2021   02   en   p.41-46 S.N. Garibova1,2, A.I. Isayev1, S.I. Mekhtiyeva1, S.U. Atayeva1, S.S. Babayev1,
Study of the effect of impurities and heat treatments on the structure of Se-As-EuF3, Se-Te-Sm and Ge2Sb2Te5 films by X-ray diffraction and Raman spectroscopy
 pdf 

ABSTRACT

The local structure of film samples of the Se95As5, Se95Те5 and Ge20Sb20.5Te51 chalcogenide semiconductors have been studied by X-ray diffraction and Raman spectroscopy. The effect of EuF3 and Sm impurities on the structure of Se95As5, Se95Те5 and the effect of heat treatment at various temperatures on structure of Ge20Sb20.5Te51 thin films have been studied. It was shown that Ge20Sb20.5Te51 films obtained by thermal evaporation of an unheated glass substrate are amorphous, and those that underwent heat treatment at 220 and 400°C transforms into a crystalline phase with a cubic and hexagonal structure. The chemical bonds and the basic structural elements that form the matrix of the studied materials, as well as the changes that occur in them upon the heat treatment and addition of impurities have been determined.

Keywords: glassy semiconductors, local structure, charged defects, memory effect.
PACS: 78.66.Jg, 72.15.Rn, 61.05.C, 73.20.Hb

DOI:-

Received: 04.06.2021

AUTHORS & AFFILIATIONS

1. G.M. Abdullayev Institute of Physics of Azerbaijan NAS 131, H. Javid ave., Baku, АZ 1143
2. Department of Physics and Electronics, Khazar University 41, Mehseti str., AZ1096, Baku Azerbaijan
E-mail: sqaribova1@gmail.com
REFERENCIES

[1]   B.T. Kolomies, N.A. Qoryunova. 1955. Tech. Phy. Letter, 25 (6), 984 [in Russian].
[2]   M. Wuttig, N. Yamada. 2007. Nature Mater., 6, 824.
[3]   W. Welnic, M. Wuttig, 2008. Materials Today, 11 (6), 20.
[4]   D. Lencer, M. Salinga, M. Wuttig. 2011. Adv. Mater., 23, 2030.
[5]   T.S. Kavetskyy, O.I. Shpotyuk. 2007. J. Optoelectron. Adv. Mater., 7, 2267.
[6]   O.I. Shpotyuk, A. Kozdras, T.S. Kavetskyy, J. Filipecki, 2006. J. NonCryst. Sol., 352, 700.
[7]   S.R. Elliott. 1992. J. Phys. Cond. Matt., 38, 7661.
[8]   V. Bragaglia, B. Jenichen, A. Giussani, K. Perumal, H. Riechert, R. Calarco. 2014. Appl. Phys., 116, 054913.
[9]   X. Zemin, C. Chaonan, W. Zhewei, W. Ke, C. Haining, Y. Hui. 2018. RSC Advances., 8, 21040-21046.
[10]  Zhang Ting, Liu Bo, Xia Ji-Lin, Song Zhi-Tang, Feng Song-Lin, Chen Bomy. 2004. Chin. Phys. Lett., 21(4), 741-744.
[11]  A.L. Lacaita. 2006. Sol. St. Electron., 50, 24.
[12]  V. Kovanda, M. Vicek, H. Jain. 2003. J. Non-Cryst. Sol., 88, 326.
[13]  V.I. Mikla. 1997. J. Phys. Condens. Matter, 9, 9209.
[14]  W. Bues, M. Somer, W. Brockner, Z. Naturforsch. 1980. 35B, 1063.
[15]  C. Zha, R. Wang, A. Smith, A. Prasad, R.A. Jarvis. Luther-Davies, B. (2007). J. Mater Sci.: Mater. Electron., 18, 389.
[16]  A. Mendoza-Galvan, E. Garcia-Garcia, Y.V. Vorobiev, Gonzalez-Hernandez. J. Microelectron. Engin. 2000. 51, 677.
[17]  Q.B. Abdullayev, J.S. Abdinov. 1975. Selenium Physics, Baku, Science [in Russian].
[18]  K. Shportko, L. Revutska, O. Paiuk, J. Baran, A. Stronski, A. Gubanova, E. Venger. (2015) Optical Mater. (Amst), 73, 489 - 496.
[19]  B. Liu, Z. Song, T. Zhang, S. Feng. Chen B. 2004. Chin. Phys., 13, 1947.
[20]  E. Cho, S. Yoon, H.R. Yoon, W. Jo. 2006. J. Korean Physical Socieety, 48 (6), 1616-1618.
[21]  V. Bragaglia, K. Holldack et al. 2016. Scientific Reports, 6: 28560.
[22]  G.G. Sosso, S. Caravati, R. Mazzarello, M. Bernasconi. 2011. Phys. Rev., B83, 134201.
[23]  S.A. Kozyukhin, V.H. Kudoyarova, H.P. Nguyen et al. 2011. Phys. Status Solidi C 8, 9, 2688–2691.
[24]  G. Bulai, O. Pompilian et al. 2019. Nanomaterials, 9, 676.
[25]  P. Nemec, V. Nazabal, A. Moreac, J. Gutwirth, L. Benes, M. Frumar. 2012. Mater. Chem. Phys., 136, 935-941.
[26]  J. Tominaga, N. Atoda. 1999. Jpn. J. Appl. Phys., 38, L322.
[27]  S. Kozyukhin, M. Veres, H.P. Nguyen, A. Ingram, V. Kudoyarova. 2013. Physics Procedia, 44, 82 – 90.
[28]  K.S. Andrikopoulos, S.N. Yannopoulos, A.V. Kolobov, P. Fons. J. Tominaga. 2006. J. Phys. Condens. Matter, 18.
[29]  G. Lucovsky, D.A. Baker, M.A. Paesler. Phillips J. C. 2007. J. Non-Cryst. Solids, 353, 1713.
[30]  S. Sugai. 1987. Phys. Rev. B: Condens. Matter, 35, 1345.
[31]  J. Koblar, B. Arlin, and G. Shau. 1999. Phys. Rev. B: Condens. Matter, 60.
[32]  E. Yalon, S. Deshmukh et al. 2017. Scientific Reports, 7: 15360.
[33]  K.S. Andrikopoulos, S.N. Yannopoulos, A.V. Kolobov, P. Fons, J. Tominaga. 2006. J. Phys. Condens. Matter, 18.
[34]  P. Nеmec, A. Moreac, V. Nazabal, M. Pavlišta, J. Prikryl, M. Frumar. 2009. J. Appl. Phys., 106, 103509.
[35]  H.R. Yoon, W. Jo, E. Cho, S. Yoon, M. Kim. 2006. J. Non-Cryst. Solids, 352, 3757–3761.