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The present work investigates the effect of topological defects in quantum dots on the effective g*- factor. Using the 

energy spectrum, we derived the exact analytic expression for the effective g*-factor and studied the variation of the effective 
g*-factor with the disclination parameter. It was shown that, in the case of n=0,l=-1, as the magnetic field increases, the 
effective g*-factor changes sign and increases, approaching the value n=0,l=0. In the case of n=0,l=1, it decreases and 
approaches n=0,l=0. In the case of n=0,l=0, the effective g factor remains constant as the magnetic field changes. 
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1. INTRODUCTION 
 

In recent years there has been increased interest, 
both theoretically and experimentally in quantum dot 
geometry in the presence of a magnetic field. Since 
nanostructures have been applied to electronic 
devices, interest in them has increased. The reason for 
this is that in quantum dots there are observed 
interference effects under the influence of 
electromagnetic potentials, known as Aharonov- 
Bohm [1] and Aharonov-Casher [2] effects which 
have no analog in classical physics. 

The paper [3] studied the changes introduced by 
the linear magnetic flux on the energy spectrum of a 
free particle confined to move between two cylindrical 
concentrically shells in a space with a linear defect, 
that is the combination of a disclination and a 
dislocation which is called dispiration. 

Linear and nonlinear optical properties of a 
GaAs quantum dot (QD) confined by a parabolic plus 
inverse square potential with a disclination were 
theoretically studied [4] under the influence of a 
magnetic field and the Aharonov-Bohm (AB) flux 
field.  

In [5], the influence of topology in quantum 
dynamics in two-dimensional quantum dots in a conic 
surface. The authors analyzed the quantum dynamics 
of particles in this dot when submitted to an external 
magnetic field and Aharonov-Bohm flux in the dot 
center. The paper's author studied [6] a 2D 
mesoscopic dot with an anisotropic effective mass 
considering surface quantum confinement effects. 
Consider that the dot is defined on the surface of a 
cone, which can be controlled topologically and 
mapped to the 2D dot in flat space. Afterward 
demonstrate through numerical analysis that the 
electronic properties, the magnetization, and the 
persistent current undergo significant changes due to 
quantum confinement and non-isotropic mass. In the 

work [7] authors report the equivalence of the 
geometries of a cylindrical shell with screw 
dislocation and another without defect but with a 
larger radius. 

Topological defects are the defects in the system 
that cannot be removed by smooth continuous 
deformation [8]. Topological defects can be the source 
of changes in a material's electrical, optical, or 
magnetic properties. In [9] they have shown that screw 
dislocations make the host semiconducting 
nanocrystals essentially chiral and optically active. 

Katanaev and Volovich’s [10] approach which 
translates the theory of defects in solids into the three-
dimensional language. Wedge dislocations are rare in 
Nature because they require a large amount of 
medium to be added or removed, which results in a 
large expenditure of energy. From the qualitative 
standpoint, creating a wedge dislocation is equivalent 
to introducing a conical singularity[11,12].  

In the paper [13], the authors examined the effect 
of introducing a conical disclination on the thermal 
and optical properties of a two-dimensional GaAs 
quantum dot in the presence of a uniform and constant 
magnetic field. In particular, using the model consists 
of a single-electron subject to a confining Gaussian 
potential with a spin-orbit interaction in the Rashba 
approach. 

The work [14] obtained the modifications to the 
traditional Landau-Fock-Darwin spectrum in the 
presence of conical disclination. The effect of the 
conical kink on the degeneracy structure of the energy 
levels was investigated. 

The interaction of electron states with the lattice 
potential in nanocrystals leads to the renormalization 
of the g-factor [15,16]. 

The nonsimply connected topology of the 
quantum dots has been attracting for a long time the 
careful attention of physicists, chemists, and 
mathematicians. 
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In this paper, we consider semiconductor two 
dimensional quantum dot with a topological defect 
given by a conical disclinations  and Rashba spin-orbit 
interactions and investigate the effect of disclination 
on the effective g∗ -factor of electrons. We use the 
Volterra design [10] to model the ring wedge 
dislocation defect of radius 𝑅𝑅 and the remote wedge 
dislocation. The procedure to create a wedge 
dislocation is obtained by either removing (positive-
curvature wedge dislocation) or inserting (negative-
curvature wedge dislocation) an angle 2π|α − 1| such 
that the total angle around the z-axis is 2πα instead of 
2π.  

In this paper, we consider the influence of the 
Rashba spin-orbit interaction and wedge disclination 
in the effective g*-factor in InSb type quantum ring. 
 
2. ENERGY SPECTRUM FOR A 

DISCLINATED QUANTUM RING WITH 
RASHBA SPIN-ORBIT INTERACTION 

 
We consider the quantum ring with a wedge 

dislocation in an external magnetic field. Conical 
disclination modifies the metric of a ring from its 
otherwise Euclidean 
form as given below: 
 

2 2 2 2ds d dρ ρ θ= +                       (1)                                  
 
We consider one wedge dislocation in semiconductor 
quantum dot. For this, we perform one more 
coordinate transformation [6]: 
 

                      ,r θρ α φ
α

= =                         (2)                                   

 
The metric (1) has the form 

2 2 2 2 2ds dr dα ρ φ−= +                (3)                                           
 
This is more frequently used form of the metric for a 
conical singularity [12]. 

Where describes a conical surface for ρ ≥ 0 and 0 
≤ θ < 2π, describes a conical surface. For 0 < α < 1 
(deficit angle), the metric (1) describes an actual cone.  
The total Hamiltonian of the system is given by:  
 

( ) ( )
21 ,

2 c RSOI ZH P eA V r H H
m

α= + + + +
 

 (4)                                                     

 
where 𝑚𝑚 is the effective mass of the electrons, and  𝐴𝐴 
is the vector potential. 

The parabolic potential for the quantum dot  as 
 

2
2

2( , r)
2c
mV rωα
α

=                  (5)    

                                  
For a uniform magnetic field parallel to the z-axis, the 
vector potentials in cylindrical coordinates have the 

components 20, , 0
2r z
HrA A Aθ α

= = = , The 

Rashba spin-orbital term has the form as [15] 
 

2

1
2

c
RSOI z

dV eHrH i
dr r

γσ α
θ α
∂ = − + ∂ 

       (6)                       

 
Where zσ  is the Pauli matrix and γ  is the Rashba 
spin-orbit coupling parameter 

The Hamiltonian in cylindrical coordinates is 
given by 
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∂






(7) 

 

where c
eB
m

ω = is the electronic cyclotron frequency and m0 is the free-electron 

mass, I is a 2x2 unit matrix. 
The wave function of an electron has the form [12,15]: 
 

( ) , ,, (r)il
n lr e Rθ

σθΨ =                                                 (8) 
 

For the radial function, we find the following equation: 
 

2 2
2 2

, , , ,2 2 2 4

2

, ,2 2 2
0
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                          (9) 
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where 2 2 24 4 c
z c

m ωω γσ ω α
α

−Ω = + +


 

The eigenvalue  
2

2

12 1
2 2

c
nl B

l l m lE n g Hω σ γ ωµ σ
α α α

∗ 
= + + Ω+ + + 
 


                             (10) 

 
This formula differs from the formula in work number [11]: (15b) by the denominator α in the last term. The 
reason for this difference is that the vector potential term in the Rashba term is taken as different from the 

potential term ( )21
2

P eA
m

+
 

in work [12]. In both terms the same vector potential must be used. The radial 

wave function is given by 
2

2
2

1 2 22
2

, , 2(r)

l
r m l

n l n
r m r mR Ce L

α
α α

σ α

Ω
−    Ω Ω

=    
   



 
                                  (11) 

 
The effective g∗ -factor can be determined from the 
Zeeman splitting of subbands: 
 

B

E E
g

Hµ
∗ ↑ ↓−
=                     (12)                                                         

 

Here E↑  and E↓  are the electron energy for spin +z 
and −z directions, respectively. 

Let us investigate the effect of the Rashba spin-
orbit interaction on the spin splitting of electrons in 
quantum dots with wedge disclinations. Figure 1 
shows the variation of the effective g-factor of 
electrons in InSb-type quantum dots in the presence of 
Rashba spin-orbit interaction and wedge dislocations 
depending on the orbital quantum number l at n=0. As 

seen from Figure 1 The effective g∗ -factor of 
electrons in InSb-type quantum dots in the presence of 
Rashba spin-orbit interaction and wedge dislocations 
as functions of orbital quantum number l is of the step 
type. We 

Introduce a parameter cy ω
ω

=  to quantify the 

magnetic field strength, and r
mω

=


=148 A


. We 

use the following material constants: 0 3.2g = for 

InSb quantum dot 2500 Aγ =


 [17]. 

 
 

 
 

Fig. 1.   The variation of the effective g∗ -factor of electrons in InSb-type quantum dots in the presence of Rashba   
spin-orbit interaction and wedge dislocations depending on the orbital quantum number l at n=0. 
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Fig.2.  The dependence of the effective g∗ -factor of the electrons in InSb type quantum dots on the dimensionless 
Rashba parameter at  n=0,l=-1,0,1 for y=0.5. 

 

 
 

Fig.3.  The dependence of the effective g∗ -factor of the electrons in InSb type quantum dots on the magnetic field       
            parameter y at  n=0,l=-1,0,1 for α=0.75. 

 

 
 

Fig.4.  The dependence of the effective g∗ -factor of the electrons in InSb type quantum dots on the disclination 
parameter α at  n=0,l=-1,0 for y=0.5. 
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The height of the step is not one but 11.89 for 
negative quantum number l, and for positive l 22.89, 
unlike the case where the magnetic field and Rashba 
splitting are zero. Fig.2 shows the dependence of the 
effective g-factor of the electrons in InSb-type 
quantum dots on the dimensionless Rashba parameter 
at  n=0,l=-1,0,1 for y=0.5. 

As can be seen from Figure 2, for quantum 
numbers l = 0,1 as the Rashba parameter increases, the 
effective g factor increases, and for l = -1 it decreases. 
In Fig.2 we plot the dependence of the effective      
g∗ -factor of the electrons in InSb-type quantum dots 
on the magnetic field parameter y= at  n=0,l=-1,0,1 for 
α=0.75. 

As can be seen from the figure, in the case of 
n=0,l=-1, as the magnetic field increases, the effective 
g-factor changes sign and increases, approaching the 
value n=0,l=0. In the case of n=0,l=1 it decreases and 
approaches n=0,l=0. In the case of n=0,l=0, the 
effective g factor remains constant as the magnetic 
field changes. In Fig.4 we plot the dependence of the 
effective g∗ -factor of the electrons in InSb-type 

quantum dots on the disclination parameter α at  
n=0,l=-1,0 for y=0.5. 

As can be seen from the figure, at n=0,l=-1 the 
effective g∗ - factor decreases as the disclination 
parameter increases, it reaches the minimum value and 
then increases. At n=0,l=1 the effective g factor 
decreases. 

  
3. CONCLUSIONS 

 
We present a theoretical study of the effect of 

Rashba spin-orbit interaction and conical disclination 
on the effective g-factor of a type quantum dot. The 
dependence of the effective g∗ -factor on the 
parameters of the quantum dot and the applied 
external magnetic field is studied. It has been shown 
that, at the value of quantum number n=0,l=-1 the 
effective g factor decreases as the disclination 
parameter increases, it reaches the minimum value and 
then increases. At n=0,l=1 the effective g∗ -factor 
decreases. 
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