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We propose a new exactly solvable potential which consists of the modified Kratzer potential plus a new ring-shaped 

potential (𝛽𝛽 + 𝛾𝛾cos𝜃𝜃 + νcos2𝜃𝜃) 𝑟𝑟2sin2𝜃𝜃⁄ . The exact solutions of the bound states of the Schrödinger equation for this potential 
are presented analytically by using the functional method. The wavefunctions of the radial and angular parts are taken on the 
form of the Laguerre polynomials and the Jacobi polynomials, respectivly. Total energy of the system is different from the 
modified Kratzer potential because of the contribution of the angular part. We also build a dynamical symmetry group for the 
radial part of the equation of motion, which allows us to find the energy spectrum purely algebraically.  
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1. Introduction 

 
         When describing the physical properties of 
quantum dynamical systems, such as molecules and 
atoms, atomic nuclei and hadrons, relativistic or non-
relativistic potential models play an important role [1-
5]. Due to the fact that almost all interactions occurring 
in nature do not have an obvious type of potential, a 
model or phenomenological potential is proposed for 
the study of a quantum system, in which its most 
essential properties are highlighted and non-existent 
ones are discarded. Potential models are widely used to 
study the laws of motion of quantum microparticles in 
external potential fields (see, for example, [5, 6] and 
references there)). 
     The state of a system in quantum mechanics is 
completely described by the wave function. These 
states can generally be either bound or scattered states. 
By solving the corresponding equations of motion (the 
Schrödinger equation, the Klein-Gordon equation, the 
Dirac equation or the equation of finite-difference 
quantum mechanics (see [7] and references there)) 
within the framework of the potential model, we find 
an explicit form of the wave function and energy 
spectrum for these states. 
     Among quantum mechanical problems, exactly 
solvable problems occupy a special place. It is well 
known that the number of potentials allowing an exact 
solution of relativistic and non-relativistic wave 
equations is small. These include, for example, 
Coulomb, harmonic oscillator, Kratzer [4, 8], 
Hartmann [9], Quesne [10] and Hautot [6] potentials. 
Some classes of exactly-solvable Klein–Gordon 
equations are considered in [11]. 
     Note that Hartmann, Quesne and Hautot [6] 
potentials are non-central potentials. The class of 
noncentral potentials [6, 7, 9, 10, 12–19] plays a 
particularly important role in quantum mechanics, 

nuclear physics, and theoretical chemistry. Non-central 
or ring-shaped potentials usually consist of two terms  
        

   𝑉𝑉(𝑟𝑟, θ) = 𝑉𝑉(𝑟𝑟) + 𝑓𝑓(θ)
𝑟𝑟2

,              (1) 

 
where is the first term 𝑉𝑉(𝑟𝑟) describes the central field, 
and the second term 𝑓𝑓(θ)

𝑟𝑟2
 characterizes the ring-shaped 

potential. 
     The purpose of this work is to find exact solutions 
of the Schrödinger equation using functional methods 
and to construct a dynamic symmetry group for the new 
ring-shaped modified Kratzer potential of the form        
 

 𝑉𝑉(𝑟𝑟, θ) = 𝐷𝐷 �1 − 𝑎𝑎
𝑟𝑟
�
2

+ 𝛽𝛽+𝛾𝛾cos𝜃𝜃+νcos2𝜃𝜃
𝑟𝑟2sin2𝜃𝜃

.   (2) 
 

Here 𝐷𝐷 is the dissociation energy, 𝑎𝑎 is the equilibrium 
internuclear separation, and 𝛽𝛽, 𝛾𝛾, ν  are the 
parameters. The first term in (2) involves an attractive 
Coulomb potential and a repulsive inverse square 
potential. The second term of (2) describes the 
annularity of the interaction between the atoms. When 
𝛽𝛽 = 𝛾𝛾 = 𝜈𝜈 = 0, the ring-shaped Kratzer potential 
reduces to a Kratzer potential for which the analytical 
solutions of the Schrödinger equation are known [4, 
12]. The Kratzer potential [4, 12] is widely used in 
atomic and molecular physics and quantum chemistry. 
Other varieties of the ring-shaped Kratzer potential 
were studied in [13, 17]. 
 
2. Exact solution of the Schrödinger equation with 
the ring-shaped modified Kratzer potential 
 
2.1. Separation of variables.  
Let us write the Schrödinger equation with potential 
(2) in a spherical coordinate system 
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� 1
𝑟𝑟2
𝜕𝜕𝑟𝑟(𝑟𝑟2𝜕𝜕𝑟𝑟) + ∆𝜃𝜃,𝜑𝜑

𝑟𝑟2
+ 2𝑚𝑚0

ℏ2
�𝐸𝐸 − 𝐷𝐷 �1 − 𝑎𝑎

𝑟𝑟
�
2
− 𝑓𝑓(𝜃𝜃)

𝑟𝑟2
�� 𝜓𝜓(𝐫𝐫) = 0,              (3) 

where  
∆𝜃𝜃,𝜑𝜑= 1

sin𝜃𝜃
𝜕𝜕𝜃𝜃(sin𝜃𝜃 𝜕𝜕𝜃𝜃) + 1

sin2 𝜃𝜃
𝜕𝜕𝜑𝜑2 .                                      (4) 

 
equation (3) allows separation of variables. To do this, let's put 
 

𝜓𝜓(𝐫𝐫) = 𝑅𝑅(𝑟𝑟)𝐹𝐹(θ,𝜑𝜑).                                                   (5) 
 
After substituting (5) into (3) we obtain two equations: 
 

a) radial Schrödinger equation 
 

𝑑𝑑2𝑅𝑅
𝑑𝑑𝑟𝑟2

+ 2
𝑟𝑟
𝑑𝑑𝑅𝑅
𝑑𝑑𝑟𝑟

+ �2𝑚𝑚0
ℏ2

�𝐸𝐸 − 𝐷𝐷 �1 − 𝑎𝑎
𝑟𝑟
�
2
� − Λ

𝑟𝑟2
�𝑅𝑅 = 0,                   (6) 

 
b) the angular part of the Schrödinger equation 

 
�∆𝜃𝜃,𝜑𝜑 −

2𝑚𝑚0
ℏ2

𝑓𝑓(θ) + Λ� 𝐹𝐹(θ,𝜑𝜑) = 0,                                  (7) 
 

Here Λ there is a splitting parameter. 
 
2.2. Exact solution of the radial equation.  
 
In equation (6) we move on to the dimensionless variable 𝜌𝜌 = 𝑟𝑟

𝑎𝑎
. In terms 𝜌𝜌 equation (6) will take the form 

 

𝑅𝑅′′ + 2
𝜌𝜌
𝑅𝑅′ + �2𝑚𝑚0𝑎𝑎2

ℏ2
�𝐸𝐸 − 𝐷𝐷 �1 − 1

𝜌𝜌
�
2
� − Λ

𝜌𝜌2
� 𝑅𝑅 = 0.                                  (8) 

 
Here the primes mean differentiation by 𝜌𝜌. 

Let us now note that since the limits of potential (2) at 𝑟𝑟 → ∞ and at  𝑟𝑟 → 0 equal  
 

lim
𝑟𝑟→∞ 

𝑉𝑉(𝑟𝑟, θ) = 𝑉𝑉∞ = 𝐷𝐷,      lim
𝑟𝑟→0 

𝑉𝑉(𝑟𝑟, θ) = ∞,                        (9) 
 

then we can say that the energy spectrum at 𝐸𝐸 < 𝐷𝐷 will be discrete, and when 𝐸𝐸 > 𝐷𝐷 will be continuous. 
Introducing dimensionless quantities 

 
𝜀𝜀 = 2𝑚𝑚0𝑎𝑎2

ℏ2
(𝐷𝐷 − 𝐸𝐸), 𝛼𝛼 = 2𝑚𝑚0𝑎𝑎2𝐷𝐷

ℏ2
,                                            (10) 

 
we rewrite equation (8) in the form 

 
𝑅𝑅′′ + 2

𝜌𝜌
𝑅𝑅′ + �2𝛼𝛼

𝜌𝜌
− Λ1

𝜌𝜌2
− 𝜀𝜀�𝑅𝑅 = 0.                                          (11) 

where Λ1 = Λ + α. 
To study equation (11), as usual, we put 

 
𝑅𝑅(𝜌𝜌) = 𝜒𝜒(𝜌𝜌)

𝜌𝜌
.                                                         (12) 

 
In this case, equation (11) is reduced to the form 
 

𝜒𝜒′′ + �2𝛼𝛼
𝜌𝜌
− Λ1

𝜌𝜌2
− 𝜀𝜀� 𝜒𝜒 = 0.                                                     (13) 

 
Let us consider separately the cases 𝜀𝜀 > 0 and 𝜀𝜀 < 0. 
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1) 𝜀𝜀 > 0 case. Wherein the radial wave function satisfies the boundary conditions 
 

𝜒𝜒(0) = 𝜒𝜒(∞) = 0.                                                (14) 
 
Therefore, at small 𝜌𝜌 the solution is proportional 𝜌𝜌𝑠𝑠. At large 𝜌𝜌 we get the equation  
 

𝜒𝜒′′ − 𝜀𝜀𝜒𝜒 = 0,                                                             (15) 
   

whence, taking into account (14), we have 𝜒𝜒 = 𝑒𝑒−√𝜀𝜀𝜌𝜌. 
     Therefore, in (13) it is natural to make the substitution  

  
𝜒𝜒 = 𝜌𝜌𝑠𝑠𝑒𝑒−√𝜀𝜀𝜌𝜌Ω(𝜌𝜌) ≡ 𝑔𝑔(𝜌𝜌)Ω(𝜌𝜌),                                (16) 

 
where 𝑠𝑠 = 1

2
+ �1

4
+ Λ1.   If the coefficients of equation (13) are denoted by 𝑎𝑎2 = 1,  𝑎𝑎1 = 0,  𝑎𝑎0 = 2𝛼𝛼

𝜌𝜌
− Λ1

𝜌𝜌2
− 𝜀𝜀, 

then the function Ω will satisfy the equation 
𝑏𝑏2Ω′′ + 𝑏𝑏1Ω′ + 𝑏𝑏0Ω = 0,                                       (17) 

where 
 𝑏𝑏2 = 𝑎𝑎2, 𝑏𝑏1 = 𝑎𝑎1 + 2𝑎𝑎2

𝑔𝑔′
𝑔𝑔

, 𝑏𝑏0 = 𝑎𝑎0 + 𝑎𝑎1
𝑔𝑔′
𝑔𝑔

+ 𝑎𝑎2
𝑔𝑔′′
𝑔𝑔

.                (18) 
 
Now equation (17) takes the form 

𝜌𝜌Ω′′ + �2s − 2√𝜀𝜀𝜌𝜌�Ω′ + �2α − 2s√𝜀𝜀�Ω = 0                         (19) 
 
After changing the variable 𝜌𝜌 = 𝑡𝑡 2√𝜀𝜀⁄  we get 
 

𝑡𝑡Ω′′(t) + (2s − t)Ω′(t) + � α
√𝜀𝜀
− s�Ω(t) = 0                           (20) 

 
Comparing this equation with the equation for Laguerre polynomials [20] 𝑦𝑦 = 𝐿𝐿𝑛𝑛λ (𝑥𝑥): 
 

𝑥𝑥𝑦𝑦′′ + (𝜆𝜆 + 1 − 𝑥𝑥)𝑦𝑦′ + 𝑛𝑛𝑦𝑦 = 0,                                               (21) 
we find that 

𝜆𝜆 = 2𝑠𝑠 − 1, 𝑛𝑛 = 𝛼𝛼
√𝜀𝜀
− 𝑠𝑠,  𝑛𝑛 = 0,1,2, … 

 
The last condition leads to energy quantization equation 
 

𝐸𝐸𝑛𝑛 = 𝐷𝐷 − 2𝑚𝑚0𝑎𝑎2𝐷𝐷2

ℏ2
�𝑛𝑛 + 1

2
+ �1

4
+ 2𝑚𝑚0𝑎𝑎2𝐷𝐷

ℏ2
+ Λ�

−2

,                 (22) 

 
and the function Ω(t) coincides with the Laguerre polynomial 
 

Ω(t) = 𝐿𝐿𝑛𝑛2s−1(𝑡𝑡) = 𝐿𝐿𝑛𝑛2s−1 �
2𝛼𝛼𝜌𝜌
𝑛𝑛+𝑠𝑠

�.                                      (23) 
Therefore the radial wave function 

𝑅𝑅𝑛𝑛Λ(𝑟𝑟) = 𝐶𝐶𝑛𝑛Λ𝜌𝜌𝑠𝑠−1𝑒𝑒−�𝜀𝜀𝑛𝑛𝜌𝜌𝐿𝐿𝑛𝑛2s−1 �
2𝛼𝛼𝜌𝜌
𝑛𝑛+𝑠𝑠

�.                            (24) 

 
Note that the parameter Λ we find from the solution of the angular part of the Schrödinger equation (7). 
 
2.3. Dynamical symmetry group 𝐒𝐒𝐒𝐒(𝟏𝟏,𝟏𝟏) 
 
Let us now consider the radial equation (11) by the help of SU(1,1) Lie algebra. The generators of 
SU(1,1) algebra may be realized as [21] 
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𝐾𝐾0 ≡ Γ0 =
1
2 �
−𝜌𝜌𝜕𝜕𝜌𝜌2 − 2𝜕𝜕𝜌𝜌 +

Λ1
𝜌𝜌

+ 𝜌𝜌�, 

𝐾𝐾1 ≡ Γ4 = 1
2
�−𝜌𝜌𝜕𝜕𝜌𝜌2 − 2𝜕𝜕𝜌𝜌 + Λ1

𝜌𝜌
− 𝜌𝜌�,                                        (25) 

𝐾𝐾2 ≡ 𝑇𝑇 = −𝑖𝑖�𝜌𝜌𝜕𝜕𝜌𝜌 + 1�, 
 

By a direct check, one can verify that these operators satisfy the commutation relations 
 

[Γ0, Γ4] = 𝑖𝑖𝑇𝑇, [𝑇𝑇, Γ0, ] = 𝑖𝑖Γ4, [Γ4,𝑇𝑇] = −𝑖𝑖Γ0.                             (26) 
 

The casimir operator is 𝐶𝐶2 = Γ02 − Γ42 − 𝑇𝑇2 = 𝜇𝜇(𝜇𝜇 − 1), where 𝜇𝜇 > 0 is an eigenvalue of the operator 𝐶𝐶2. 
We denote that states of a positive discrete series as |𝑛𝑛,𝜇𝜇 >, 𝑛𝑛 = 0,1,2, … , such that 

 
Γ0|𝑛𝑛,𝜇𝜇 > = (𝑛𝑛 + 𝜇𝜇)|𝑛𝑛,𝜇𝜇 >, 
𝐶𝐶2|𝑛𝑛,𝜇𝜇 > = 𝜇𝜇(𝜇𝜇 − 1)|𝑛𝑛,𝜇𝜇 >.                                            (27) 

 
It should be noted that in our case from equation (25), we obtain 𝐶𝐶2 = Λ1 = s(s − 1), so 𝜇𝜇 = 𝑠𝑠. Equation (11) can 
be written with the help of generators (25) as  
 

[(1 + 𝜀𝜀)Γ0 + (1 − 𝜀𝜀)Γ4 − 2𝛼𝛼]𝑅𝑅 = 0.                                       (28) 
 

Let us introduce a new parameter 𝜆𝜆 and perform a tilting transformation  
 

𝑅𝑅� = 𝑒𝑒−𝑖𝑖𝜆𝜆𝜆𝜆𝑅𝑅.                                                               (29) 
 

To solve this equation algebraically, we use the formulas 
 

𝑒𝑒−𝑖𝑖𝜆𝜆𝜆𝜆Γ0𝑒𝑒𝑖𝑖𝜆𝜆𝜆𝜆 = Γ0ch𝜆𝜆 + Γ4sh𝜆𝜆, 
𝑒𝑒−𝑖𝑖𝜆𝜆𝜆𝜆Γ4𝑒𝑒𝑖𝑖𝜆𝜆𝜆𝜆 = Γ4ch𝜆𝜆 + Γ0sh𝜆𝜆.                                            (30) 

 
As a result, for the function 𝑅𝑅� (29) we get the equation  
 

(𝑏𝑏Γ0 + 𝑐𝑐Γ4 − 2𝛼𝛼)𝑅𝑅� = 0,                                                (31) 
where 

𝑏𝑏 = (1 + 𝜀𝜀)ch𝜆𝜆 + (1 − 𝜀𝜀)sh𝜆𝜆, 
𝑐𝑐 = (1 + 𝜀𝜀)sh𝜆𝜆 + (1 − 𝜀𝜀)ch𝜆𝜆. 

 
We consider separately the cases when 𝐸𝐸 < 𝐷𝐷 and 𝐸𝐸 > 𝐷𝐷. 
1) When 𝐸𝐸 < 𝐷𝐷(discrete spectrum) in (31), a compact generator Γ0 can be diagonalized [20]. Setting 𝑐𝑐 = 0, 

we obtain th𝜆𝜆 = (1 + 𝜀𝜀)(1 − 𝜀𝜀). As a result, we have 𝑏𝑏 = 2√𝜀𝜀 and 
 

�2√𝜀𝜀Γ0 − 2𝛼𝛼�𝑅𝑅� = 0.                                                              (32) 
 

It follows from (32) the energy equation (22). 
2) When 𝐸𝐸 > 𝐷𝐷, noncompact generator Γ4 is diagonalized, having a continuous real spectrum 𝛿𝛿 ∈ 𝑅𝑅. In this 

case 𝑏𝑏 = 0 and we have th𝜆𝜆 = −(1 + 𝜀𝜀)/(1 − 𝜀𝜀). As a result we have 𝑐𝑐 = 2√𝜀𝜀 and 
 

�2√−𝜀𝜀Γ4 − 2𝛼𝛼�𝑅𝑅�1 = 0.                                                       (33) 
Consequently, 𝛼𝛼

√−𝜀𝜀
= 𝛿𝛿 or 

𝐸𝐸𝛿𝛿 = 𝐷𝐷 + 2𝑚𝑚0𝑎𝑎2𝐷𝐷2

ℏ2𝛿𝛿2
.                                                     (34) 

 
3. The solutions of the angular equation 

 
We now find the solutions the angle-dependent equation (7). The variables in (7) can be separated in the 

usual way 

𝐹𝐹(𝜃𝜃,𝜑𝜑) = Θ(𝜃𝜃) 𝑒𝑒
𝑖𝑖𝑖𝑖𝜑𝜑

√2𝜋𝜋
.                                                   (35) 
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Here, 𝑚𝑚 is the usual magnetic quantum number and is integer.  Equation for Θ(𝜃𝜃) now looks like 
 

�𝜕𝜕𝜃𝜃2 + ctg𝜃𝜃𝜕𝜕𝜃𝜃 −
𝑚𝑚′2+𝛾𝛾0 cos𝜃𝜃+𝜈𝜈0cos2𝜃𝜃

sin2𝜃𝜃
+ Λ�Θ(𝜃𝜃) = 0.                 (36) 

 
The orthonormalized solutions of this equation were found in [7]. We give here their explicit form 
 

Θ𝑘𝑘𝑚𝑚(𝜃𝜃) = c𝑘𝑘𝑚𝑚 �sin2 𝜃𝜃
2
�
𝐴𝐴1
�cos2 𝜃𝜃

2
�
𝐴𝐴2
𝑃𝑃𝑘𝑘

(2𝐴𝐴1,2𝐴𝐴2)(cos𝜃𝜃),              (37) 

 
where 𝑘𝑘 = 0,1,2, …, the functions 𝑃𝑃𝑘𝑘

(𝛼𝛼,𝛽𝛽)(𝑥𝑥) are the Jacobi polynomials [21] and the positive parameters 𝐴𝐴1,2 are 
 

𝐴𝐴1,2 = 1
2
�𝑚𝑚2 + 𝜈𝜈0+𝛽𝛽0 ± 𝛾𝛾0.                                        (38) 

Normalization coefficients 

𝑐𝑐𝑘𝑘𝑚𝑚 = �(𝑘𝑘+𝐴𝐴1+𝐴𝐴2+1/2)𝑘𝑘!𝛤𝛤(𝑘𝑘+2𝐴𝐴1+2𝐴𝐴2+1)
𝛤𝛤(𝑘𝑘−2𝐴𝐴1+1)𝛤𝛤(𝑘𝑘−2𝐴𝐴2+1)

                                    (39) 

are determined from the normalizing condition for the angular wave functions (37) 

∫ 𝛩𝛩𝑘𝑘𝑚𝑚(𝜃𝜃)𝜋𝜋
0 𝛩𝛩𝑘𝑘′𝑚𝑚(𝜃𝜃)sin𝜃𝜃𝜃𝜃𝜃𝜃 = 𝛿𝛿𝑘𝑘𝑘𝑘′ .                                (40) 

As shown in [7], the separation constant 𝛬𝛬 depends on k and m 

 

Λ ≡ Λkm = k �k + 1 + �m2 + ν0 + β0 + γ0 + �m2 + ν0 + β0 − γ0� + 

+ 1
2
��m2 + ν0 + β0 + γ0 + �m2 + ν0 + β0 − γ0� +

                 +  1
2
�(m2 + ν0 + β0 + γ0)(m2 + ν0 + β0 − γ0) + 1

2
(m2 + β0 − ν0)                (41) 

Thus, the exact discrete energy eigenvalues of the Schrödinger equation for our quantum system are (see, 
(22) and (41)) 

𝐸𝐸𝑛𝑛𝑘𝑘𝑚𝑚 = 𝐷𝐷 − 2𝑚𝑚0𝑎𝑎2𝐷𝐷2

ħ2
�𝑛𝑛 + 1

2
+ �1

4
+ Λkm + 2𝑚𝑚0𝑎𝑎2𝐷𝐷

ħ2
�
−2

,                 (42) 

where  𝑛𝑛 = 0,1,2, … , 𝑘𝑘 = 0,1,2, … , 𝑚𝑚 = 0, ±1, ±2, … 

      

We consider a special case of the formula (42). For 
𝑓𝑓(𝜃𝜃) = 0 will have a results of the paper [12]. 

4. Conclusion 

       In this paper, we considered an exactly solvable 
model, namely a non-relativistic ring-shaped modified 
Kratzer potential model.  

      The main results of this paper are the explicit and 
exact expressions for the energy spectrum and 
corresponding wave functions. We have also find the 
dynamical symmetry group 𝑆𝑆𝑆𝑆(1,1).    

___________________________ 
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