2021   02   az   p.55-67 Sariyya Mammadali kizi Aslanova,
Analytical solution of the Dirac equation for the linear combination of the Manning-Rosen and Yukawa potential
 pdf 

ABSTRACT

In this paper, the analytically bound state solution of the Dirac equation is obtained for the linear combination of the Manning-Rosen and Yukawa potensials by using Nikiforov-Uvarov method. To overcome the difficulties arising in the case for arbitrary in the centrifugal part of the Manning-Rosen potential plus the Yukawa potential for bound states, we applied the developed approximation. Analytical expressions for the energy eigenvalue and the corresponding spinor wave functions for an arbitrary value spin-orbit, radial and orbital quantum numbers are obtained. The relativistic energy eigenvalues and corresponding spinor wave functions have been obtained for cases exact spin and pseudospin symmetries by using the Nikiforov-Uvarov method. Furthermore, the corresponding normalized eigenfunctions have been represented as a recursion relation in terms of the Jacobi polynomials for arbitrary states. A closed form of the normalization constant of the wave functions is also found. It is shown that the energy eigenvalues and eigenfunctions are very sensitive to spin-orbital quantum number.

Keywords: Manning-Rosen potential, Yukawa potential, exact spin symmetry, pseudospin symmetry, Nikiforov-Uvarov method
PACS: 03.65.Nz

Received: 21.06.2021

AUTHORS & AFFILIATIONS

Baku State University, Physics/Theoretical Physics, 23, Z. Khalilov st., Baku, AZ 1148, Azerbaijan
E-mail: sariyya.aslanova@mail.ru
REFERENCIES

[1]   P.A.M. Dirac. The Principles of Quantum Mechanics, Oxford University Press, Oxford, 1930.
[2]   W. Greiner. Relativistics Quantum Mechanics, 3rd. edn. Springer, Berlin, 2000.
[3]   H. Feshbach and F. Villars. Elementary Relativistic Wave Mechanics of Spin 0 and Spin 1/2 Particles, Rev. Mod. Phys., 1958, 30, 24.
[4]   V.G. Bagrov, D.M. Gitman, Exact Solutions of Relativistic Wave Equations, Kluwer Academic Publishers, Dordrecht, 1990.
[5]   J.N. Ginocchio. Phys.Rev.Lett., 1997, 78, 436.
[6]   J.N. Ginocchio. Phys. Rep., 1999, 315, 231–240.
[7]   J.N. Ginocchio. Phys. Rep., 2005, 414, 165–261.
[8]   J.N. Ginocchio. Phys. Rev. C 69, 2004, 034318.
[9]   A. Arima, M. Harvey, K. Shimizu. Phys. Lett. B 30,1969, 517
[10]  K.T. Hecht, A. Adler. Nucl. Phys., 1969, A 137, 129.
[11]  S.G. Zhou, J. Meng, P. Ring. Phys. Rev. Lett. 2003, 91, 262501.
[12]  D. Troltenier, C. Bahri, J.P. Draayer. Nucl. Phys., 1995, A 586, 53–72.
[13]  P.R. Page, T. Goldman, J.N. Ginocchio. Phys. Rev. Lett., 2001, 86, 204.
[14]  R. Lisboa, M. Malheiro, A.S. de Castro, P.Alberto, M. Fiolhais. Phys. Rev., 2004, C 69, 024319.
[15]  S.M. Ikhdair, C. Berkdemir, R. Sever. App. Math. Compt. 2011, 217, 9019.
[16]  M. Hamzavi, A.A. Rajabi, H. Hassanabadi. Few Body Syst., 2010, 48, 171–182.
[17]  A.N. Ikot, H. Hassanabadi, T.M. Abbey. Commun. Theor. Phys., 2015, 64, 637.
[18]  M. Mousavi, M.R. Shojaei. Commun. Theor. Phys., 2016, 66, 483–490.
[19]  A.I. Ahmadov, M. Demirci, M.F. Mustamin, S.M. Aslanova, and M.Sh. Orujova. Eur. Phys. J. Plus, 2021, 136, 208.
[20]  M.F. Manning. Phys. Rev.1933, 44, 951.
[21]  M.F. Manning, N. Rosen. Phys. Rev., 1933, 44, 953.
[22]  H. Yukawa. Proc. Phys. Math. Soc. Jpn., 1935, 17, 48.
[23]  Wen-Chao Qiang, Shi-Hai Dong. Phys. Lett. A \textbf{363}, 2007, 169.
[24]  Gao-Feng Wei, Shi-Hai Dong. Phys. Lett. A \textbf{373}, 2008, 49.
[25]  Wen-Chao Qiang, Shi-Hai Dong. Phys. Scr. \textbf{79}, 2009, 045004.
[26]  A.F. Nikiforov, V.B. Uvarov. Special Functions of Mathematical Physics, Birkhäuser, Basel, 1988.