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The energy spectrum and heat capacity of Kane electrons on the surface of a nanotube are investigated. It is shown that 

for high temperatures the specific heat of Kane electrons on the surface of a nanotube is 4 times greater than the specific heat 
of the semiconductor nanotube with parabolic dispersion laws and for low temperatures the specific capacity is equal to 2𝑘𝐵. 
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Recently, low-dimensional semiconductor 

systems have become the object of great interest due 

to their wide application in technology. Scientists are 

increasingly interested in semiconductor 

heterostructures with curved surfaces, quantum dots, 

and nanotubes. 

The extraordinary electrical properties of 

nanotubes make them one of the main materials of 
nanoelectronics [1,2]. Nanometer-sized electronic 

devices are created based on nanotubes. 

Thermodynamic properties of the electron gas on the 

surface of a nanotube have been studied in Ref. [3]. 

An analytical expression for the energy of a 

relativistic electron on a nanotube in an external 

magnetic field was obtained using the Dirac equation 

in [4]. 

In the work [4], authors utilized the Dirac 

equation to find the energy of electrons on the 

nanotube surface in the presence of a magnetic field. 

Using this energy spectrum, the thermodynamic 
functions of the nanotube at low and high 

temperatures were calculated. Rubens R.S. et al [5] 

calculated the thermodynamic properties of the 

quantum ring according to the solutions of both Dirac 

and Schrödinger equations. Ref. [6] Ermolaev studied 

the thermodynamic properties of degenerate and non-

degenerate electron gas on the semiconductor 

nanotube surface in a magnetic field. 

The heat capacity and magnetic properties of 

electrons in superlattices on the surface of the 

nanotube in a magnetic field orientated along the axis 

of the nanotube were studied in [7]. In paper [8], the 

energy spectrum of the one-dimensional Kane 

oscillator was found, and it was found that the heat 

capacity is four times larger than the heat capacity of 

the one-dimensional harmonic oscillator at high 

temperatures. 

Ref. [9] studied the heat capacity and magnetic 
moment of a lattice of non-interacting nanotubes in a 

magnetic field. 

In this paper, the standard tube model is used: a 

sheet of non-interacting 2D electron gas is twisted into 

a tube shape. This model allows us to obtain the 

energy spectrum of electrons on the nanotube surface. 

In this study, we used the Kane model, which takes 

into account the interaction of the conduction and the 

valence bands. Kane's model allows us to express the 

energy spectra of electrons, light holes, and spin-

orbital splitting holes on the surface of the nanotube. 

Using the energy spectrum of carriers on the surface 
of a tube calculated the heat capacity of non-

degenerate electrons in a Kane-type semiconductor 

tube. The study of the heat capacity of objects is very 

important in physics since the specific heat depends 

on the internal state of the substance and the 

movement of its constituent particles. 

We consider a non-interacting two-dimensional 

electron gas on the nanotube surface out of Kane type 

semiconductor. The Kane equations has the form [10]: 
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The parameter P characterizes the interaction between the conduction and valence bands. Eg the band gap 

energy, Δ the value of spin–orbital splitting, and
x yk k ik   k i  , Ci are envelope functions. Substituting 

expressions (3)–(8) into formulas (1) and (2) we obtain 
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where Δ3 is the three-dimensional Laplacian. In cylindrical coordinates the eigenfunctions  
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where A is a normalization factor and the energy spectrum of carriers in a Kane-type semiconductor tube is 

satisfies  
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As can be seen from the formula (11), the energy spectra of charge carriers are doubly degenerate.        

For the strong spin-orbit approximation  Eq. (11) transforms as 
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The matrix element 
2P  is expressed in terms of the effective mass of electrons 

nm as 
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If we choose zero of energy in the middle of the energy gap 
2

gE
E E  we find 

the energy levels of electrons (sign + ) and light holes                         

 

             

2 2 2
2

24 2

g g

z

n

E E m
E k

m 

 
    

 
                                                     (14) 

 

The expression inside the square root is the sum of the square of the energy of the motion of the electron along 

the axis of the tube and the square of the energy of the charged rotator in the magnetic field. The canonical 

partition function is defined as 
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𝛽 = (𝑘𝐵𝑇)−1, 𝑘𝐵 −is the Boltzmann constant. The summation over kz can be transformed into integral as:  
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The integral over 
zk can be calculated by substituting  
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By using the following formula [11] 
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we find the partition function as 
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If we ignore the quantization of the circular motion and go from summation to integration for the quantum 

number m, we get  
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We use the following formula [12] 
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We have the partition function as 
1

1
1 12 2
2 2

32
2

1
2

2 2 2 2

g g

n

E EL
z K

m
 

 


       

       
     

                               (24) 

The heat capacity is defined as 
2
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If 
2

gE
 <<1, we should use [11] 
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From (25) we find 2 BC k atT  . Since the 

energy spectrum of the Kane electrons is 2-fold 

degenerate, the specific heat of Kane electrons is 4 

times greater than the specific heat of the 

semiconductor nanotube with parabolic dispersion 
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laws [9]. If 
2

gE
 >>1 we can use the asymptotic 

formula 
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The heat capacity is now reduced
BC k . Unlike 

tubes with a parabolic dispersion law, the specific heat 

of electrons in Kane tubes is 2 
Bk  at low 

temperatures. 

CONCLUSIONS 

In this work, the energy spectrum and heat 

capacities of electrons on the surface of Kane-type 

semiconductor tubes are calculated, taking into 

account the nonparabolicity energy spectrum of 

electrons. it is shown that the heat capacity is equal to 

4 kB at high temperatures and 2 kB at low 
temperatures. 
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