎 − �̃�  

or 𝜋 =  𝑒√𝜇 − 𝑐0 + (𝜇 + 𝑐2)𝜉2.   Since  𝜋(𝜉) is a 

polynomial, the discriminant of a polynomial of the 

second degree standing under the root (4.13) D must be 

equal to zero. The equation D = 0 allows us to find a 

constant μ. After determination μ, we find  𝜋(𝜉) by 

equation (4.12), then  𝜑(𝜉),  𝜏̅(𝜉)  and  𝜆  with the help 

of (4.8), (4.9) and (4.12). In our case there are two 

possibility:  

 

1)    𝜇 = 𝑐0 , 𝜋 = 𝑒 𝑞1𝜉,  𝑞1 = √(𝑐0 + 𝑐2),  

2)      𝜇 = −𝑐2,  𝜋 = 𝑒𝑞2 ,  𝑞2 = √−(𝑐0 + 𝑐2) ,    

(4.14)  

 

Where        𝑐0 + 𝑐2 =
𝑎4𝑚0

2𝜔2

ћ2
−

𝑄

𝑁
, 

  𝑄 = 𝐵 + 𝐴2 = 2 ∑ (𝛼𝑖 + 𝛾𝑖 − 𝛼𝑖𝛾𝑖)𝑁
𝑖=1 . We 

will restrict ourselves to the case when 𝑐0 + 𝑐2 > 0. In 

this case, the physical meaning has the first expression 

for the polynomial 𝜋(𝜉). Moreover, for 𝜑(𝜉) we obtain 

the following expression: 𝜑(𝜉) = (1 + 𝜉2)
𝑒𝑞1

2 . From 

the requirement of finiteness 𝜑(𝜉) at points  𝜉 = ±∞,  

i.e. from the condition  lim
𝜉→±∞

𝜑(𝜉) = 0  (square 

integrability condition), we get  𝑒𝑞1 < 0. This means 

that 𝑒 = −1 and, 𝜋 = −𝑞1𝜉. Thus, we get: 
 

               𝜑(𝜉) = (1 + 𝜉2)−
𝑞1
2 ,   

 𝑞1 = √
𝑎4𝑚0

2𝜔2

ћ2
−

𝑎

𝑁
= √𝜆0

4𝑎4 −
𝑎

𝑁
.       (4.15)    

                              
Now, taking into account that  𝜏̅ = 2(1 − 𝑞1)𝜉  and  

𝜆 = 𝜇 + 𝜋′ = 𝑐0 − 𝑞1 , one can rewrite the equation 

(4.11) in the form 

 

 (1 + 𝜉2)𝑦′′ + 2(1 − 𝑞1)𝜉𝑦′ + (𝑐0 − 𝑞1)𝑦 = 0.                              
(4.16)  

             

Comparison (4.16) with the second order differential 

equation for the pseudo Jacobi polynomials �̅� ≡
𝑃𝑛(𝜉;  𝜈, �̅�): 

      
(1 + 𝜉2)�̅�´´ + 2(𝜈 − 𝑁𝜉)�̅�´ + 𝑛(2𝑁 − 𝑛 + 1)�̅� = 0, 𝑛 = 0,1,2,3 … , 𝑁         (4.17) 

gives us the relations                                                       

                                                          𝜈 = 0,  𝑞1 = 𝑁 + 1,  
 

                    𝑐0 − 𝑞1 = 𝑛(2𝑁 + 1 − 𝑛), 𝑁 = 0,1,2,3, …                          (4.18) 

 

These relations lead to quantization of arbitrary parameter  𝑎 being of position dimensions and introduced in the 

framework of definition of the position-dependent mass  𝑀(𝑥)  (4.1): 

 

                              𝑎 ≡ 𝑎𝑁 = [(𝑁 + 1)2 +
𝑄

𝑁
]

1/4
.                                                (4.19) 

 

Therefore, position-dependent effective mass M (x) is quantized as follows:    
                                            

                                   𝑀(𝑥) ≡ 𝑀𝑁(𝑥) =
√(�̅�+1)2+

𝑄

𝑁

√(�̅�+1)2+
𝑄

𝑁
+𝜆0

2𝑥2
𝑚0.                                   (4.20)  

                                                  

Taking this hidden feature of position-dependent effective mass M (x), one obtains the following exact expressions 

for the energy spectrum    

            

                                𝐸 ≡ 𝐸𝑛 =
ћ2

2𝑚0𝑎2
[𝑛(2𝑁 + 1 − 𝑛) + 𝑁 + 1 + 𝑄/𝑁],                             (4.21a)                                  

or 

                      𝐸𝑛 =
1

2
ћ𝜔

𝑛(2�̅�+1−𝑛)+�̅�+1+𝑄/𝑁

√(�̅�+1)2+𝑄/𝑁
 ,    𝑛 = 0,1,2,3 … , 𝑁.                           (4.21b) 

 

Thus, exact polynomial of equation (4.16 ) are expressed by the pseudo Jacobi  polynomials, i. e.  

                               

                                  𝑦(𝜉) ≡ 𝑦𝑛(𝜉) ≡ 𝑃𝑛 (𝜉; 𝜈, 𝑁).                                           (4.22) 

 

Now, taking into account (4.8 ), (4.15) and (4.22) one obtains the following expression for the wave functions of 

our model 

𝜓(𝜉) ≡ 𝜓𝑁𝑛(𝜉) = 𝐶𝑁𝑛(1 + 𝜉2)−
𝑞1
2 𝑃𝑛(𝜉; 0, 𝑁).                       (4.23) 

 
Let's express them through the variable 𝑥: 
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𝜓𝑁𝑛(𝑥) = 𝐶𝑁𝑛 (1 +
𝜆0

2𝑥2

√(�̅�+1)2+𝑄
𝑁⁄

)

−
�̅�+1

2

𝑃𝑛 (
𝜆0𝑥

√(�̅�+1)2+𝑄
𝑁⁄

4
; 0, 𝑁)                  (4.24) 

 
Normalizing constants (𝑛 = 0,1,2,3 … , 𝑁) 

 

   𝐶𝑁𝑛 = 2�̅�−𝑛√
𝜆0

𝜋𝑛!
[(𝑁 + 1)2 +

𝑄
𝑁⁄ ]

−
1

8 Γ(�̅�+1−𝑛)

Γ(2�̅�+1−2𝑛)
√

Γ(2�̅�+2−𝑛)

2�̅�+1−2𝑛
                    (4.25) 

 

we find from the condition that the wave functions (4.24) are orthonormal  

 

∫ 𝜓𝑁𝑛
∗ (𝑥)𝜓𝑁𝑚(𝑥)𝑑𝑥 = 𝛿𝑛𝑚.

∞

−∞
                                           (4.26) 

 
 

In calculating the integral in (4.26), we used the orthogonality condition for the pseudo Jacobi polynomials [31] 

 
 

∫ (1 + 𝑥)−𝑁−1𝑒2𝜈arctg𝑥𝑃𝑛(𝑥; 𝜈, 𝑁)𝑃𝑚(𝑥; 𝜈, 𝑁)𝑑𝑥 = 𝑑𝑛
2𝛿𝑛𝑚,

∞

−∞
              (4.27) 

 

where 𝑑𝑛
2- is the square of the norm of the pseudo Jacobi polynomials and is equal to 

 

 

𝑑𝑛
2 = 𝜋𝑛! 22𝑛−2𝑁 Γ(2𝑁+1−2𝑛)Γ(2𝑁+2−2𝑛)

Γ(2𝑁+2−𝑛)|Γ(𝑁+1−𝑛+𝑖𝑣)|2
 .                                  (4.28) 

 

In conclusion of this section, we also present the form of the wave functions, explicitly indicating the dependences 

on the parameter 𝑎 (4.19) of the model 

 

            𝜓𝑁𝑛(𝑥) = 𝐶𝑁𝑛 (1 +
𝑥2

𝑎2
)

−
1

2
√𝜆0

4𝑎4−𝑄
𝑁⁄

𝑃𝑛 (
𝑥

𝑎
; 0, √𝜆0

4𝑎4 −
𝑄

𝑁⁄ − 1).                  (4.29) 

 

5. CONCLUSION 

 
      In this paper, we have constructed an exactly 

solvable linear harmonic oscillator model with the 

position-dependent mass. The main point of this article 

is the proposal of a new and the most general 

Hamiltonian for the quantum dynamical systems with 

the position-dependent mass. This Hamiltonian 

contains, in the form of special cases, the Hamiltonians 
used in the literature. One feature of the psevdo Jacobi 

oscillator is that the number of its energy levels is finite. 

This is due to the fact that the depth of the pseudo-

parabolic oscillatory well 𝑉0 > 0 is finite. This depth is  

 

  lim
𝑥→±∞

𝑉(𝑥) = lim
𝑥→±∞

𝑀(𝑥)𝜔2𝑥2

2
=

1

2
ћ𝜔√(𝑁 + 1)2 + 𝑄/𝑁 ≡ 𝑉0.                 (5.1) 

 

The second feature is related to the fact that the energy levels are not equidistant. The minimum and maximum 

energy values are respectively 

 

               𝐸𝑁0 =
ћ𝜔

2

(�̅�+1)2+𝑄/𝑁

√(�̅�+1)2+𝑄/𝑁
  and  𝐸𝑁�̅� =

ћ𝜔

2

�̅�(�̅�+2)+1+𝑄/𝑁

√(�̅�+1)2+𝑄/𝑁
.                            (5.2)  

  
The wave functions of the constructed model of the 
oscillator are expressed in terms of pseudo Jacobi 

polynomials. In the limit 𝑎 → ∞, all quantities 

(equation of motion, wave functions, energy spectrum) 

of this model transform into the corresponding 

quantities of an ordinary linear harmonic oscillator with 

constant mass. For example, for energy levels (4.21) 

and wave functions (4.24) we have the following limit 

expressions 

                                         

 lim
𝑎→∞

𝐸𝑛 = ћ𝜔(𝑛 + 1/2),            (5.3)                           

                                                     

lim
𝑎→∞

𝜓𝑁𝑛(𝑥) = √
𝜆0

2𝑛𝑛!√𝜋
𝐻𝑛(𝜆0𝑥)𝑒−

1

2
𝜆0

2𝑥2

. (5.4) 

                                
It is clear from formula (5.4) that there is a limit relation 

between the pseudo Jacobi and Hermite polynomials 

with a shifted argument. We will prove in the next 

paper that it has the form 

lim
𝑁→∞

𝑁
𝑛
2𝑃𝑛 (

𝑥

√𝑁
;  𝜈√𝑁, 𝑁) =

1

2𝑛
𝐻𝑛(𝑥 − 𝜈). 
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(5.5)  
                               

Let us make one more remark about the properties of 

the pseudo Jacobi oscillator, connected with the form 

of the generalized free Hamiltonian (3.6) (or (3.9)). In 

obtaining solutions (4.21) and (4.24), we assumed that 
the following inequality holds: 

                  
𝑎4𝑚0

2𝜔2

ћ2
−

𝑄

𝑁
> 0,                  (5.6)   

                                        

where  𝑄 = 2 ∑ (𝛼𝑖 +  𝛾𝑖 − 𝛼𝑖𝛾𝑖)𝑁
𝑖=1 . However, for 

certain values of the parameters 𝛼𝑖 , 𝛾𝑖  (𝑖 =
0,1,2,3 … , 𝑁  this inequality may not hold, i.e., the 

pseudo Jacobi oscillator for certain energy values may 

not have a discrete spectrum ... 

                                                         __________________________ 
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