2020   04   az   p.13-21 Sh.N. Aliyeva,
The optical properties of granulated Ni1-xZnxFe2O4nanofilms
 pdf 

ABSTRACT

Granular Ni0.4Zn0.6Fe2O4 nanofilms on the glass substrate are obtained by melting submicron ferrimagnetic particles with a laser radiation. It is established that, the magnitude and mutual orientation of external magnetic and domain fields accelerate the melting of particles, their unification into drops, the flat "bottoms" of which indicate good wetting of the glass substrate. In the obtained films, the shapes of the granules are not spherical, the average distance between the granules is in the order of their sizes, and thus, it is possible to observe giant magneto-transport properties in films. In a system of single-domain particles, all magnetic moments are coaxial and rotate synchronously with the external field as one giant moment, which leads to the appearance of extreme ferromagnetic characteristics. Thus, it is obvious that the created ferrite converters, due to the chosen geometry of the macrostructure, will have specific spatially modulated magnetic and electrical profiles. The investigated luminescence spectra of Ni0.4Zn0.6Fe2O4 nanofilms with one and two-photon excitation confirmed that the nature of the appearance of a strong maximum at 880 cm-1 is associated with the ordering of granules in the nanofilm structure in such a way that all their magnetic moments are coaxial and rotate synchronously with the external field. An analysis of the THz reflection and transmission spectra of nanofilms indicated the presence of a split sequence of acoustic phonon modes, similar to those found in magnetite films, a structural analogue of Ni0.4Zn0.6Fe2O4.

Keywords: ferrite, sublattice, terahertz spectroscopy.
PACS: 41.20Gz;42.72Ai

DOI:-

Received: 28.10.2020

AUTHORS & AFFILIATIONS

Institute of Physics of Azerbaijan National Academy of Sciences, 131 H. Javid ave, Baku, AZ-1143, Azerbaijan
E-mail:
[1]   ChienC.L. Magnetism and Giant Magneto-Transport Properties in Granular Solids. Ann. Rev. Mater. Sci. 25:129-160, 1995
[2]   De Albuquerque A.S., Ardisson J.D., Bittencourt E., de Almeida Macedo W.A. Structure and Magnetic Properties of Granular NiZn-Ferrite - SiO2. Mater. Res. 2: 235, 1992
[3]   Agashkov A.V., Bushuk B.A., Varaneckiy A.M., Mehdiyev T.R. Method for obtaining ferrite microstructures with spatially modulated magnetic and electric profiles. Proc. XII ISTC, Minsk: 244-245, 2019
[4]   A.B. Rinkevich, A.V. Korolev, M.I. Samoylovich S.M. Klshcheva, D.V. Perov, Magnetic properties of 3D nanocomposites consisting of an opal matrix with embedded spinel ferrite particles. Technical Physics. 61:194-201, 2016
[5]   Dobrovickiy V.V., Zvezdin A.K., Popov A.F. Giant magnetoresistance, spin-reorientation transitions and macroscopic quantum phenomena in magnetic nanostructures Phys, Usp. 39:4, 407-414, 1996
[6]   Sherstnev I.A. Electronic transport and magnetic structure of nanosland ferromagnetic materials systems. PhD Dissertation, P.N. Lebedev Physical Institute of the Russian Academy of Sciences, 2014
[7]   Neel L. Saturation De Certains Ferrites Rendus.230: 190-192, 1950
[8]   E.W. Gorter Philips Research Reports 9, Eindhoven, Netherland, 1954
[9]   Belov K P. Ferrimagnets with a 'weak' magnetic sublattice. Phys. Usp. 39: 623–634, 1996
[10]  Komlev A.S. Radiation-thermal sintering in a beam of fast electrons of polycrystalline ferrospinels, PhD Dissertation, University of Moscow, 2018
[11]  D. Stauffer, A. Aharany Introduction to Percolation Theory, Taylor & Francis, London, 2018
[12]  Neimark A.V. Electrophysicsl properties of a percolation layer of finite thickness.. Sov. Phys. JETP 71:341-349, 1990
[13]  Xiao G., Liou S., Levy A., Taylor J., Chien C.L., Magnetic relaxation in Fe-(SiO2) granular films.Phys. Rev. B 34: 7573, 1986
[14]  Shull R.D., Ritter J.J., Swatzendruber L.J. Change in magnetic state of Fe+silica gel nanocomposites due to low temperature treatment in ammonia.J. Appl. Phys.69: 5144, 1991
[15]  Estournes C., Lutz T., Happich J., Quaranta T., Wissler P., Guill JNickel nanoparticles in silica gel: Preparation and magnetic properties. J. Magn. Magn.Mater.173: 83-92, 1997
[16]  L. Zhang, G.C. Papaefthymiou, R.F. Ziolo, and J.Y. Ying Novel γ-Fe2O3/SiO2 Magnetic Nanocomposites via Sol-Gel Matrix-Mediated Synthesis. Nanostr.Mater.9:185-188, 1997
[17]  Malyukov S.P. Physico-technological foundations of creating magnetic heads for high-density information recording, Dissertation Doctor of Technical Sciences, Taganrog. 2003
[18]  A.E. Muslimov, A.V. Butashin, V.M. Kanevskiy The Influence of Mechanical Stresses on the Magnetic Properties of NiFe2O4 and CoFe2O4 Films.Technical Physics Letters 44: 730-734, 2018
[19]  Patange, S.M., Shirsath, S.E., Jadhav, S.P., Hogade, V.S., Kamble, S.R., Jadhav K.M. Elastic properties of nanocrystalline aluminum substituted nickel ferrites prepared by co-precipitation method. Journal of Molecular Structure1038:40-44, 2013
[20]  Caltun O.F. Pulsed laser deposition of Ni-Zn ferrite thin films, J. Optoelectron. Adv. Mater.7: 739-744, 2005
[21]  Adriana Silva de Albuquerque, José Domingos Ardisson, Edison Bittencourt, Waldemar Augusto de Almeida Macedo. Crystal and Magnetic Structures of Granular Powder Spinel Mn–Zn and Ni–Zn Ferrites. Phys. Solid State 60: 1727–1732, 2018
[22]  Aliyeva Sh., Babayev S., Mehdiyev T. Raman spectra of Ni1-xZnxFe2O4 nanopowders. JRS 49: 271-278, 2018
[23]  Klishin A.P., Rudnev S.V., Vereshagin V.İ., Andrienko O.S. Features of the formation of nano- and microstructures of powders and monolithic samples of Al2O3 when firing without imposing and with imposing an electromagnetic field. Letters of Higher Educational İnstitutions.Physics 58: 106-110, 2015
[24]  Agashkov A.V. Laser microscope with submicron resolution. Non-destructive testing and diagnostics 1: 17-24, 2015
[25]  Sadigova A.A., Aliyeva Sh.N., Ahmadova Sh.A., Yusibova I.F., Naghiyev T.G., Mehdiyev T.R. Optical UV_VIS luminescence spectra of Ni1-xZnxFe2O4 nanopowders. AJP Fizika XXV: 25-30, 2019
[26]  Aliyeva Sh, Mehdiyev T. Peculiarites of magnetic interaction in Ni1-xZnxFe2O4. European Conference on Innovations in Technical and Natural Sciences: 76-82, 2017
[27]  Aliyeva Sh., Mehdiyev T. Peculiarities of magnetic interaction in Ni1-xZnxFe2O4 nanodimensional ferrites., Smart Nanocomposites. 8: 149-153, 2017
[28]  Sushinskiy M.M. Resonant inelastic light scattering in crystals. Phys. Usp.154: 353-379, 1988
[29]  Gagan Dixit, J.P. Singh, R.C. Srivastava, H.M. Agrawal, R.J. Chaudhary Structural, Magnetic And Optical Studies Of nickel Ferrite Thin Films. Adv. Mat. Lett.3:21-28, 2012
[30]  Baryaxtar V.G., IvanovB.A., Golubeva O.N. Phenomenological theory of relaxtion in two-sublattice ferrite. Ukr. J. Phys. 58: 1149-1155, 2013
[31]  V.V. Ustinov, A.B. Rinkevich, D.V. Perov, A.M. Burkhanov, M.I.Samoylovich, S.M. Klshcheva, E. A. Kuznetsovc Giant Antiresonance in Electromagnetic Wave Reflection from a 3D Structure with Ferrite Spinel Nanoparticles. Technical Physics 83: 104-112, 2013
[32]  Martin Moskovits Surface-enhanced spectrosco¬py. Rev. Mod. Phys. 57: 783, 1985
[33]  F.Brouers, S.Blacher, A.N. Lagarkov, A.K. Sarychev, P. Gadenne, V.M. Shalaev Theory of giant Raman scattering from semicontinuous metal films. Phys. Rev. B. 55:13234, 1997
[34]  M.A. Noginov, G. Dewar, M.W. McCall, N.I. Zheludev Tutorials in Complex Photonic Media: SPIE Publications, Washington, 2009
[35]  Sarychev A.K., Shalaev V.M. Electrodynamics of Metamaterials: World Scientific Publisher, Singapore, 2007
[36]  Englert T., Abstreiter G., PontchartraI N. Determination of existing stress in silicon films on sapphire substrate using Raman spectroscopy. Sol. State Electron.23: 31-33, 1980
[37]  H. Y. Huang, Z. Y. Chen, R.-P. Wang, F. M. F. de Groot, W. B. Wu, J. Okamoto, A. Chainani, J.-S. Zhou, H.-T. Jeng, G. Y. Guo, Je-Geun Park, L. H. Tjeng, C. T. Chen, D. J. Huang Jahn-Teller distortion driven magnetic polarons in magnetite. Nat. Commun. 8: 15929, 2017
[38]  Senn M. S., Wright J. P. & Attfield, J. P. Charge order and three-site distortions in the Verwey structure of magnetite. Nature 481: 173–176, 2012
[39]  Mark S. Senn, Jon P. Wright, James Cumby, and J. Paul Attfield Charge localization in the Verwey structure of magnetite. Phys. Rev. B 92: 024104, 2015
[40]  L.V. Gasparov, D.B. Tanner, D.B. Romero, H. Berger, G. Margaritondo, and L. Forró.Infrared and Raman studies of the Verwey transition in magnetite. Phys. Rev. B 62: 7939–7944. 2000
[41]  Gasparov, L. V. and Arenas D. Magnetite: Raman study of the high-pressure and low temperature effects. J. Appl. Phys. 97: 10A922, 2005
[42]  McQueeney R.J., Yethiraj M., Montfrooij W., Gardner J.S., Metcalf P., Honig J.M. Investigation of the presence of charge order in magnetite by measurement of the spin wave spectrum. Phys. Rev. B 73: 174409, 2006
[43]  Subi´as, G., Garcı´a, J.&Blasco, J. EXAFS spectroscopic analysis of the Verwey transition in Fe3O4. Phys. Rev. B 71: 155103, 2005 https://doi.org/10.1103/PhysRevB.71.155103
[44]  Alieva Sh.N., Kerimova A.M., Abdullaev R.B., Mekhtiev T.R. Infrared diffuse reflectance spectra of micropowders of Ni1-xZnxFe2O4 ferrites. Physics of the Solid State. 59:543-549, 2017
[45]  Jadhav Santosh S., Shirsath Sagar E., Toksha B.G., Shukla S.J. and Jadhav K.M. Effect of Cation Proportion on the Structural and Magnetic Properties of Ni-Zn Ferrites Nano-Size Particles Prepared By Co-Precipitation Technique. Chin. J. Chem. Phys.21: 381-386, 2008
[46]  Z. Rezay Marand, M. Helmy Radhid Farimani, N. Shahtahmasebi Study of magnetic and structural and optical properties of Zn doped Fe3O4 nanoparticles synthesized by co-precipitation method for biomedical application. Nanomedicine J.1:238-247, 2014
[47]  Samuelsen E.J., Steinsvoll O. Low-Energy Phonons in Magnetite.Phys. Status Solidi B61:615-620, 1974
[48]  Baker W.E. Axisymmetric modes of vibration of thin spherical shell J. Acoust. Soc. Am. 33:1749–1758, 1961
[49]  Rupali Rakshit, DebasishSarkar, Monalisa Pal, Kazunori Serite, Masayoshi Tonouchi and Kalyan Mandal, Acoustic vibration induced high electromagnetic responses of Fe3O4 nano-hollow spheres in the THz regime, J. Phys. D: Appl. Phys. 48: 245301-24538, 2015
[50]  Draine, B. T.;Lazarian, A. Magnetic Dipole Microwave Emission from Dust Grains. Astrophys. J.512:740-754, 1999
[51]  Edoardo Baldini, Carina A. Belvin, Martin Rodriguez-Vega, Ilkem Ozge Ozel, Dominik Legut, Andrzej Kozłowski, Andrzej M. Oleś, Krzysztof Parlinski, Przemysław Piekarz José Lorenzana, Gregory A. Fiete &Nuh Gedik Discovery of the soft electronic modes of the trimeron order in magnetite. Nature Physics 16: 541-545, 2020