AJP Fizika E
Institute of Physics
Ministry of Science and Education
Republic of Azerbaijan
ISSN 1028-8546
Azerbaijan Journal of Physics
Published from 1995. Registration number: 514, 20 02 1995
Ministry of Press and Information of Azerbaijan Republic
2021 03 en p.33-39 | A.M. Mammadova, On the exact solution of the confined position-dependent mass harmonic oscillator model with the kinetic energy operator compatible with Galilean invariance under the homogeneous gravitational field |
ABSTRACT Exactly-solvable confined model of the quantum harmonic oscillator under the external gravitational field is studied. Confinement effect is achieved thanks to the effective mass changing with position. Nikiforov-Uvarov method is applied for solving exactly corresponding Schrödinger equation. Analytical expressions of the wavefunctions of the stationary states and energy spectrum are obtained. Keywords: Harmonic oscillator, gravitational field, position-dependent mass. PACS: 03.65.-w, 02.30 Hq.03.65.Ge DOI:- Received: 30.09.2021 AUTHORS & AFFILIATIONS Institute of Physics, Azerbaijan National Academy of Sciences H. Javid av. 131, AZ1143, Baku, Azerbaijan E-mail: a.mammadova@physics.science.az |
REFERENCIES [1] O. Von Roos. “Position-dependent effective mass in semiconductor theory”, Phys. Rev., B 27, 1983, 7547. [2] D.L. Smith, C. Mailhiot. “Theory of semiconductor superlattice electronic structure”, Rev. Mod. Phys. 62, 1990, 173. [3] M. Pi, S.M. Gatica, E.S. Hernandez and J. Navarro. “Structure and energetics of mixed 4 He-3 He drops”, Phys. Rev. B 56, 1997, 8997. [4] G.T. Einevoll. “Operator ordering in effective mass theory for heterostructures II. Strained systems”, Phys. Rev. B 42, 1990, 3497. [5] A.D. Alhaidari. ”Solution of the Dirac equation with position-dependent mass in the Coulomb field”, Phys. Lett. A, 322, 2004, 72–77. [6] S.M. Nagiyev and K.S. Jafarova. ”Relativistic quantum particle in a time-dependent homogeneous field”, Phys. Lett. A, 377, 2013, 747–752. [7] E.I. Jafarov and A.M. Mammadova. “On the exact solution of the confined position-dependent mass harmonic oscillator model under the kinetic energy operator compatible with Galilean invariance”. Azerb. J. Phys. - Fizika, 26, 2020, 31-35. [8] R.F. Lima, M. Vieira, C. Furtado, F. Moraes and Cleverson Filgueiras. “Yet another position-dependent mass quantum model”. J. Math. Phys., 53, 2012, 072101. [9] A.F. Nikiforov and V.B. Uvarov. Special Functions of Mathematical Physics (Birkhauser, Basel, 1988). |