2020   02   en   p.03-09 B.G. Ibragimov,
Rashba spin-orbit interaction in semiconductor nanostructures


In this work we review of the theoretical and experimental issue related to the Rashba spin-orbit interaction [1] in semiconductor nanostructures. The Rashba spin-orbit interaction has been a promising candidate for controlling the spin of electrons in the field of semiconductor spintronics. In this work I focus study of the electrons spin and holes in isolated semiconductor quantum dots and rings in the presence of magnetic fields. Spin-dependent thermodynamic properties with strong spin-orbit coupling inside their band structure in systems are investigated in this work. Additionally, specific heat and magnetization in two- dimensional, one-dimensional ring and quantum dot nanostructures with spin- orbit interaction are discussed.

Keywords: spin-orbit interaction, Rashba effect, two-dimensional electron gas, one-dimensional ring, quantum wire, quantum dot, semiconductor nanostructures.
PACS: 35Q41

Received: 12.05.2020


Institute of Physics, Azerbaijan National Academy of Sciences,
Azerbaijan State Oil and Industry University
E-mail: Corresponding author: Behbud.ibrahimov.93@mail.ru

[1]   E. Rashba. Fiz. Tverd. Tela (Leningrad) 2, 1224 (1960), [Sov.Phys.Solid State 2, 1109 (1960)].
[2]   W. Greiner. Relativistic quantum mechanics (Springer, 1987).
[3]   R. Winkler. Spin-orbit Coupling Effects in Two-Dimensional Electron and Hole Systems (Springer Berlin).
[4]   G. Dresselhaus. Spin-Orbit Coupling Effects in Zinc Blende Structures Phys. Rev. 100, 580 1955.
[5]   Y.A. Bychkov and E. I. Rashba. Journal of Physics C:Solid State Physics 17, 6039, 1984.
[6]   D. Stein, K.V. Klitzing, and G. Weimann. Electron Spin Resonance on GaAs−AlxGa1−xAs Heterostructures Phys. Rev. Lett. 51, 130,1983.
[7]   H.L. Stormer, Z. Schlesinger, A. Chang, D.C. Tsui, A.C. Gossard, and W. Wiegmann. Energy Structure and Quantized Hall Effect of Two-Dimensional Holes Phys. Rev. Lett. 51, 126, 1983.
[8]   S. Datta and B. Das. Electronic analog of the electro‐optic modulator Appl. Phys. Lett. 56, 665,1990.
[9]   J.M. Kikkawa, I.P. Smorchkova, N. Samarth, and D.D. Awschalom. Room-Temperature Spin Memory in Two-Dimensional Electron GasesScience 277, 1284-1287,1997.
[10]  E.A. de Andrada e Silva, G.C. La Rocca, and F. Bassani. Spin-orbit splitting of electronic states in semiconductor asymmetric quantum wells Phys. Rev. B 55, 16293, 1997.
[11]  O. Voskoboynikov and C.P. Lee. Spin–Orbit Interaction and All-Semiconductor Spintronics Journal of Superconductivity volume 16, pages 361–363, 2003.
[12]  D.V. Khomitsky. Scattering on the lateral one-dimensional superlattice with spin-orbit coupling Phys. Rev. B 76, 033404, 2007.
[13]  M.I. Dyakonov and V.I. Perel. Spin relaxation of conduction electrons in noncentrosymmetric semiconductors, Soviet Physics Solid State, 13 (12), 3023-3026, 1972.
[14]  M.I. Dyakonov and V.Y. Kachorovskii. “Spin Relaxation of Two Dimensional Electrons in Noncentrosymetric Semiconductors,” Soviet Physics: Semiconductors, Sov. Phys. Semicond. 20, 110 _1986.
[15]  J.D. Koralek, C.P. Weber, J. Orenstein, B.A. Bernevig, S.-C.Zhang, S. Mack, and D.D. Awschalom. Emergence of the persistent spin helix in semiconductor quantum wells. Nature _London_ 458, 610, 2009.
[16]  P. Kleinert and V.V. Bryksin. Electric-field-induced long-lived spin excitations in two-dimensional spin-orbit coupled systems, Phys. Rev. B 79, 045317, 2009. [17]
[17]  M. Duckheim, D.L. Maslov, and D. Loss. Dynamic spin-Hall effect and driven spin helix for linear spin-orbit interactions, Phys. Rev. B 80, 235327, 2009.
[18] [18]  I.V. Tokatly and E.Ya. Sherman. Ann. Phys. 325, 1104, 2010.
[19] [19]  Y.V. Pershin. Phys. Rev. B 71, 155317 2005. Long-Lived Spin Coherence States in Semiconductor Heterostructures
[20] [20]  J.M. Kikkawa & D.D. Awschalom. Lateral drag of spin coherence in gallium arsenide. Nature, 1999, 397, 139.
[21]  S. Sanvito, G. Theurich & Hill NA. (2002), Density functional calculations for III–V diluted ferromagnetic semi-conductors: a review. J Supercond, 15, 85.
[22]  M. Peshkin and A. Tonomura. The Aharonov–Bohm Effect, in Lecture Notes in Physics, Vol. 340 (Springer-Verlag, Berlin, 1989).
[23]  H. Fai Cheung, Y. Gefen, E.K. Riedel, W.-H. Shih. Persistent currents in small one-dimensional metal rings, Phys. Rev. B 37, 1988 6050.
[24]  D. Loss, P. Goldbart. Period and amplitude halving in mesoscopic rings with spin, Phys. Rev. B 43 (1991) 13762.
[25]  M.V. Moskalets. Oscillations of the thermodynamic properties of a one-dimensional mesoscopic ring caused by Zeeman splitting, JETP Lett. 70, 1999, 602.
[26]  V.A. Margulis, V.A. Mironov. Magnetic moment of a 2D electron gas with spin-orbit interaction, JETP 108, 2009, 656.
[27]  A.G. Aronov, Y.B. Lyanda-Geller. Spin-orbit Berry phase in conducting rings, Phys. Rev. Lett. 70, 1993, 343.
[28]  X.F. Wang, P. Vasilopoulos. Spin-dependent magnetotransport through a mesoscopic ring in the presence of spin-orbit interaction, Phys. Rev. B 72, 2005, 165336.
[29]  B. Molnar, F.M. Peeters, P. Vasilopoulos. Spin-dependent magnetotransport through a ring due to spin-orbit interaction, Phys. Rev. B 69 (2004) 155335.
[30]  J. Splettstoesser, M. Governale, U. Zulicke. Persistent current in ballistic mesoscopic rings with Rashba spin-orbit coupling, Phys. Rev. B 68, 2003, 165341.
[31]  J.S. Sheng, K. Chang. Spin states and persistent currents in mesoscopic rings: Spin-orbit interactions, Phys. Rev. B 74, 2006, 235315.
[32]  X.-E. Yang, Y.-C. Zhou. Magnetism and structural distorti onin the La0.7Sr0.3MnO3 metallic ferromagnet, Phys. Rev. B 53, 1996, 10167.
[33]  H.-Y. Chen, P. Pietilainen, T. Chakraborty. Electronic optic and magnetic properties of quantum ring in Novel systems,Phys. Rev. B 78, 2008, 073407.
[34]  V.A. Margulis, V.A. Mironov. Magnetic moment of an one-dimensional ring with spin–orbit interaction Physica E 43, 2011, 905–908.
[35]  S.A. Wolf, et al., Spintronics: a spin-based electronics vision for the future, Science 294, 2001, 1488.
[36]  P.A. Wolff. Semiconductors and semimetals, in: J.K. Furdyna, J. Kossut (Eds.), Diluted Magnetic Semiconductors, Academic, New York, 1988.
[37]  A.V. Chaplik, L.I. Magarill. Effect of the spin-orbit interaction on persistent currents in quantum rings, Superlattice. Microst. 18,1995, 4.
[38]  B.H. Mehdiyev, A.M. Babayev, S. Cakmak, E. Artunc. Rashba spin-orbit coupling effect on a diluted magnetic semiconductor cylinder surface and ballistic transport, Superlattice, Microst 46 2009, 4.
[39]  A.M. Babanlı, B.G. Ibragimov. Specific heat in diluted magnetic semiconductor quantum ring Superlattices and Microstructures 111, 2017, 574-578.
[40]  A.M. Babanlı, B.G. Ibragimov. AJP Fizika 2019, vol. XXV, Number 01, page.35-38.
[41]  A.M. Babanlı, B.G. Ibragimov. Magnetic moment of the lattice of non-interacting diluted magnetic semiconductor ring. Modern Trends in Physics International Conference 01-03 may 2019 Baku.
[42]  A.M. Babanlı, B.G. Ibragimov. “Aharonov-bohm paramagnetism” and compensation points in noninteracting diluted magnetic semiconductor quantum ring. Journal of Magnetism and Magnetic Materials 495,2020, 165882.
[43]  D. Loss and D. P. DiVincenzo. Quantum computation with quantum dots, Phys. Rev. A 57, 120,1998.
[44]  L.M. K. Vandersypen et al, in Quantum Computing and Quantum Bits in Mesoscopic Systems (Kluwer Academic, New York, 2003); quant-ph/0207059.
[45]  A.V. Khaetskii and Y.V. Nazarov. Spin relaxation in semiconductor quantum dots, Phys. Rev. B 61, 12 639, 2000.
[46]  Can-Ming Hu, Junsaka Nitta, Tatsushi Akazaki, Jiro Osaka, P. Pfeffer, and W. Zawadzki. Polaronic and bound polaronic effects in the energy states of an electron in a two-dimensional parabolic quantum dot in the presence of Rashba spin-orbit interaction, Phys. Rev. B 60, 7736, 1999.
[47]  E.A. de Andrada e Silva, G.C. La Rocca, and F. Bassani. Spin-orbit splitting of electronic states in semiconductor asymmetric quantum wells, Phys. Rev. B 55, 16 293, 1997.
[48]  N.F Johnson. J. Phys.: Condens. Matter 7 965. Quantum dots: few-body, low-dimensional systems 1995.
[49]  S. Datta and B. Das. Appl. Phys. Lett. 56, 665 1990. Electronic analog of the electro-optic modulyator, https://doi.org/10.1063/1.102730
[50]  B.E. Kane. A silicon-based nuclear spin quantum computer, Nature London393, 133, 1998.
[51]  Kuntal Bhattacharyya and Ashok Chatterjee Polaronic and Bound Polaronic. Effects in The Energy States of An Electron in A Two-Dimensional Parabolic Quantum Dot in The Presence of Rashba Spin-Orbit interaction AIP Conference Proceedings 2142, 090008, 2019; https://doi.org/10.1063/1.5122452.
[52]  D. Bimberg. Quantum dots: Paradigm changes in semiconductor physics, Semiconductors 33, 951 1999.
[53]  O. Steffens, M. Suhrke, and U. Rössler. Physica B 256–258, 147, 1998.
[54]  S. Taruchaet al., Spin e ects in semiconductor quantum dot structures, Physica E (Amsterdam) 3, 112, 1998.
[55]  H. Tamura. Magneto-photoluminescence in high magnetic fields from InGaAs/GaAs quantum dots formed in tetrahedral-shaped recesses, Physica B 249–251, 210, 1998.
[56]  G.A. Prinz. Magnetoelectronics, Science 282, 1660, 1998.
[57]  B.E. Kane. A silicon-based nuclear spin quantum computer, Nature (London) 393, 133, 1998.
[58]  D.D. Awschalomand, J.M. Kikkawa. Phys. Today 52, 33, 1999. Electron Spin and Optical Coherence in Semiconductors.
[59]  S. Das Sarma, J. Fabian, X. Hu, and I. Žutic. Solid State Commun. 119, 207, 2001. Spin-Polarized Bipolar Transport and its applications
[60]  D. Lossand D.P. DiVincenzo. Phys. Rev. A 57, 120 (1998). Quantum computation with quantum dots.
[61]  O. Voskoboynikova. Magnetic properties of parabolic quantum dots in the presence of the spin–orbit interaction.
[62]  B. Boyacioglu and A. Chatterjee. J. Appl. Phys. 112, 083514 (2012). Heat capacity and entropy of a GaAs quantum dot with Gaussian confinement doi:10.1063/ 1.4759350.
[63]  B. Boyacioglu and A. Chatterjee. Phys. E, 44, 1826, 2012 . Dia- and paramagnetism and total susceptibility of GaAs quantum dots with Gaussian confinement doi:10.1016/j.physe. 2012.05.001.
[64]  J.I. Climente, J. Planelles, and J.L. Movilla. Phys. Rev. B, 70, 081301, 2004. Magnetization of nanoscopic quantum rings and dots, doi:10.1103/PhysRevB.70.081301.
[65]  Sukirti Gumber, Manoj Kumar, Monica Gamblur, Man Mohan, Pradip Kumar Jha, Can. J. Phys. 93, 2015, 1e5.
[66]  Sukirti Gumber, Manoj Kumar, Pradip Kumar Jha, Man Mohan. Chin. Phys. B vol. 25 (5) 2016, 056502.
[67]  S. Gumber. Metal., Canadian Jour. of Phys., Vol93 № 11,2015, 1264-1268.
[68]  A.M. Babanlı, B.G. Ibragimov. Heat capacity of electrons in diluted magnetic semiconductor quantum dot. The 6 th International conference on Control and Optimization with Industrial Applications July 11-13 2018. Baku, vol 2, page 89-91.