2020   01   az   p.53-57 N.N. Abdulzade, S.Q. Nuriyeva, G.T. Askerkhanova, N.N. Mursakulov,
X-ray diffraction analysis, photoluminescence, and Raman spectra in thin Cu2ZnSnSe4 films obtained by the magnetron sputtering method
 pdf 

ABSTRACT

The article presents an X-ray structural analysis of a thin layer of Cu2ZnSnSe4 obtained on a glass substrate by magnetron sputtering method. It is shown that the layers have an amorphous structure. Thin-layer photoluminescent and Raman spectra were studied using a confocal microspectrometer Nanopinder 30 (Tokyo Instr) (Japan).

Keywords: Confocal Raman Microspectrometer, X-ray structure analysis, modes, photoluminescence, CZTS, optical absorption coefficient, high absorption coefficient, wavelength, forbidden zone width.
PACS: 68.55.Ac 78.40.Fy 81.05.Hd 81.15 Fg

DOI:-

Received: 28.02.2020

AUTHORS & AFFILIATIONS

Institute of Physics named after H.M. Abdullayev, of Azerbaijan National Academy of Sciences, 131, H. Javid ave., Baku, Az-1143, Azerbaijan
E-mail: nmursakulov@physics.ab.az
[1]   Н.Н. Абдулзаде, Н.А. Алиев, Д.А. Ахмедова, С.Ш. Кахраманов, Н.Н. Мурсакулов. Морфо-ло¬гия поверхности тонкой пленки Cu2ZnSnSe4, полученной методом магнетронного распыления. AJP Fizika 2018 vol. XXIV №3, section: Az:, c.159.
[2]   N.N. Abdulzadə, S.T. Ağaliyeva, K.Ə. Əsgərova, D.A. Əhmədova, N.N. Mursakulov, Ç.E. Səbzəliyeva, A.K. Zamanova. AJP Fizika, 2018, vol. XXIV № 1, section: Az, pp. 13-17.
[3]   N.N. Abdulzadə, И.И. Алиев, П.А. Аскерова, Д.А. Ахмедова, Н.Н. Мурсакулов, Ч.Э. Сабзалиева, А.К. Заманова. Физико-химическое исследовние систмы Cu2SnS3-ZnS, синтез Cu2ZnSnS4 и их наноразмерных пленок для солнечных элементов. X Международная научнотехническая конференция «Микро- и нанотехнологии в электронике», 2018, s. 152-156.
[4]   Levent Gütay, Alex Redinger, Rabie Djemour and Susanne Siebentritt. J. Appl. Phys. Lett., 2013, 100, 102113.
[5]   M. León, S. Levcenko, R. Serna, G. Gurieva, A. Nateprov, J.M. Merino, E.J. Friedrich, U. Fillat, S. Schorr and E. Arushanov. Optical constants of Cu2ZnGeS4 bulk crystals. J. Appl. Phys., 2010, 108, 093502.
[6]   S.Zh. Karazhanov, P. Ravindran, P. Vajeeston, A. Ulyashin, H. Fjellvag and B.G. Svensson. J. Appl. Phys., 2019, 106, 123701.
[7]   M. Leon, R. Serma, S. Levcenko, A. Neteprov, A. Nicorici. J. Appl. Phys., 2007, 101.013524.
[8]   J.G. Albornoz, R. Serna, M. Leon. J. Appl. Phys. 97, 2005, p. 103515 (1-7).
[9]   S.G. Choi, H.Y. Zhao, C. Persson. J. Appl. Phys, 111, 2012, p. 033506 (1-6).
[10]  S. Levcenko, G. Gurieva, E.J. Friedrich. Materials Chemistry and Physics, 2010, v. 71, p. 1443.
[11]  S.G. Choi, H.Y. Zhao, C. Persson. J. Appl. Phs., 2012, № 111, p. 033506 (1-6).
[12]  A. Mehdi, M. Mohaghedhi, M. Bagheri, E. Hosein. Preparation and characterization Cu2SnS3 ternary semiconductor nanostructor via the spray pyrolysis technique for photovoltaic applications Iopsiense, 2012, v. 85, s. 1-2.
[13]  J. Madarasz, P. Bombicz, M. Okuya, Sh. Kaneko. J. Solid. State Ionics, 2001, p. 439-446.