2020   02   en   p.27-31 I.R. Amiraslanov, P.A. Askerova, Z.S. Aliyev, Y.R. Aliyeva, A.B. Rahimli,
Refinement of the crystal structure of MnBi2Te4
 pdf 

ABSTRACT

Interest in magnetic topological insulators is growing every day. Among topological insulators, MnBi2Te4 is considered more promising. Due to its antiferromagnetic properties, it can be used in spintronic and quantum electronics. The authors of this work were the first to grow a single-phase ingot of MnBi2Te4, refined the crystal structure, and examined the mutual solubility in the cationic sites of Mn and Bi. It is shown that such solubility is optional and depends on technological procedures. In addition to the seven-layer package characteristic of MnBi2Te4, a new site was also found to be partially present.

Keywords: Topological insulator, phase transition, structure.
PACS: 548.4

Received: 21.09.2020

AUTHORS & AFFILIATIONS

Institute of Physics, of Azerbaiyan NAS 131, H. Javid ave., Baku, AZ 1143
E-mail: iamiraslan@gmail.com
REFERENCIES

[1]   M. Z. Hasan, C.L. Kane. Rev. Mod. Phys. 2010, v. 82, p. 3045.
[2]   R. Yu, W.Zhang, H. J.Zhang, S.C. Zhang, X.Dai, Z. Fang. Science. 2010, v. 329, p.61.
[3]   T. Hirahara, S.V. Eremeev, T. Shirasawa etc. Nano Lett. 2017, v. 17, p. 3493.
[4]   J.A.Hagmann, X. Li, S. Chowdhury, S.N. Dong, S. Rouvimov, S.J. Pookpanratana, K.M. Yu, T.A. Orlova, T.B. Bolin, C.U. Segre et al. New J. Phys. 2017, v. 19, p. 085002.
[5]   E.D. Rienks, et al. Large magnetic gap at the Dirac point in a Mn-induced Bi2Te3 heterostructure, arxiv1810.06238
[6]   Y.S. Hou, R.Q. Wu. Axion insulator state in a ferromagnet topological insulator antiferromagnet heterostructure, archive: 1809.09265
[7]   R. Yu, W. Zhang, H.J. Zhang, S.C. Zhang, X.Dai, Z. Fang. Science. 2010, v. 329, p. 61.
[8]   C.Z. Chang, J. Zhang, X. Feng, J. Shen, Z.Zhang, M. Guo, K. Li, Y. Ou, P. Wei et al. Science. 2013, v. 340, p. 167.
[9]   X.L. Qi, T.L. Hughes, S.C. Zhang. Phys. Rev. B. 2008, v. 78, p.195424.
[10]  A.M. Essin, J.E. Moore, D. Vanderbilt. Phys. Rev. Lett. 2009, v.102, p.146805.
[11]  W.K. Tse, A.H. Mac Donald. Phys. Rev. Lett. 2010, v.105, p. 057401.
[12]  M. Mogi, M. Kawamura, A. Tsukazaki, R.Yoshimi, K.S. Takahashi, M. Kawasaki, Y.Tokura. Sci. Adv. 2017, v. 3, p. 1669.
[13]  M.H. Chan, N. Samarth, C.Z. Chang. Phys. Rev. Lett. 2018, v.120, p. 056801.
[14]  Y. Gong. Experimental realization of an intrinsic magnetic topological insulator, arxiv:1809.07926.
[15]  M.M. Otrokov, I.P.Rusinov, M. Blanco-Rey, M.Hoffmann, A.Yu. Vyazovskaya, S.V.Eremeev, A. Ernst, P.M. Echenique, A. Arnau, E.V. Chulkov. Unique thickness-dependent properties of the van der Waals interlayer antiferromagnet MnBi2Te4 films, archive:1810.05289.
[16]  R. Li, J. Wang, X.L. Qi, S.C. Zhang. Nat. Phys. 2010, v. 6, p. 284.
[17]  Y. Peng, Y. Xu. Proximity-induced Majorana hinge modes in antiferromagnetic topological insulators, archive:1809.09112].
[18]  Z.S. Aliev, I.R. Amiraslanov, D.I. Nasonova, A.V. Shevelkov, N.A. Abdullayev, Z.A. Jahangirli, E.N. Orujlu, M.M. Otrokov, N.T. Mamedov, M.B. Babanlı, E.V. Chulkov. Journal of Alloys and Compounds 2019, v.789, p. 443.
[19]  Y.S. Hor, P. Roushan, H. Beidenkopf, J. Seo, D. Qu, J.G. Checkelsky, L.A. Wray, D. Hsieh, Y. Xia, S.Y. Xu, D. Qian, M.Z. Hasan, N.P. Ong, A. Yazdani, R. J. Cava. Phys. Rev. B. 2010, v.81, p. 195203.
[20]  D. Harker. Zeitschrift für Crystallography - Crystalline Materials. 1934. v. 89. № 1-6. p.175.
[21]  D.S.Lee, T.H. Kim, C.H. Park, C.Y. Chung, S. Lim, W.S. Seo, H.H. Park CrystEngComm. 2013, v. 15, № 7, p. 5532.
[22]  A. Zeugner et all. Chem. Mater.2019. v. 318, p.2795.
[23]  R.C. Vidal et al. archive:1906.08394 v.1.
[24]  A. Zeugner, F. Nietschke, U. Anja, B. Wolter, etc. Chemical Aspects of the Candidate Antiferromagnetic Topological Insulator MnBi2Te4. Chem. Mater. 2019, v. 318, p. 2795.
[25]  R. Diehl, C.D. Carpentier, R. Nitsche. The crystal structure of gamma-In2S3 stabilized by As or Sb. Acta Crystallographic (24, 1968-38, 1982), 1976, 32, p.1257-1260.