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The Kramers-Kronig relations [1–5] are extensively employed in various areas of theoretical physics to retrieve one 

component of the complex dielectric constant from the known second part. One component of the dielectric constant is derived 
from calculations of a material's optical properties based on measurements, such as the reflection coefficient across a broad 
spectrum, as well as in other issues closely connected to optics and solid-state physics. 
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The Kramers-Kronig relations [1-5], or dispersion 
relations, are an integral relationship between the real 
and imaginary parts of any complex function that is 
analytic in the upper half-plane. They are often used in 
physics to describe the relationship between the real 
and imaginary parts of the response function of a 
physical system, since the analyticity of the response 
function implies that the system satisfies the causality 
principle, and vice versa [6]. In particular, the Kramers-
Kronig relations express the relationship between the 
real and imaginary parts of the permittivity in classical 
electrodynamics and the transition probability 
amplitude (matrix element) between two states in 
quantum field theory. 

To calculate the Van der Waals equations, 
information about the frequency dependence of the 
permittivity is required. These experimental 
dependences are usually determined in a very limited 
region, which introduces a significant error in 
calculations using the Kramers-Kronig relations, since 
in these relations, the range of determination of the 
permittivity extends from 0 to ∞. 

ε(ω) is a complex value (ε = ε'(ω) + iε"(ω)), and 
its imaginary part is always positive and determines the 
dissipation of the energy of an electromagnetic wave 
propagating in a given medium. By formally 
considering ε(ω) as a function of the complex variable 
ω, the Kramers-Kronig relations equation 

By formally considering ε(ω) as a function of the 
complex variable ω, the Kramers-Kronig relations 
equation  
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determine the values of the function ε of the complex 
argument ω = ίξ. 

The frequency dependence of the dielectric 
constant of semiconductors is determined 
experimentally, most often, in studies of the reflection 
spectrum and is then analyzed using the Kramers-
Kronig relations, which have the form: 
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The relationship between the refractive index and 

absorption coefficient with reflection is established 
through the complex amplitude of the electromagnetic 
radiation beam reflected from the surface of the 
semiconductor in the form: 
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where R is the reflection coefficient; θ is the phase 
angle of reflection. It is obvious that the real and 
imaginary parts of this expression are related to each 
other, according to the Kramers-Kronig relations, by 
the equation 
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Because 
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The phase angle can be calculated in different ways. 
Without going into details of limitations, errors, etc., a 
mathematical apparatus that has not been used by 
anyone, but gives good results with a low error, was 
used to calculate the phase angle. As usual, the 
frequency ranges from 0 to ∞ is divided into three 
areas: 

1. from 0 to ω1, in which it is assumed that      
R(ω) = R1, i.e., constant (more precisely, equal to the 
first experimental value; 

2. from ω1 to ωN - the area of experimental data 
3. from ωN to ∞, which uses the сω-4

, 
extrapolation inherent in the far ultraviolet region of the 
spectrum. 

In the frequency range from ω1 to ωN, it becomes 
necessary to further define the integrand at the point     
ω = ω0. Revealing the uncertainty according to 
L'Hôpital's rule, let us consider the limit to which the 
integrand tends at the point ω = ω0: 
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To find this limit, we must remember that we represent the experimental spectrum as a broken line. 

Smoothing the experimental curves by using cubic or other splines, however, does not solve the main problem, 
namely: the equation of the j-link of the broken line has the form: 
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and, therefore, near the singular point it is necessary to consider three cases: 
1. the special point is located inside the broken line link, that is: ωj < ω0 <ωj+1. When 
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and after transformations, we get that the limits on the right and left coincide. 
2. At ωj = ω0 
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3. At ω0 = ωj+1 
 
Obviously, cases 2 and 3 are identical up to the number j. Thus, by defining the value of the integrand at the point 
ω = ω0, we can calculate the phase angle in the entire frequency range under study, considering that: 
 
1. in the frequency range from ωN to ∞  during measurements in the region of residual rays 
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2. when measuring in the visible and far ultraviolet spectral range 
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The constructed algorithm was implemented in a program for analyzing optical reflection spectra, for 

example, of Ni1-xZnxFe2O4 (х=0, 0.25, 0.5, 0.75) nanoferrites, the loss functions of which are presented in Fig. 1. 
As other tests, materials of III–V compounds were used: GaAs, InAs, etc., the experimental data of which are 
given in [6]. 
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Fig.1  Loss functions of Ni1-xZnxFe2O4 (х=0, 0.25, 0.5, 0.75) nanoferrites. 
___________________________________ 
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