2021   03   en   p.03-06 V.M. Salmanov1, B.G. Ibragimov2,3,
Effects of geometrical size on the interband light absorption a quantum dot superlattice


We study in this paper the direct interband transitions in a quantum dot superlattice system. We obtain the analytical expressions for the light interband absorption coefficient and threshold frequency of absorption as the functions of geometrical size of quantum dot superlattice system. According to the results obtained from the present work, we find that the absorption threshold frequency decreases when the size of quantum dot superlattice increases.

Keywords: Absorption coefficient, interband transition, quantum wells, quantum wires, quantum dots, superlattices, quantum dot superlattice.
PACS: 78.55; 73.22.CD,7322


Received: 24.06.2021


1. Baku State University, AZ 1073/1 Baku, Azerbaijan
2. Institute of Physics, Azerbaijan National Academy of Sciences,
3. Azerbaijan State Oil and Industry University
Corresponding author: E-mail: Behbud.ibrahimov.93@mail.ru

[1]   M.J. Kearny and P.N. Butcher. Journal of Physics C: Solid State Physics, 1987, Volume 20, Number 147.
[2]   Z.I. Alferov. Semiconductors. The history and future of semiconductor heterostructures, Fiz. Tekh. Poluprovodn. 32, 1–18 (January 1998).
[3]   D.D. Bimberg, M. Grundmann, and N.N. Ledentsov. Quantum Dot Heterostructures, Wiley, Chichester, 1999.
[4]   A.L. Efros and A.L. Efros. “Interband absorption of light in a semiconductor sphere”, Semiconductors 16 (7), 772–775, 1982.
[5]   P. Harrison, Quantum Wells, Wires and Dots. Theoretical and Computational Physics (John Wiley & Sons Ltd, NY, 2005).
[6]   G. Bastard. Wave Mechanics Applied to Semiconductor Heterostructures (Les editions de physique, Les Ulis Cedex, Paris, 1989).
[7]   M. Bayer, O. Stern, P. Hawrylak, S. Fafard, A. Forchel. Hidden symmetries in the energy levels of excitonic 'artificial atoms', 2000, Nature 405, 923.
[8]   J.N. Zuleta, E. Reyes-Gómez. Eects of crossed electric and magnetic fields on the interband optical abffsorption spectra of variably spaced semiconductor superlattices. Physica B 2016, http://dx.doi.org/10.1016/j.physb.2016.02.011i
[9]   Y.M. Lin and M.S. Dresselhaus. Thermoelectric properties of superlattice nanowires, Phys. Rev. B 68, 075304, 2003.
[10]  A. Nozik. Quantum dot solar cells, Physica E 14, 115, 2002.
[11]  N. Wingreen and C. Stafford. Quantum-dot cascade laser: proposal for an ultralow-threshold semiconductor laser, IEEE J. Quantum Electron. 33, 1170, 1997.
[12]  T.C. Harman, P.J. Taylor, M.P. Walsh, B.E. La. Forge Quantum Dot Superlattice Thermoelectric Materials and Devices. Science 297, 2002, p. 2229-2232.
[13]  R. Khordad Effects of magnetic field and geometrical size on the interband light absorption in a quantum pseudodot system Solid State Sciences 12, 2010, 1253-1256.
[14]  G.B. Ibragimov. Free‐Carrier Absorption in Quantum Well Structures for Alloy-Disorder Scattering Physica Status Solidi B v.231, Issue2 June 2002 Pp. 589-594.
[15]  G.B. Ibragimov. Interface roughness induced intrasubband scattering in a quantum well under an electric field Semiconductor Physics Quantum Electronics & Optoelectronics, 2002, tom 5, № 1. — С. 39-41.
[16]  V.V. Karpunin, V.A. Margulis. Absorption of the electromagnetic radiation in quantum wire with a anisotropic parabolic potential placed in the transverse magnetic field. FTP 50, 6, 2016, pp. 785-790.
[17]  A.V. Shorokhov, V.A. Margulis. Intraband resonance scattering of electromagnetic radiation in anisotropic quantum dots. Nanosystems: Physics, Chemistry, Mathematics, 2010, 1, 1, 178–187.
[18]  D.Q. Khoa, N.N. Hieu, T.N. Bich, Le T.T. Phuong, B.D. Hoi, Tran P.T. Linh, Quach K. Quang, C.V. Nguyen, H.V. Phuc. Magneto-optical absorption in quantum dot via two-photon absorption process. Optik, 2018, v. 173, 263-270.
[19]  V. Lozovski and V. Piatnytsia. “The analytical study of electronic and optical properties of pyramid-like and cone-like quantum dots,” J. Comput. Theor. Nanosci. 2011, 8(11), 2335–2343.
[20]  F.M. Hashimzade, T.G. Ismailov, B.H. Mehdiyev and S.T. Pavlov. Interband electron Raman scattering in a quantum wire in a transverse magnetic field Phys.Rev. 2005, B 71, 165331.
[21]  F.M. Peeters. “Magneto-optics in parabolic quantum dots,” Phys. Rev. B 42(2), 1990, 1486–1487.
[22]  A.D. Andreev, A.A. Lipovskii. Effect of anisotropy of band structure on optical gain in spherical quantum dots based on PbS and PbSe, Semiconductors 33(12), 1999, 1304–1308.
[23]  Sameer M. Ikhdair, Majid Hamzavi, Ramazan Sever. Spectra of cylindrical quantum dots:The effect of electrical and magnetic fields together with AB flux field. Physica B 407 (2012) 4523–4529.
[24]  W.M. Shu and X.L. Lei. Miniband transport in semiconductor superlattices in a quantized magnetic field. Phys. Rev. B 50, 1994, 17378.
[25]  S.C. Lee, D.S. Kang, J.D. Ko, Y.H. Yu, J.Y. Ryu and S.W. Kim. Magnetophonon Resonances in the Miniband Transport in Semiconductor Superlattices J. Korean, Phys. Soc. 39, 2001, 643.
[26]  S.C. Lee. Electrophonon Resonance in Quantum-Dot Superlattices J. of Korean Phys. Soc, 52, 2008, 1081.