2021   02   en   p.17-23 E.A. Issaeva,
The human perception and uncertainty in quantum physics
 pdf 

ABSTRACT

The uncertainty of world is being considered by human perception point of view. So the knowledge is shared on usual, unusual, transcendent and transcendental. It depends on what kind of world (macro or micro) and in which position the observer exsists (in or out system), i.e. system is open or closed. For the analysis of this problem the “Schrödinger cat” experiment has been considered.

Keywords: Entanglement, decoherence, open and close system, “Schrödinger cat” experiment, consciousness of observer.
PACS: 03.65.-w

DOI:-

Received: 16.04.2021

AUTHORS & AFFILIATIONS

Institute of Physics of National Academy of Sciences of Azerbaijan, 131, H. Javid ave., Baku, Az1143
E-mail: elmira@physics.ab.az, el_max63@yahoo.com
REFERENCIES

[1]   A. Einstein, B. Podolsky, N. Rosen. Phys. Rev., 47, (1935), 777.
[2]   N. Bohr. Phys. Rev., 48, (1935), 696.
[3]   M.B. Menski. Uspekhi - Physics, 43, (2000), 585-600.
[4]   М.B. Мenskii. Uspekhi - Physics, 41, (1998), 923–940.
[5]   H. Everett. Quantum Theory and Measurements. Eds. J.A. Wheeler, W.H. Zurek, Princeton University Press, 1983, 168 p.
[6]   М.B. Мenskii. Uspekhi - Physics, 44, 2001, 438–442 (2001).
[7]   Maks Plank. The picture of the world in modern physics. (Uspekhi-Physics), 1929, v.9, № 4, p. 407-436 (in Russian).
[8]   Kant Immanuel. Critique of Pure Reason, Penguin Classics, 784p.
[9]   Simon Blackburn. Oxford Dictionary of philosophy, 2008, p. 800.
[10]  A.N. Kolmogorov, S.V. Fоmin. Elements of the theory of functions and functional analysis, Press. ”Nauka”, Мoscow, 1968, p. 375, (in Russian).
[11]  L.A. Zadeh. Fuzzy Sets, Information and Control, 1965, v.8, p.338-353.
[12]  L.A. Zadeh. Probability Measures of Fuzzy Events, Journal of Mathematical Analysis and Applications, 1968, v.10, p. 421-427.
[13]  L.A. Zadeh. Outline of a New Approach to the Analysis of Complex Systems and Decision Processes, IEEE Transactions on Systems, Man and Cybernetics, 1973, v. SMC-3, p. 28-44.
[14]  L.A. Zadeh. Fuzzy Sets as a Basis for a Theory of Possibility, Fuzzy Sets and Systems, 1978, v.1, p. 3-28.
[15]  B.B. Kadomsev. Dinamics and Information, UFN-Press, Moscow, 1999, p. 400. (in Russian).
[16]  E.A. Issaeva. Physics of Particles and Nuclei Letter, 2007, vol. 4, № 2, pp. 184 – 188.
[17]  P.E. Wigner. Symmetries and reflections, Indiana University Press, Bloomington–London, 1970, 303p.