2021   04   az   p.07-10 S.I. Mekhtiyeva1, R.I. Alekberov1,2, S.M. Mammadov1,
X-ray diffraction scattering in Ge-As-Se-S chalcogenide glass system
 pdf 

ABSTRACT

Ge4As14Se82, Ge4As14S2Se80, Ge7As16S5Se72, Ge10As20S10Se60, Ge17,5As15S15Se52,5, Ge24As19S20Se37, Ge25As10S25Se40, Ge26As18S30Se26, Ge33As17S35Se15 chalcogenide glass semiconductor (CGS) compositions are synthesized by the method rotary furnace and amorphousness their powder samples was approved by X-ray diffraction method. Based on the theory of topological constraints (TCT), it was determined that, since the average coordination number for Ge10As20S10Se60 satisfies the condition Z = 2.4, the fraction of vibration modes with zero frequency in the chalcogenide glass is equal f = 0. According to theory this corresponds to "isostatic glass". It is shown that in the compositions (Ge17,5As15S15Se52,5, Ge24As19S20Se37, Ge25As10S25Se40, Ge26As18S30Se26, Ge33As17S35Se15) corresponding to the "rigid stress" glass (Z˃2,4, Nco˃3), the size of the average order increases relatively and varies in the range of L = 25.37 ÷ 33.74 Å.

Keywords: Chalcogenide, glass, amorphous, medium order.
PACS: 81.05.Gc , 61.80.

DOI:-

Received: 23.09.2021

AUTHORS & AFFILIATIONS

1. Institute of Physics of Azerbaijan National Academy of Sciences, 131 H. Javid ave, Baku, AZ-1143, Azerbaijan
2. Azerbaijan State Economic University, 6 Istiglaliyat str., Baku, AZ-1001, Azerbaijan.
E-mail: Rahim-14@mail.ru
REFERENCIES

[1]   Q. Liu, X. Zhao, F. Gan, et al.. Solid State Commun, , 2005, 134, 513.
[2]   J. Keirsse, C. Boussard-Pledel, O. Loreal, et al.. Vib, Spectrosc, 2003, 32, 23.
[3]   K. Michel, B. Bureau, C. Pouvreau, et al.. J. Non-Cryst. Solids 326&327, 2003, 434.
[4]   M. Frumar, B. Frumarova, T. Wagner. Amorphous and glassy semiconducting chalcogenides, Comprehensive Semiconductor Science and Technology 4. 2011, 206-210.
[5]   M. Ghayebloo, M. Tavoosi, M. Rezvani. Compositional Modification of Se-Ge-Sb Chalcogenide Glasses by addition of Arsenic Element, Journal of Infrared Physics and Technology 83, 2017, 62-67.
[6]   B. Ye, Sh. Dai, R. Wang, G. Tao, P. Zhang, Xu. Wang, X. Shen. Influence of the selenium content on thermo-mechanical and optical properties of Ge-Ga-Sb-S chalcogenide glasses, Journal of Infrared Physics and Technology 77, 2016, 21-26.
[7]   Y. Zhang, J.B. Chou, J. Li, H. Li, Q. Du, A. Yadav, S. Zhou, M.Y. Shalaginov, Z. Fang, H. Zhong, C. Roberts, P. Robinson, B. Bohlin, C. Rios, H. Lin, M. Kang, T. Gu, J. Warner, V. Liberman, K. Richardson, J. Hu. Broadband transparent optical phase change materials for high-performance nonvolatile photonics, Nat Commun, 10, 2019, 4279.
[8]   D. Maystre. Diffraction gratings: An amazing phenomenon, Comptes Rendus Physique, 14, 2013, 381-392.
[9]   X. Wang, X. Liu, X. Wang. Hydrogel diffraction grating as sensor: A tool for studying volume phase transition of thermo-responsive hydrogel, Sensors and Actuators B: Chemical, 204, 2014, 611-616.
[10]  H. Ferhati, F. Djeffal. New high performance ultraviolet (MSM) TiO2/glass photodetector based on diffraction grating for optoelectronic applications, Optic, 127, 2016, 7202-7209.
[11]  K. K. Das, M.S. Alam. Fiber-optic micro displacement sensor based on diffraction grating, Microw Opt Techn Let, 32, 2002, 446-449.
[12]  K. Tanaka. Amorphous Chalcogenide Semiconductors and Related Materials/ K. Tanaka, K. Shimakawa. New York: Springer Science+Business Media LLC, 2011, 259 p.
[13]  R.I. Alekberov, S.I. Mekhtiyeva, A.I. Isayev, M.Fabian. The local structure of As-Se-S chalcogenide glasses studied by neutron diffraction and Raman scattering. J. Non - Crystalline Solids, 2017, 470(15), p.152-159.
[14]  S.R. Elliott. Medium-range structural order in covalent amorphous solids. Nature, -1991, 354,-p.445-452.
[15]  S.R. Elliott. Second sharp diffraction peak in the structure factor of binary covalent network glasses, Phys. Rev. B: Condens. Matter Mater. Phys., 1995, vol. 51, p. 8599.
[16]  L. Tichy and H. Ticha. Mater. Lett. 21, 313, 1994.
[17]  J.C. Phillips, M.F. Thorpe. Constraint Theory, Vector Percolation and Glass Formation. Solid State Communications, 1985, 53(8), p.699-702.