AJP Fizika A
Institute of Physics
Ministry of Science and Education
Republic of Azerbaijan
ISSN 1028-8546
Azerbaijan Journal of Physics
Published from 1995. Registration number: 514, 20 02 1995
Ministry of Press and Information of Azerbaijan Republic
2020 01 az p.11-16 | B.G. Pashayev, Determination of conformation and dimensions of polyethylene glycol macromolecule in the systems water-polyethylene glycol-KCl by viscosimeter method |
ABSTRACT The kinematic viscosity of water-polyethylene glycol-KCl systems at temperature 293.15 K and 0-0.05 molar part of KCl, and at a concentration range of 0-5 g/dl of polyethylene glycol are investigated. The polyethylene glycol fractions with molecular weights (1000, 1500, 3000, 4000 and 6000) are considered. The intrinsic viscosity of the investigated solutions, Haggins constant, α parameter in Mark-Kuhn-Houwink equation, swell coefficient of polyethylene glycol macromolecules, intrinsic viscosity in θ -solvent, PEG root-mean-square distance in solution and θ-solvent, the length of the Kuhn segment of θ- solvent and in the solution are calculated on the base of experimental data on kinematic viscosity at given KCl concentration. It is established that macromolecular ball of polyethylene glycol is permeable for surrounding liquid (water – KCl) and ball volume decreases and flexibility increases with KCl concentration increasing. Keywords: KCl, polyethylene glycol, characteristic viscosity, Haggins constant, root mean square distance between polymer chain ends, swelling coefficient, Kuhn segment PACS: 61.20.Ne, 66.20.+d, 82.60.Lf, 61.25.Hq. DOI:- Received: 02.12.2019 AUTHORS & AFFILIATIONS Baku State University, Faculty of Physics, 23 acad. Z. Khalilov Street, Baku, AZ 1148 E-mail: p.g.bakhtiyar@gmail.com |
[1] К.Р. Ланге. Поверхностно-активные вещества, синтез, свойства, анализ, применение. СПб.: “ПРОФЕССИЯ”, 2005. 240 с. [2] J.H. Sung, D.C. Lee, H.J. Park. Polymer, 2007, vol. 48, p.4205-4212. [3] M. Duval. Macromolecules, 2000, vol. 33, p.7862-7867. [4] W.F. Polik, W. Burchard. Macromolecules, 1983, vol. 16, p. 978-982. [5] М.А. Сибилева, Э.А. Тарасова. Жур. физ. химии. 2004, т.78, № 7, с. 1240-1244. [6] И.В. Щуляк, Е.И. Грушова. Жур. физ. химии. 2013 т.87, № 12, с. 2079-2084. [7] Э.А. Масимов, Б.Г. Пашаев, Г.Ш. Гасанов, С.И. Мусаева. Жур. физ. химии, 2013, том 87, № 12, с. 2151-2153. [8] Э.А. Масимов, Б.Г. Пашаев, Г.Ш. Гасанов. Жур. физ. химии, 2019, том 93, № 5, с. 779-781. [9] Э.А. Масимов, Б.Г. Пашаев, Г.Ш. Гасанов Ш.Н. Гаджиева. Жур. физ. химии, 2019, том 93, № 6, с. 845-849. [10] B.G. Pashayev. Conference Proceedings, Modern Trends In Physics Baku, 01-03 May, 2019, p. 170-174. [11] E.A. Masimov, B.G. Pashayev, N.F. Orujova. Conference Proceedings, Modern Trends In Physics Baku, 01-03 May, 2019, p. 191-195. [12] B.G. Paşayev. AJP FİZİKA, 2019, vol. XXV № 2, section: Az s.18-24. [13] B.G. Paşayev. AJP FİZİKA, 2019, vol. XXV № 3, section: Az s.3-6. [14] B.G. Paşayev. AJP FİZİKA, 2019, vol. XXV № 3, section: En s.7-14. [15] Э.А. Масимов, Б.Г. Пашаев, М.Р. Раджабов. Жур. физ. химии, 2019, том 93, № 12, с. 1-4. [16] E.Ə. Məsimov, H.Ş. Həsənov, B.G. Paşayev. Mayelərin özlülüyü. Bakı, "Ləman Nəşriyyat Poliqrafiya", 2016. 285 c. [17] А.А. Тагер. Физико-химия полимеров. М.: Научный мир, 2007. 576 с. [18] С.Р. Рафиков, В.П. Будтов, Ю.Б. Монаков. Под ред. В.В. Коршака. Введение в физико-химию растворов полимеров. М.: Наука, 1978, 328с. [19] В.Н. Цветков, В.Е. Эскин, С.Я. Френкель. Структура макромолекул в растворах. М.: Наука, 1964. [20] W.H. Stokmayer, M. Fixman. J. Polym. Sci. 1963. Part C. № 1, p.137. [21] В.Н. Манжай, Г.А. Сарычева, Е.М. Березина. Высокомолекулярные соединения, серия В, 2003, том 45, № 2, с. 363-368. |