2020   01   az   p.11-16 B.G. Pashayev,
Determination of conformation and dimensions of polyethylene glycol macromolecule in the systems water-polyethylene glycol-KCl by viscosimeter method
 pdf 

ABSTRACT

The kinematic viscosity of water-polyethylene glycol-KCl systems at temperature 293.15 K and 0-0.05 molar part of KCl, and at a concentration range of 0-5 g/dl of polyethylene glycol are investigated. The polyethylene glycol fractions with molecular weights (1000, 1500, 3000, 4000 and 6000) are considered. The intrinsic viscosity of the investigated solutions, Haggins constant, α parameter in Mark-Kuhn-Houwink equation, swell coefficient of polyethylene glycol macromolecules, intrinsic viscosity in θ -solvent, PEG root-mean-square distance in solution and θ-solvent, the length of the Kuhn segment of θ- solvent and in the solution are calculated on the base of experimental data on kinematic viscosity at given KCl concentration. It is established that macromolecular ball of polyethylene glycol is permeable for surrounding liquid (water – KCl) and ball volume decreases and flexibility increases with KCl concentration increasing.

Keywords: KCl, polyethylene glycol, characteristic viscosity, Haggins constant, root mean square distance between polymer chain ends, swelling coefficient, Kuhn segment
PACS: 61.20.Ne, 66.20.+d, 82.60.Lf, 61.25.Hq.

DOI:-

Received: 02.12.2019

AUTHORS & AFFILIATIONS

Baku State University, Faculty of Physics, 23 acad. Z. Khalilov Street, Baku, AZ 1148
E-mail: p.g.bakhtiyar@gmail.com
[1]   К.Р. Ланге. Поверхностно-активные вещества, синтез, свойства, анализ, применение. СПб.: “ПРОФЕССИЯ”, 2005. 240 с.
[2]   J.H. Sung, D.C. Lee, H.J. Park. Polymer, 2007, vol. 48, p.4205-4212.
[3]   M. Duval. Macromolecules, 2000, vol. 33, p.7862-7867.
[4]   W.F. Polik, W. Burchard. Macromolecules, 1983, vol. 16, p. 978-982.
[5]   М.А. Сибилева, Э.А. Тарасова. Жур. физ. химии. 2004, т.78, № 7, с. 1240-1244.
[6]   И.В. Щуляк, Е.И. Грушова. Жур. физ. химии. 2013 т.87, № 12, с. 2079-2084.
[7]   Э.А. Масимов, Б.Г. Пашаев, Г.Ш. Гасанов, С.И. Мусаева. Жур. физ. химии, 2013, том 87, № 12, с. 2151-2153.
[8]   Э.А. Масимов, Б.Г. Пашаев, Г.Ш. Гасанов. Жур. физ. химии, 2019, том 93, № 5, с. 779-781.
[9]   Э.А. Масимов, Б.Г. Пашаев, Г.Ш. Гасанов Ш.Н. Гаджиева. Жур. физ. химии, 2019, том 93, № 6, с. 845-849.
[10]  B.G. Pashayev. Conference Proceedings, Modern Trends In Physics Baku, 01-03 May, 2019, p. 170-174.
[11]  E.A. Masimov, B.G. Pashayev, N.F. Orujova. Conference Proceedings, Modern Trends In Physics Baku, 01-03 May, 2019, p. 191-195.
[12]  B.G. Paşayev. AJP FİZİKA, 2019, vol. XXV № 2, section: Az s.18-24.
[13]  B.G. Paşayev. AJP FİZİKA, 2019, vol. XXV № 3, section: Az s.3-6.
[14]  B.G. Paşayev. AJP FİZİKA, 2019, vol. XXV № 3, section: En s.7-14.
[15]  Э.А. Масимов, Б.Г. Пашаев, М.Р. Раджабов. Жур. физ. химии, 2019, том 93, № 12, с. 1-4.
[16]  E.Ə. Məsimov, H.Ş. Həsənov, B.G. Paşayev. Mayelərin özlülüyü. Bakı, "Ləman Nəşriyyat Poliqrafiya", 2016. 285 c.
[17]  А.А. Тагер. Физико-химия полимеров. М.: Научный мир, 2007. 576 с.
[18]  С.Р. Рафиков, В.П. Будтов, Ю.Б. Монаков. Под ред. В.В. Коршака. Введение в физико-химию растворов полимеров. М.: Наука, 1978, 328с.
[19]  В.Н. Цветков, В.Е. Эскин, С.Я. Френкель. Структура макромолекул в растворах. М.: Наука, 1964.
[20]  W.H. Stokmayer, M. Fixman. J. Polym. Sci. 1963. Part C. № 1, p.137.
[21]  В.Н. Манжай, Г.А. Сарычева, Е.М. Березина. Высокомолекулярные соединения, серия В, 2003, том 45, № 2, с. 363-368.