2021   03   az   p.34-37 N.A. Nasibova,
Temperature dependence of ω meson - nucleons minimal coupling constant gωNN(T)
 pdf 

ABSTRACT

In this paper, the temperature dependence of the minimal coupling constant of the ω vector meson (gωNN(T)) with nucleons which are in ground and excited states has been considered in the framework of the soft - wall model of AdS/QCD (Anti-de-Sitter/Quantum Chromodynamic). The temperature dependence graph of the ω vector meson minimal coupling constant has been plotted.

Keywords: AdS/QCD duality, soft wall model, vector meson, Strong interaction constant
PACS: 11.25. Tq.11.25.Wx. 13.75.Lb

DOI:-

Received: 22.07.2021

AUTHORS & AFFILIATIONS

Institute of Physics of Azerbaijan National Academy of Sciences, 131 H. Javid ave, Baku, AZ-1143, Azerbaijan
E-mail: n.nesibli88@gmail.com
[1]   B. Berenstein, J.Maldacena, Nastase H. Strings. In flat space and pp waves from N=4 Super Yang Mills, JHEP, 2002, 1-154.
[2]   Z. Abidin and C. Carlson. Nucleon electromagnetic and gravitational form factors from holography. Phys. Rev. D, 2009, 79, № 11, 115003.
[3]   Z. Abidin, C. Carlson. Form-factors of vector mesons in an AdS/QCD model.Phys. Rev. D, 2007, 77, № 9, 095007.
[4]   Ahn. H. Hong D., Park C. and S. Siwach. Spin 3/2 Baryons and Form Factors in AdS/QCD, Phys. Rev.D, 2009, 054001.
[5]   C. Alexandrou, M. Brinet, J. Carbonell et. all. Axial Nucleon form factors from lattice QCD. Phys. Rev. D, 2011, 83, № 4045010.
[6]   T. Aliev, A. Ozpineci, M. Savci and V. Zamiralov. Vector meson-baryon strong coupling contants in light cone QCD sum rules. Phys. Rev. D, 80, 2009, 016010.
[7]   O. Andreev. 1/q3 Corrections and Gauge/String Duality, 73, Phys. Rev., 2006, 107901.
[8]   I. Anikin, Y. Braun, N. Offen. 3, Axial form factor of the nucleon at large momen-tum transfers.Phys. Rev., 2016, 3, 034011.
[9]   S. Brodsky, G. Teramond. 96, Hadronic Spectra and Light-Front Wave functions in Holographic QCD. Phys. Rev. Lett., 2006, 201601.
[10]  S. Brodsky, G. Teramond, H. Dosch, J. Erlich. Light-Front Holographic QCD and Emerging Confinement. 584, Phys.Rept., 2015, 1-5.
[11]  Thomas Gutsche, Valery E. Lyubovitskij, Ivan Schmidtand, Andrey Yu.Trifonov, Thomas Gutsche. Baryons in a soft-wall AdS-Schwarzschild approach at low temperature. 99, Phys.Rev., 2019,114023.
[12]  Thomas Gutsche, Valery E. Lyubovitskij, Ivan Schmidtand Andrey Yu. Trifonov, Thomas Gutsche. Mesons in a soft-wall AdS-Schwarzschild approach at low temperature. 99, Phys.Rev., 2019, 054030.
[13]  Narmin Huseynova and Shahin Mamedov. ρ meson-nucleon coupling constant from the soft-wall AdS/QCD model. High Energy Physics 2015, 1408.5496
[14]  M. Henneaux. Boundary terms in the AdS/CFT correspondence for spinor fields /in the proceedings of Conference: Mathematical methods in modern theoretical physics, Tbilisi:1998, pp. 161-170.
[15]  M. Henningson, K. Sfetsos. Phys.Lett. B, 1998, v.431, № 1-2, p.63-68.
[16]  A. Koshelev and O. Rytchkov. The AdS/CFT correspondence. Phys. Lett. B, 1999, № 450, pp. 368-376.
[17]  P. Matlock, K. Viswanathan. The AdS/CFT Correspondence for the Massive Rarita-Schwinger Field. Phys. Rev. D, 2000, v.61, p. 026002.
[18]  W. Mück, K. Viswanathan. Field Theory Correlators from Classical Field Theory on Anti de Sitter Space II. Vector and Spinor Fields. Phys. Rev. D, 1998, v.58, p.106006.
[19]  R. Rashkov. Note on the boundary terms in AdS/CFT correspondence for Rarita-Schwinger field Mod. Phys. Lett. A, 1999, № 14, pp. 1783-1796.