2020   02   az   p.30-33 1T.H. Ismayilov, 1,2S.I. Zeynalova,
Energy levels in quantum film with parabolic potential
 pdf 

ABSTRACT

The fulfillment of the size quantization criterion in a quantum film in a magnetic field is considered. It shown that there is a limited number of the discrete levels of charge carriers in a quantum well above which the the size quantization criterion is not satisfied. It is shown that in a magnetic field in quantum wells of a parabolic profile the number of size quantization levels cannot exceed two or three levels.

Keywords: de Broglie wavelength, quantum layer, quantized levels by parabolic potential dimension.
PACS: 73.21.Fg
DOI:10.15407/mfint.40.02.147

DOI:-

Received: 03.09.2020

AUTHORS & AFFILIATIONS

1. Baku State University, Baku, AZ 1143, Azerbaijan, E-mail: tariyel.i@gmail.com
2. Institute of Physics of ANAS, Baku, AZ 1143, Azerbaijan, E-mail: sebine-zeynalova@mail.ru
[1]   P. Harrison, Alex Valavanis. Quantum wells, wires and dots : theoretical and computational physics of semiconductor nanostructures. Fourth edition, West Sussex, United Kingdom; Hoboken, NJ : John Wiley & Sons, Inc., 2016,624 p.
[2]   В.Б. Тимофеев. Оптическая спектроскопия объемных полупроводников и наноструктур: СПб.: Издательство «Лань», 2014, 512с.
[3]   Manijeh Razeghi, Leo Esaki, Klaus von Klitzing. The wonder of nanotechnology: quantum optoelectronic devices and applications. 2013, 893p.
[4]   M. Fox. Optical Properties of Solids. Oxford University Press, 2010, 416 p.
[5]   A. Miller, D. Finlayson, M. Ebrahimzadeh. Semiconductor Quantum Optoelectronics. From Quantum Physics to Smart Devices. 1999, 496 p.
[6]   T. Ando, A.B. Fowler, F. Stern. Rev. Mod. Phys., 1982, 54, 437-672.
[7]   Б.М. Аскеров. Электронные явления переноса в полупроводниках. М., Наука,1985, 320 c.
[8]   В.П. Драгунов, И.Г. Неизвестный, В.А. Гридчин. Основы наноэлектроники, Физматкнига, М, 2006, 496 с.
[9]   А.В. Ржанов. Электронные эффекты на поверхности полупроводников. Наука, М., 1971, 480 с.
[10]  D.K. Ferry and S.M. Goodnick. Transport in Nanostructures (Cambridge U. Press, 1997). 507 p.
[11]  M. Abramowitz, I. Stegun (Editors), Hand-book of mathematical functions, Nauka, Moscow, 1979, 832 p.