2020   04   en   p.03-10 T.M. Guseynov2, T.R. Mehdiyev1, R.T. Guliyeva, B.Sh. Barkhalov1,
On biological activity of selenium compounds
 pdf 

ABSTRACT

The inorganic compounds (sodium selenide) and organic compounds (Ebselen) can significantly influence on the development of virus infection including COVID-19. The oxidative stress is the one of COVID-19 key damaging elements. One of the main reasons of its activity is that M-RNA COVID-19 has the gens of important seleno-containing proteins (GP, TRx, SelenP) for synthesis and expression of which use the internal resources of selenium, forming its deficit that leads to limit of selenoprotein synthesis of organism. That’s why selenium status can have the significant value for both processes of infection beginning and severity of disease carrying out and following complications connected with damage of immune response and development of oxidative stress.

Keywords: sodium selenide, Ebselen, selen, COVID-19, selenium in human health
PACS: 64.70.Fx 36.40

Received: 20.10.2020

AUTHORS & AFFILIATIONS

1. Institute of Physics of ANAS, H.Javid ave., 131, AZ-1143, Baku, Azerbaijan
2. Institute of Biophysics of ANAS, Zahid Khalilov., 117, Baku, AZ 1141
E-mail:
REFERENCIES

[1]   J.J. Berzelius. 1817, Schweigger J. 21.
[2]   V.V. Ermakov, V.V. Kovalsky. Biological significance of selenium, 1974, M.,Nauka.,P. 295.
[3]   K. Schwarz, G.M. Foltz. Selenium as an integral part of factor 3 againt dietary necrotic liver degeneration., J. Am.Chem. Soc., 1957, v.79, p. 3292-3293.
[4]   J.W. Hamilton, A.L. Tappel. Lipid Antioxidant Activity in Tissues and Proteins of Selenium fed Animals, The Journal of Nutrition, 1963, v.79, № 4,p.493–502, https://doi.org/10.1093/jn/79.4.493
[5]   Fairweather-Tait S.J. Bao, M.R.Y. Broadley et.all., Selenium in human health and disease, 2011, v.14, № 7, p.1337-1383, doi: 10.1089/ars.2010.3275.
[6]   G.C. Mills. Hemoglobin catabolism. I Glutathione peroxidase, an erythrocyte enzyme which protects hemoglobin from oxidative breakdown J. Biological Chem., 1957, v. 229, p.189–197.
[7]   L. Flohe, W.A. Gunzler, H.H. Schock. Glutathione peroxidase a selenoenzyme., FEBS Lett., 1973, v.32, p.132-134.
[8]   J.H. Rotruck, A.L. Pope, H.E. Ganther, W.G. Hoekstra. Selenium: Biochemical role as compound of glutathione peroxidase, Science, 1973, v.179, p. 588-590.
[9]   D. Behne, W. Wolters. Distribution of selenium and glutathione peroxidase in the rat J.Nutr. 1983, VII3, p 456-461.
[10]  R.F. Burk, P.E. Gregory. Some characteristics of 75Se-P, as selenoprotein found, in rat liver and plasma and comparison of it with selendiglutathione peroxidase., Arch. of Biochemistry and biophysics, 1982, v. 213, p.73
[11]  M.J. Tripp, P.D. Whanger. Association of selenium with tissue membranes of and rat tissues, Biol.Trace Elem.Res., 1984, v.6, p.445
[12]  R.J. Shamberger, C.E. Willis. Selenium distribution and human cancer mortality, Grit. Rew. Clin.lab. Sci, 1971, v.2, p. 211-221.
[13]  G.F. Combs. J. Biomarkers of selenium status. Nutrients 2015, v. 7, p. 2209-2236.
[14]  O.A. Levander, M.A. Beck. Interacting nutritional and infectious etiologies of Keshan disease: Insights from coxsackie virus B-induced myocarditis in mice deficient in selenium or vitamin E. Biol Trace Elem Res., 1997, v.56, № 1 p. 5 21. doi: 10.1007/BF02778980.
[15]  Q. Li, M. Liu, J. Hou, C. Jiang, S. Li, T. Wang. The prevalence of Keshan disease in China. Int J. Cardiol., 2013, v.168, № 2, p.1121 1126. doi: 10.1016/j.ijcard.2012.11.046.
[16]  K.H. Winther, M.P. Rayman, S.J. Bonnema, L. Hegedüs. Selenium in thyroid disorders - essential knowledge for clinicians. Nat Rev Endocrinol 2020, v.16, № 3, p.165 176. doi: 10.1038/s41574-019-0311-6.
[17]  V.M. Labunskyy, D.L. Hatfield and V.N. Gladyshev. Selenoproteins: molecular pathways and physiological roles. Physiol. Rev. 2014, v. 94, p. 739-777.
[18]  M.A. Berry, L. Banu, J.W. Harney, and P.R. Larsen. Functional characterization of the eukaryotic SPECIES elements which direct selenocysteine insertion at UGA codons. EMBO J. 1993, v.12, p.3315-3322.
[19]  L-Q. Fang, M. Goeijenbier, S-Q. Zuo, L-P. Wang, S. Liang, S. Klein et al. The Association between Hantavirus Infection and Selenium Deficiency in Mainland China. Viruses. 2015, v.7, №1, p.333 351 doi: 10.3390/v7010333.
[20]  E.W. Taylor, J.A. Ruzicka. Antisense inhibition of selenoprotein synthesis by Zika virus may contribute to neurological disorders and microcephaly by mimicking SePP1 knockout and the genetic disease progressive cerebello-cerebral atrophy. Bull World Health Organ 2016 doi: 10.2471/BLT.16.182071.
[21]  S.Y. Yu, W.G. Li, I.J. Zhu et. al. Chemoprevention trial of human hepatits with selenium supplementation in China. Biol.Trace Elem. Res., 1989, v.20, p.15-22.
[22]  M.K. Baum, G. Shor-Posner, S. Lai, G. Zhang, H. Lai, M.A. Fletcher et al. High Risk of HIV-Related Mortality Is Associated With Selenium Deficiency: J Acquir Immune DeficSyndr Hum Retrovirol. 1997, v.15, № 5, p.370 4. doi: 10.1097/00042560-199708150-00007.
[23]  M.K. Baum, A. Campa, S. Lai, S. Sales Martinez, L. Tsalaile, P. Burns et al. Effect of Micronutrient Supplementation on Disease Progression in Asymptomatic, Antiretrovirus-Naive, HIV-Infected Adults in Botswana: A Randomized Clinical Trial. JAMA 2013, v.310, № 20, p. 2154-2163 doi: 10.1001/jama.2013. 280923.
[24]  J. Kamwesiga, V. Mutabazi, J. Kayumba, J.K. Tayari, J.C. Uwimbabazi, G. Batanage et al. Effect of selenium supplementation on CD4+ T-cell recovery, virus suppression and morbidity of HIV-infected patients in Rwanda: a randomized controlled trial. AIDS 2015, v.29, № 9, p. 1045 1052. doi: 10.1097/QAD. 0000000000000673.
[25]  E.W. Taylor, J.A. Ruzicka, L. Premadasa. Theoretical and experimental evidence for RNA:RNA 398 antisense tethering of thioredoxinreductase mRNAs by Ebola and HIV-1 for virus selenoprotein 399 synthesis. ResearchGate 2015http://rgdoi.net/10.13140/ RG.2.2.10237.51683.
[26]  E.W. Taylor, J.A. Ruzicka, L. Premadasa, L. Zhao. Cellular Selenoprotein mRNA Tethering via Antisense Interactions with Ebola and HIV-1 mRNAs May Impact Host Selenium Biochemistry. Curr Top Med Chem 2016, v.16, № 13, p. 1530 1535. doi: 10.2174/ 1568026615666150915121633.
[27]  B. Lipinski. Can Selenite be an Ultimate Inhibitor of Ebola and Other Virus Infections? Br J.Med. and Med. Res., 2015, v. 6, p. 319-324.
[28]  L. Yu, L. Sun, Y. Nan, L-Y. Zhu. Protection from H1N1 Influenza Virus Infections in Mice by Supplementation with Selenium: A Comparison with Selenium-Deficient Mice. Biol Trace Elem Res. 2011, v.141, № 13, p.254 61. doi: 10.1007/s12011-010-8726-x.
[29]  M.A. Beck, H.K. Nelson, Q. Shi, P. Van Dael, E.J. Schiffrin, S. Blum. Selenium deficiency increases the pathology of an influenza virus infection, FASEB J. 2001; v. 15, №.8, p. 1481-1483.
[30]  G. Gong, Y. Li, K. He, Q. Yang, M. Guo, T. Xu et al. The inhibition of H1N1 influenza induced apoptosis by sodium selenite through ROS-mediated signaling pathways. RSC Adv., 2020, v.10, № 13, p.8002 8007. doi: 10.1039/C9RA09524A.
[31]  X. Li, M. Geng, Y. Peng, L. Meng, S. Lu. Molecular immune pathogenesis and diagnosis of COVID-19. J Pharm Anal 2020, v.10, № 2, p.102 108. doi: 10.1016/j.jpha.2020.03.001.
[32]  P.R. Hoffmann, M.J. Berry. The influence of selenium on immune responses. Molecular Nutrition & Food Research, 2008, v.52, № 11, p.1273–1280,DOI 10.1002/mnfr.200700330.
[33]  L. Hiffler, B. Rakotoambinina. Selenium and RNA virus interactions: Potential implications for SARS-CoV-2 infection (COVID-19), ResearchGate, April 2020, 16p.DOI: 10.31219/osf.io/vaqz6.
[34]  E.W. Taylor. Can selenium significantly increase the cure Rate in Covid-19, An interview with prof. E.W.Taylor, Natural Health, 2020 News, June 18.
[35]  T.M. Guseinov, N.S. Safarov. Selenium and some virus diseases, f. Biomedicine № 2, 2007, pp.3-7.
35a.  G.D. Jones, B. Droz, P. Greve, P. Gottschalk, D. Poffet, S.P. McGrath et al. Selenium deficiency risk predicted to increase under future climate change. ProcNatlAcadSci, 2017, v.114, № 11, p. 2848 2853. doi: 10.1073/pnas. 1611576114.
[36]  A. Simmonds. Senegal puts the lid on AIDS and now has the best results in Africa. Johannesburg Independent 2001 (From Lps Angeles Times).
[37]  T.M. Huseynov, N.S. Safarov, Sh.Q. Qanbarova, F.R. Yahyayeva, E.M. Zeynalli. The environmental challenge of selenium deficiency, 9th Baku International Congress “Energy, Ecology, Economy”. Baku, 7-9 June, 2007, p. 310-313.
[38]  E.M. Zeynalli, R.T. Guliyeva, F.R. Yakhyaeva. On the problem of the impending deficit of selenium in Azerbaijan, Materials of scientific-practical. confer. dedicated 80th anniversary of prof. E.I. Ibragimov. Center of Oncology of the Ministry of Health of Azerbaijan. Baku, Azerbaijan, April 4-5, 2010, p. 65-66.
[39]  Coronavirus resource center. Johns Hopkins University and Medicine, June, 2020 https://coronavirus.jhu.edu/map.html
[40]  M. Kieliszeka, B. Lipinski. Selenium supple¬men-tation in the prevention of coronavirus infections (COVID-19), Medical Hypotheses 143 May 2020, p.1, https://doi.org/10.1016/j.mehy.2020.109878
[41]  B. Bikdeli, M.V. Madhavan, D. Jimenez, T. Chuich, I. Dreyfus, E. Driggin et al. COVID-19 andThrombotic or Thromboembolic Disease: Implications for Prevention, Antithrombotic Therapy, and Follow-up. J. Am CollCardiol, 2020, v.75, № 23,https://doi.org/10.1016/j.jacc.2020.04.031
[42]  J. Zhang, E.W. Taylor, K. Bennet, R. Saad and M.P. Rayman. Association between regional selenium status and reported outcome of COVID-19 cases in China. Am.J.Clin. Nutr. Apr 28, 2020, doi: 10.1093/ajcn/nqaa095.
[43]  R. Lu, X. Zhao, J. Li, P. Niu, B. Yang, H. Wu et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. The Lancet.,2020, v.395, № 10224, p.565 74. doi: 10.1016/S0140-6736(20)30251-8. 43a.  A. Mittal, K. Manjunath, R.K. Rahjan, et.al, COVID-19 Pandemic: Insights into Structure, Function, and hACE2 Receptor Recognition by the SARS-CoV-2, Preprints 2020, 10.20944/preprints202005.0260.v1
[44]  D. Diwaker, K.P. Mishra, L. Ganju. Potential role of protein disulfide isomerase in virus infections, ActaVirol., 2013, v.57, p.293-304.
[45]  K.T. Suzuki. Metabolomics of Selenium: Se Metabolites Based on Speciation Studies, Journal of Health Science, 2005, v.51, № 2, P.107-114, doi: https://doi.org/10.1248/jhs.51.107
[46]  K.T. Suzuki, Y. Shiobara, M. Itoh et.al. Selective uptake of selenite by red blood cells, Analyst; 1998 v.123 № 1, p.63-67. DOI:10.1039/a706230c.
[47]  S.Ya. Guseinova. Oxidative metabolism of sodium selenite in isolated human erythrocytes in vitro, Zh. Biomedicina, 2019, v. 17, № 3, pp. 18-23.
[48]  O.M. Guillin, C. Vindry, T. Ohlmann, L. Chavatte. Selenium, Selenoproteins and Virus Infection. Nutrients, 2019, v.11, № 9, p.2101. doi: 10.3390/nu11092101.
[49]  M.P. Rayman. Selenium and human health. The Lancet (2012) 379(9822):1256 68. doi: 10.1016/S0140-6736(11)61452-9.
[50]  F.I. Abdullaev, C. MacVicar, and G.D. Frenkel. Inhibition by selenium of DNA and RNA synthesis in normal and malignant human cells in vitro, Cancer let., 1992, v.65, p.43-49.
[51]  50a. Z.A. Lazimova, I.I. Abdullaev, F.I. Abdullaev, and T.B. Asadullaev. "Inhibitory effect of sodium selenite on influenzavirus reproduction."VoprosiVirusology, 1986, v.1, p.236-238.
[52]  Q-J. Liao, L-B. Ye, K.A. Timani, Y-C Zeng, Y-L. She, L. Ye et al. Activation of NF-kappaBby the Full-length Nucleocapsid Protein of the SARS Coronavirus. Acta BiochimBiophys Sin, 2005, v.37, № 9, p.607 12. doi: 10.1111/j.1745-7270.2005.00082.x.
[53]  M.L. DeDiego, J.L. Nieto-Torres, J.A. Regla-Nava, J.M. Jimenez-Guardeno, R. Fernandez-Delgado, C. Fett et al. Inhibition of NF-kappaB-Mediated Inflammation in Severe Acute Respiratory Syndrome Coronavirus-Infected Mice Increases Survival. J.Virol, 2014, v. 88, № 2, p. 913 24. doi: 426 10.1128/JVI.02576-13.
[54]  C. Kretz-Remy, A-P. Arrigo. Selenium: A key element that controls NF-κB activation and IκBαhalf life. BioFactors, 2001, v.14, № 14, p.117 25. doi: 10.1002/biof.5520140116
[55]  H-S. Youn, H.J. Lim, Y.J. Choi, J.Y. Lee, M-Y. Lee, J-H. Ryu. Selenium suppresses the activation of transcription factor NF-κB and IRF3 induced by TLR3 or TLR4 agonists. IntImmunopharmacol, 2008, v.8, No.3, p.495 501. doi: 10.1016/j.intimp.2007.12.008.
[56]  E.M. Campbell, T.J. Hope. HIV-1 capsid: the multifaceted key player in HIV-1 infection. NatureReviewsMicrobiology, 2015, v.13, № 8 , p.471–483.
[57]  R. Jayawardena, P. Sooriyaarachchi, M. Chourdakis, C. Jeewandara, P. Ranasinghe. Enhancing immunity in virus infections, with special emphasis on COVID-19: A review. Diabetes&MetabolicSyndrome: ClinicalResearch&Reviews 2020, v.14, № 4, p.367–82.
[58]  P. Metha et.all. COVID-19: consider cytokine storm syndromes and immuno suppression, Published Online, 2020 https://doi.org/10.1016/ S0140-6736(20)30628-0.
[59]  C.S. Broome, E. McArdle, J.A.M. Kyle et al. An increase in selenium intake improves immune function and poliovirus handling in adults with marginal selenium status Am. J. Clin. Nutr. 2004, v.80, p.154-162.
[60]  J.R. Arthur, R.C. McKenzie, G.J. Beckett. Selenium in the Immune System. Journal of Nutrition, 2003, v.133, № 5, p.1457S–1459S.
[61]  K.M. Brown, K. Pickard, F. Nicol, G.J. Beckett, G.G. Duthie, J.R. Arthur. Effects of organic and inorganic selenium supplementation on selenoenzyme activity in blood lymphoctyes, granulocytes, platelets and erythrocytes. ClinSci, 2000, v.98, № 5, p.593 599. doi: 10.1042/cs0980593.
[62]  J. Avery, P. Hoffmann. Selenium, Seleno¬proteins, and Immunity. Nutrients, 2018,v.10, № 9, p.1203. doi: 10.3390/nu10091203.
[63]  61a. Z. Huang, A.H. Rose, P.R. Hoffmann. The role of selenium in inflammation and immunity: from molecular mechanisms to therapeutic opportunities. Antioxid Redox Signal, 2012, v.16, p.705-743.
[64]  Z. Varga, A.J. Flammer, P. Steiger, M. Haberecker, R. Andermatt, A.S. Zinkernagel, et al. Endothelial cell infection and endotheliitis in COVID-19. The Lancet 2020,v.10234, p.1417 1418. doi: 10.1016/S0140-6736(20)30937-5.
[65]  M. Ackermann et. al., Pulmonary Vascular Endothelialitis, Thrombosis, and Angiogenesis in Covid-19, The New England Journal of Medicine, 2020, 10.1056/NEJMoa2015432
[66]  G. Lippi, M. Plebani, B.M. Henry. Thrombo-cytopenia is associated with severe coronavirus disease 2019 (COVID-19) infections: A meta-analysis. Clin Chim Acta, 2020, v. 506, p. 145 148. doi: 473 10.1016/j.cca.2020.03.022.
[67]  S. Miller, S.W. Walker, J.R. Arthur, F. Nicol, K. Pickard, M.H. Lewin et al. Selenite protects human endothelial cells from oxidative damage and induces thioredoxinreductase. ClinSciLondEngl., 2001, v.100, № 5, p.543 550.
[68]  G. Perona, R. Schiavon, G.C. Guidi, D. Veneri, P. Minuz. Selenium Dependent Glutathione Peroxidase: A Physiological Regulatory System for Platelet Function. ThrombHaemost, 1990, v. 64, № 2, p. 312 318. doi: 10.1055/s-0038-1647308.
[69]  P.A. Poluboryaninov, D.G. Elistratov, V.I. Shvets. Metabolism and mechanism of toxicity of selenium-containing drugs used to correct deficiency of the microelement selenium, g. Fine chemical technologies, v. 14, № 1, 2019, p. 5-24 DOI 10.32.362 / 2410-6593-2019-14-1-5-24.
[70]  M.J. Parnham, H. Sies. The early research and development of Ebselen J. Biochem. Pharmacol. 2013. v. 86. № 9, p.1248–1253.
[71]  G.K. Azad, R.S. Tomar. Ebselen, a promising antioxidant drug: mechanisms of action and targets of biological pathways. Molecular Biology Reports, 2014, v.41, № 8, p.4865–4879, doi:10.1007/s11033-014-3417-x.
[72]  R. Zhao, H. Masayasu, A. Holmgren. Ebselen: A substrate for human thioredoxinreductase strongly stimulating its hydroperoxidereductase activity and a superfast thioredoxin oxidant. Proceedings of the National Academy of Sciences, 2002, v.99, № 13, p.8579–8584, doi:10.1073/pnas.122061399.
[73]  D. Bhowmick, S. Srivastava, P. D'Silva, G. Mugesh. Highly efficient glutathione peroxidase and peroxiredoxinmimetics protect mammalian cells against oxidative damage. Angew. Chem. Int. Ed. Engl., 2015, v.54, p.8449–8453.
[74]  L. Carroll. Interaction kinetics of selenium-containing compounds with oxidants. FreeRadic. Biol. Med., 2020, v.155, p.58–68.
[75]  D.W. Zhang. The selenium-containing drug Ebselen potently disrupts LEDGF/p75-HIV-1 integrase interaction by targeting LEDGF/p75. J. Enzym. Inhib. Med. Chem., 2020, v.35, p.906–912.
[76]  Z. Jin. Structure of M (pro) from SARS-CoV-2 and discovery of its inhibitors. Nature, 2020, v.582, p.289–293.
[77]  H. Sies, M.J&Parnham. (2020). Potential therapeutic use of Ebselen for COVID-19 and other respiratory virus infections. Free Radical Biology and Medicine. doi:10.1016/j. freeradbiomed. 2020.06.032
[78]  H.M. Mengist, X. Fan, T. Jin. Designing of improved drugs for COVID-19, Crystal structure of SARS-CoV-2 main protease M (pro)., Signal. Transduct. Target Ther. 5, 2020, doi: 10.1038/s41392-020-0178-y.
[79]  R.S. Joshi et al. Discovery of potential multi-target-directed ligands by targeting host-specific SARS-CoV-2 structurally conserved main protease. J. Biomol. Struct. Dyn., 2020, 1-16,doi: 10.1080/07391102.2020.1760137.
[80]  L. Zhang et al. Crystal structure of SARS-CoV-2 main protease provides a basis for design of improved alpha-ketoamide inhibitors. Science, 2020, v.368, p.409-412.
[81]  M.L. Reshi, Y.C. Su, J.R. Hong. RNA Viruses: ROS-Mediated Cell Death. Int. J. Cell Biol. 2014, 2014:467452, doi: 10.1155/2014/467452.
[82]  L. Delgado-Roche, F. Mesta. Oxidative Stress as Key Player in Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV) Infection. Arch. Med. Res., 2020, v.51, p.384- 387.
[83]  H. Sies, D.P. Jones. Reactive oxygen species (ROS) as pleiotropic physiological signalling agents. Nat. Rev. Mol. Cell Biol., 2020, doi: 10.1038/s41580- 020-0230-3.
[84]  C.A. Menendez, F. Bylehn, R. Gustavo. Molecular Characterization of Ebselen Binding Activity to SARS-CoV-2 Main Protease, Cornell University,Quantitative Biology, Biomolecules, 20 May 2020.