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The energy spectrum and heat capacity of Kane electrons on the surface of a nanotube in a longitudinal magnetic field 
are investigated for degenerate electron gas. It was shown, that at low temperatures, the specific heat of electrons on the 
surface of the tube varies linearly with temperature. 
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Low-dimensional systems based on 
semiconductors have been the object of great interest 
for many years since there are numerous applications 
in technology based on these systems. The interest of 
scientists in semiconducting heterostructures, quantum 
dots [1,2], and nanosystems on curved surfaces 
increases.  

In the paper, Ermolaev [3] thermodynamic 
functions have been calculated in the effective mass 
approximation for degenerate and nondegenerate 
electron gases on the semiconductor cylindrical 
nanotube surface in a longitudinal magnetic field.  

An analytical expression for the energy of a 
relativistic electron on a nanotube in an external 
magnetic field was obtained using the Dirac equation 
in [4]. Using this energy spectrum, the thermodynamic 
functions of the nanotube at low and high 
temperatures were calculated. The thermodynamic and 
magnetic properties of electrons in superlattices on the 

surface of a nanotube in a longitudinal magnetic field 
are investigated in Ref. [5]. 

A standard nanotube model is used: a sheet of 
2D electron gas rolled into a cylinder with metallic 
conductivity. The peculiarity of this model system is 
that it allows us to obtain an exact solution to the 
problem of the electron energy spectrum.  

In this work, using a three-band Kane's model 
including the conduction band, light, and spin–orbital 
hole bands, the energy spectrum of carriers on the 
surface of a tube in a vertical magnetic field is 
derived.  

In the three-band Kane's Hamiltonian, the 
valence and conduction bands interaction is taken into 
account via the only matrix element P (the so-called 
Kane's parameter). The system of Kane equations 
including the nondispersional heavy hole bands has 
the form [6]: 
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Here P is the Kane parameter, Eg the band gap energy, Δ the value of spin–orbital splitting, and

x yk k ik± = ± , Ci are envelope functions. The zero of energy is chosen at the bottom of the conduction band. 
For a uniform magnetic field H directed along the z-axis, the vector potential may be chosen in the form 
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Substituting expressions (3)–(8) into formulas (1) and (2), and using relations (9), (10) we obtain two coupled 
equations for the spin-up and the spin-down conduction band: 
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where Lz z component of angular momentum operator  and ρ2=x2+y2, 2∇ is the three-dimensional Laplacian. In
cylindrical coordinates the eigenfunctions   

1,2 1,2exp ( )zC A im ik z Qϕ= +                                                 (13) 

where A is a normalization factor and the energy spectrum of carriers in a Kane-type semiconductor tube is 
satisfies  
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Here the magnetic quantum number m has the values 0, 1, 2,...m = ± ± .For the strong spin-orbit 
approximation, ∆→∞ Eq. (14) transforms as 
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The matrix element 2P  is expressed in terms of the effective mass of electrons nm as 
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If we choose zero of energy in the middle of the energy gap 
2

gE
E E→ − we find the energy levels of 

electrons (sign + ) and light holes   
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The energy spectrum is a sequence of one-dimensional subbands with the number m. 
where  
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is the flux quantum. As seen from Eq. (17) the energy 

spectrum of electrons in the surface tube is not additive. Under the radical is the square of the energy of the 
longitudinal motion of the Kane electron in the tube and the square of the energy of a charged rotator in a 
magnetic field.   

For the energy spectrum (17) the density of states of a Kane-type nanotube can be written as 
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where Θ(𝑥𝑥) is the Heaviside function and 
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As seen from Eq.(19) the density of states has a singularity, when energy coincides with umσ it is convergent to 
infinity. Using the density of states (19) we can calculate the number of electrons N, their energy E, chemical 
potential, and heat capacity C. We consider degenerate electron gas at the surface in Kane type of semiconductor 
nanotube. The total number of electrons can be found as follows. 
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where f(E) Fermi-Dirac distribution functions. The total energy of electrons 
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At zero temperature the number of electrons 
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After integration we get 
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the energy of electrons in Kane type nanotube according to (22) 
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By using the Sommerfeld method [7] we find temperature correction of the energy of electrons in nanotube 
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Expressing µ in (26) using the zero-order 

approximation 0µ µ= . İf μ lies far from the borders 

of the subzones the specific heat of electrons at the 
surface nanotube is 
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From these formulas, it is seen that with the change in 
the magnetic field, every time the um coincides with 
the Fermi boundary the heat capacity experiences a 
sharp jump, i.e. has a peculiarity. 

CONCLUSIONS 

The thermodynamic functions of degenerate 
electrons on the surface of Kane-type semiconductor 
nanotubes in a longitudinal quantizing magnetic field 
are calculated. It has been observed that the specific 
heat and density of states oscillates as the magnetic 
field varies. 
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