EFFECTIVE ROLE OF VOLUMETRIC COLLISIONS IN BREAKDOWN AT ATMOSPHERIC PRESSURE IN SEMICONDUCTOR GAS DISCHARGE SYSTEM
E. Koç1, M.M. Shirinov2 and B.G. Salamov2
2024   C   en   p.03-06

ABSTRACT

The effects of collision processes in discharge volume in breakdown were investigated in the range of E/p (100-600 V/cm×Torr). We obtained the breakdown curve for argon micro-plasma in a semiconductor gas discharge system consisting of GaAs cathodes to the contributions of the collision processes in discharge volume when the gas discharge gap (d) is45μm. The secondary electron emission liberated by the semiconductor cathode was found as a result of interaction with the cathode of ions and photons occurring in plasma space. Under electric fields, the collision processes in discharge volume provide the rapid growth of electron multiplication required for avalanches. At high pressures up to atmospheric pressure, our investigations show that the value of secondary electron emissions for semiconductor cathode gradually grows. In these conditions, micro-plasma was obtained with a homogeneous formation. For plasma light sources and gas discharge lasers, our results become important to reveal the volumetric processes of micro-discharge electronic devices at high pressures up to atmospheric pressure.

Keywords: cathode surface–plasma interactions, electrical breakdown, secondary electron emission, semiconductor cathodes.
DOI:10.70784/azip.3.2024CE03

Received: 2024
Internet publishing: 2024

AUTHORS & AFFILIATIONS

1. Department of Electrical and Electronics Engineering, Faculty of Engineering, Istanbul Arel University, 34537 Istanbul, Turkey
2. Institute of Physics Ministry of Science and Education Republic of Azerbaijan, Baku, AZ-1073, Azerbaijan
E-mail:

Graphics and Images

         

    Fig.1-2-3-4

[1]   P. Carazzetti, Ph. Renaud and H. Shea. 2009 Sens. Actuator A Phys. 154, 275.
[2]   L. Schwaederlé, M.K. Kulsreshath, L.J. Overzet, P. Lefaucheux, T. Tillocher, R. Dussart. 2012 J. Phys. D: Appl. Phys. 45, 065201.
[3]   S.S. Yang, J.K. Lee, S.W. Ko, H.C. Kim, J.W. Shon. 2004 Contrib. Plasma Phys. 44, № 5-6 536.
[4]   G.G. Raju. Gaseous Electronics 2006 Taylor & Francis, Boca Raton.
[5]   H. Grosch, T. Hoder, K.-D. Weltmann and R. Brandenburg.2010 Eur. Phys. J. D 60, 547.
[6]   D. Staack, B. Farouk, A. Gutsol, A. Fridman. 2008 Plasma Sources Sci. Technol. 17, 025013.
[7]   B.G. Salamov, Y. Öztekin Çiftci and K. Çolakoğlu. 2004 IEEE Trans. Plasma Sci. 32, 2093.
[8]   A.V. Phelps and Z. Lj. Petrović. 1999 Plasma Sources Sci. Technol. 8, R21-R44.
[9]   E. Koç, S. Karaköse and B.G. Salamov. 2013 Phys. Status Solidi A 210, (9) 1806-1816.
[10]  D. Mariotti, J.A. McLaughlin and P. Maguire. 2004 Plasma Sources Sci. Technol. 13, 207.
[11]  B.G. Salamov.2004 J. Phys. D: Appl. Phys. 37 2496.
[12]  B.G. Salamov, M. Ozer, M. Kasap and Ş. Altındal.1999 J. Phys. D: Appl. Phys. 32, 682.
[13]  V.I. Orbukh, N.N. Lebedeva, S. Ozturk, Ş. Uğur and B.G. Salamov. 2012 Optoelectron. Adv. Mat. 6(11-12), 947.
[14]  P.J. Bruggeman, F. Iza, R. Brandenburg. 2017 Plasma Sources Sci. Technol. 26,1-31123002.
[15]  J. Hnilica, V. Kudrle, P. Vasina, J. Schafer and V. Aubrecht. 2012 J. Phys. D: Appl. Phys. 45,1-9 055201.
[16]  V.I. Kolobov and A. Fiala. 1994 Phy. Rev. E 50, 3018.