2020   04   en   p.11-14 S.S. Huseynova, S.O. Mammadova, A.A. Sadigova,
Ab initio calculation Al, Co, Sr doped graphene
 pdf 

ABSTRACT

This paper introduces the results of first-principle calculations of the electronic and magnetic properties of graphene doped by Al, Co, Sr. In according to theoretical calculations by doping Co and Al graphene energy gap is opened. Furthermore, substitution of the Sr atom for a carbon atom in graphene increases magnetization. In addition, density of state was explored for Al, Co, Sr atoms doping of the graphene structure.

Keywords: first-principle calculations, DFT, ATK, graphene, Al, Co, Sr-doped, supercell, DOS, magnetic moment.
PACS: 31.10. +z, 31.15.E-, 75.50.Gg.

Received: 27.10.2020

AUTHORS & AFFILIATIONS

Institute of Physics of ANAS, H.Javid ave., 131, AZ1143 Baku, Azerbaijan
E-mail:
REFERENCIES

[1]   K.S. Novoselov, A.K. Geim, S.V.Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov. Electric field effect in atomically thin carbon films, Science 306 (5696) (2004) 666–669.
[2]   K.S. Novoselov, D. Jiang, F. Schedin, T.J. Booth, V.V. Khotkevich, S.V.Morozov, A.K. Geim. Two-dimensional atomic crystals, Proc. Natl. Acad. Sci. U.S.A 102 (30) (2005) 10451–10453.
[3]   L. Wirtz, A. Rubio. The phonon dispersion of graphite revisited, Solid State Commun. 131 (3) (2004) 141 – 152.
[4]   L. Malard, M. Pimenta, G. Dresselhaus, M. Dresselhaus. Raman spectroscopy in graphene,Phys. Reports 473 (5) (2009) 51 – 87.
[5]   A.C.F. Serraon, A.A.B. Padima, J.A.Del Rosario, J.D. Ocon. ECS Transactions, 77 (11) 629-636 2017.
[6]   A.T. Lee and K.J. Chang. Physical Review B, vol. 87, № 8, Article ID 085435, 2013.
[7]   S. Lisenkov, A.N. Andriotis, and M. Menon. Physical Review Letters, vol. 108, № 18, Article ID 187208, 2012.
[8]   X.-H. Hu, W. Zhang, L.-T. Sun, and A.V. Krasheninnikov. Physical Review B, vol. 86, № 19, Article ID 195418, 2012.
[9]   S.S. Chauhan, P. Srivastava and A.K. Shrivastava. Solid State Communications, 2013. vol. 154, № 1, pp. 69–71.
[10]  N.K. Jaiswal and P. Srivastava. IEEE Transactions on Nanotechnology, vol. 12, № 5, pp. 685–691, 2013.
[11]  N.K. Jaiswal and P. Srivastava. Solid State Communications, vol. 151, № 20, pp. 1490–1495, 2011.
[12]  D. Jariwala, V.K. Sangwan, L.J. Lauhon, T.J. Marks and M.C. Hersam. Chem. Soc. Rev., 2013, 42, 2824–2860.
[13]  B.H. Nguyen and V.H. Nguyen. Adv. Nat. Sci.: Nanosci. Nanotechnol., 2016, 7, 013002.
[14]  W. Lv, Z. Li, Y. Deng, Q.-H. Yang and F. Kang. Energy Storage Materials, 2016, 2, 107–138.
[15]  N. Mahmood, C. Zhang, H. Yin and Y. Hou. Mater. Chem. A, 2014, 2, 15–32.
[16]  S.S. Varghese, S. Lonkar, K. Singh, S. Swaminathan and A. Abdala. Sens. Actuators, B, 2015, 218, 160–183.
[17]  Y. Shao, J. Wang, H. Wu, J. Liu, I. A. Aksay and Y. Lin, Electroanalysis, 2010, 22, 1027–1036.
[18]  S. Kumar and K. Chatterjee. ACS Appl. Mater. Interfaces, 2016, 8, 26431–26457.
[19]  R. Zhou and H. Gao. WIREs Nanomed. Nanobiotechnol., 2014, 6, 452–474.
[20]  Salma Nigar, Zhongfu Zhou, Hao Wang and Muhammad Imtiaz. Modulating the electronic and magnetic properties of grapheme, (Review Article) RSC Adv., 2017, 7, 51546-51580 DOI: 10.1039/C7RA08917A.
[21]  Jappor, Hamad Rahman; Khudair, Salah Abdul Mahdi. American Scientific Publishers, Volume 15, Number 12, December 2017, pp. 1023-1030(8), doi.org/10.1166/sl.2017.39011023
[22]  Y. Chen, X.C. Yang, .J. Liu, J.X. Zhao, Q.H. Cai, X.Z. Wang. J.Mol.Graph.Model. 39 (2013) 126.
[23]  Z. Ao, J. Yang, S. Li, Q. Jiang. Chem. Phys. Lett. 461 (2008)276.
[24]  S. Sharma, A.S. Verma. Physica B 427 (2013) 12.
[25]  A. Shokuhi Rad, A. Shadravan, A.A. Soleymani, N.Motaghedi. Curr.Appl. Phys. 15 (2015) 1271.
[26]  M. Deifallah, P.F. McMillan, F. Cora. Phys.Chem.C 112 (2008)5447.
[27]  F. Cervantes-Sodi, G. Csanyi, S. Piscanec, A.C. Ferrari. Phys.Rev.B77 (2008)165427.
[28]  L. Ferrighi, M. Datteo, C.D. Valentin. J.Phys.Chem.C 118 (2014)223.
[29]  G. Giovannetti, P.A. Khomyakov, G. Brocks, V.M. Karpan, J. vandenBrink, P.J.Kelly. Phys.Rev. Lett.101 (2008) 026803