STUDY OF VIBRATION MODES AT HIGH PRESSURES IN LAYERED PEROVSKITE-LIKE Nd2Ti2O7
A.G. Asadov1,2, A.İ. Mammadov1, D.P. Kozlenko2, S.E. Kiçanov2, R.Z. Mehdiyeva1, E.V. Lukin2, O.N. Lis2, R.E. Huseynov1, E.R. Huseynova1, Kh.I. Akhmedov1
2024   C   az   p.53-57

ABSTRACT

The vibrational properties of a layered Nd2Ti2O7 have been studied by means Raman spectroscopy at pressures up to 30 GPa. The gradual structural phase transition from the initial monoclinic P21 ( C22) phase to the monoclinic P2 (C12) phase was observed at P ~ 19 GPa. The role of pressure application as a trigger for a significant rotation of the TiO6 octahedra, alterations in interatomic distances, and the displacement of Nd atoms were discussed.

Keywords: phase transitions, small angle scattering, crystal structure of the compound Nd2Ti2O7, Raman scattering.
DOI:10.70784/azip.3.2024C53

Received: 2024
Internet publishing: 2024

AUTHORS & AFFILIATIONS

1. Institute of Physics Ministry of Science and Education Republic of Azerbaijan, 131 H.Javid ave. Baku, AZ-1073
2. Frank Laboratory of Neutron Physics, JINR, 141980 Dubna, Russia
E-mail: asifasadov@jinr.ru

Graphics and Images

        

     Fig.1-2-3

[1]   J. L´opez-P´erez, J. ´I˜niguez, Ab initio study of proper topological ferroelectricity in layered perovskite La2Ti2O7, Phys. Rev. B Condens. Matter. Mater. Phys. 84 (2011), https://doi.org/10.1103/PhysRevB.84.075121.
[2]   N. Yamamoto, K. Yagi, G. Honjo, M. Kimura, T. Kawamura. New phases of Sr2Ta2O7 and Sr2Nb2O7 found by Electron microscopy and diffraction, J. Phys. Soc. Jpn. 48 (2013) 185–191, https://doi.org/10.1143/JPSJ.48.185.
[3]   W.S. Kim, S.M. Ha, J.K. Yang, H.H. Park. Ferroelectric-Gate Field Effect Transistors Using Nd2Ti2O7/Y2O3/Si Structures 398–399, 2001, pp. 663–667, https://doi. org/10.1016/S0040-6090(01)01333-5.
[4]   Z. Gao, L. Yi, L. Chengjia, M. Yongjun, X. Yuanhua, F. Leiming, H. Qiang, L. Yan, L.Gaomin, Y. Jia, H. Hongliang, H. Duanwei. Origin of the phase change from pyrochlore to perovskite-like layered structure and a new lead-free ferroelectric, Mater. Sci. (2017). https://arxiv.org/abs/1703.01016.
[5]   H. Yan, H. Ning, Y. Kan, P. Wang, M.J. Reece. Piezoelectric ceramics with super-high piezoelectric ceramics with super-high curie points, J. Am. Ceram. Soc. 92 (2009) 2270–2275, https://doi.org/10.1111/j.1551-2916.2009.03209.x.
[6]   Y. Li, G. Chen, H. Zang, Z. Li, J. Sun. Electronic Structure and Photocatalytic Properties of ABi2Ta2O9 (A=Ca, Sr, Ba) 181, 2008, pp. 2653–2659, https://doi. org/10.1016/j.jssc.2008.05.020.
[7]   D.W. Hwang, H.G. Kim, J.S. Lee, J. Kim, W. Li, S.H. Oh. Photocatalytic Hydrogen Production from Water over M-Doped La2Ti2O7 (M = Cr, Fe) under Visible Light Irradiation (λ > 420 nm) 106, 2004, pp. 2093–2102, https://doi.org/10.1021/ jp0493226.
[8]   G. Herrera, J. Jim´enez-Mier, E. Chavira. Layered-structural monoclinic-orthorhombic perovskite La2Ti2O7 to orthorhombic LaTiO3 phase transition and their microstructure characterization, Mater. Charact. 89, 2014, 13–22, https:// doi.org/10.1016/j.matchar.2013.12.013.
[9]   N. Ishizawa, K. Ninomiya, T. Sakakura, J. Wang. Redetermination of Nd2Ti2O7: a non-centrosymmetric structure with perovskite-type slabs, Acta Crystallogr. 69 (2013) i19, https://doi.org/10.1107/S1600536813005497.
[10]  F.X. Zhang, J. Lian, U. Becker, R.C. Ewing, L.M. Wang, Hu Jingzhu, S.K. Saxena. Structural change of layered perovskite La2Ti2O7 at high pressures, J. Solid State Chem. 180 (2007) 571–576, https://doi.org/10.1016/j.jssc.2006.11.022.
[11]  S.J. Patwe, V. Katari, N.P. Salke, S.K. Deshpande, R. Rao, M.K. Gupta, R. Mittal, S. N. Achary, A.K. Tyagi. Structural and electrical properties of layered perovskite type Pr2Ti2O7: experimental and theoretical investigations, J. Mater. Chem. C 3, 2015, 4570–4584, https://doi.org/10.1039/C5TC00242G.
[12]  A.G. Asadov, D.P. Kozlenko, A. Mammadov, R. Mehdiyeva, S.E. Kichanov, E. V. Lukin, O.N. Lis, A.V. Rutkauskas. A structural phase transition in La2Ti2O7 at high pressure, Phys. B Condens. Matter 655, 2023, 414753, https://doi.org/ 10.1016/j.physb .2023. 414753.
[13]  E. Bruyer, A. Sayede. Density functional calculations of the structural, electronic, and ferroelectric properties of high-k titanate Re2Ti2O7Re2Ti2O7 (re=LaRe=La and Nd), J. Appl. Phys. 108, 2010, 053705, https://doi.org/10.1063/1.3459891.
[14]  M.M. Milanova, M. Kakihana, M. Arima, M. Yashima, M. Yoshimura. A simple solution route to the synthesis of pure La2Ti2O7 and Nd2Ti2O7 at 700–800◦C by polymerized complex method, J. Alloys Compd. 242, 1996, 6–10, https://doi.org/ 10.1016/0925-8388(96)02323-7.
[15]  D. Kozlenko, S. Kichanov, E. Lukin, B. Savenko. The DN-6 neutron diffractometer for high-pressure research at half a Megabar scale, Crystals 8, 2018, 331, https:// doi.org/10.3390/cryst8080331.
[16]  K. Scheunemann, Hk. Müller-Buschbaum. Zur Kristallstruktur von Nd2Ti2O7, J. Inorg. Nucl. Chem. 37, 1975, 2261–2263, https://doi.org/10.1016/0022-1902(75)80723-8.
[17]  J. Rodiguez-Carvajal. Recent advances in magnetic structure determination by neutron powder diffraction, Physica B 192, 1993, 55, https://doi.org/10.1016/ 0921-4526(93)90108-I.
[18]  J.C. Chervin, B. Canny, M. Mancinelli. Ruby-spheres as pressure gauge for optically transparent high pressure cells, High Pressure Res. 21, 2006, 305–314, https://doi. org/10.1080/08957950108202589.
[19]  N.O. Golosova, D.P. Kozlenko, S.E. Kichanov, E.V. Lukin, A.V. Rutkauskas, K. V. Glazyrin, B.N. Savenko. Magnetic and structural properties of Fe-doped layered cobaltite TbBaCo1.91Fe0.09O5.5 at high pressures, J. Magn. Magn. Mater. 494, 2020, https://doi.org/10.1016/j.jmmm.2019.165801, 165801.
[20]  G. Shen, Y. Wang, A. Dewaele, C. Wu, D.E. Fratanduono, J. Eggert, S. Klotz, K. F. Dziubek, P. Loubeyre, O.V. Fatyanov, P.D. Asimow, T. Mashimo, R.M.M. Wentzcovitch. Toward an International Practical Pressure Scale: A Proposal for an IPPS Ruby Gauge (IPPS-Ruby2020) 40, 2020, pp. 299–314, https://doi.org/ 10.1080/08957959.2020.1791107.
[21]  R. Jeanloz. Universal equation of state, Phys. Rev. B 38, 1988, 805, https://doi. org/10.1103/PhysRevB.38.805.
[22]  A. Segura, R. Cusc´o, T. Taniguchi, K. Watanabe, G. Cassabois, B. Gil, L. Artús, High-pressure softening of the out-of-plane A2u(transverse-optic) mode of hexagonal boron nitride induced by dynamical buckling, J. Phys. Chem. C 123, 2019, 17491–17497, https://doi.org/10.1021/acs.jpcc.9b04582.
[23]  H. Man, A. Ghasemi, M. Adnani, M.A. Siegler, E. Anber, Y. Li, C.L. Chien, M. Taheri, C.W. Chu, C.L. Broholm, S.M. Koohpayeh. Quantum paramagnetism in a non-Kramers rare-earth oxide: monoclinic Pr2Ti2O7, Mater. Sci., 2022. https:// doi.org/10.48550/arXiv.2211.06758.
[24]  N.A. Abdullaev. Grüneisen parameters for layered crystals, Phys. Solid State 43, 2001. 727–731, https://doi.org/10.1134/1.1366002.
[25]  P.S. Peercy, B. Morosin. Pressure and temperature dependences of the Raman-active phonons in SnO2, Phys. Rev. B 7, 1973, 2779. https://link.aps.org/doi/10.1103/PhysRevB.7.2779.
[26]  F.X. Zhang, M. Lang, J.M. Zhang, Z.Q. Cheng, Z.X. Liu, J. Lian, R.C. Ewing. Phase transition and abnormal compressibility of lanthanide silicate with the apatite structure, Phys. Rev. B 85, 2012, 214116. https://link.aps.org/doi/10.1103 /PhysRevB.85.214116.
[27]  I. Lukaˇcevi´c, S.K. Gupta, P.K. Jha, D. Kirin. Lattice dynamics and Raman spectrum of rutile TiO2: the role of soft phonon modes in pressure induced phase transition, Mater. Chem. Phys. 137, 2012, 282–289, https://doi.org/10.1016/j. matchemphys.2012.09.022.
[28]  Y. Zhang, C.X. Harris, P. Wallenmeyer, J. Murowchick, X. Chen. Asymmetric lattice vibration characteristics of rutile TiO2 as revealed by laser power dependent Raman, Spectroscopy 117, 2013, 24015–24022, https://doi.org/10.1021/ jp406948e.
[29]  S. Jiang, J. Liu, L. Bai, X. Li, Y. Li, S. He, S. Yan, D. Liang, Anomalous Compression Behaviour in Nd2O3 Studied by X-ray Diffraction and Raman Spectroscopy 8, 2018, https://doi.org/10.1063/1.5018020, 025019.