2022   01   en   p.08-12 A.I. Jabbarov,
Heat capacity and phase transitions in a quasi two-dimensional single crystal Cu1.04Fe1.12Te1.84
 pdf 

ABSTRACT

The heat capacity of the quasi-dimerous sample Cu1.04Fe1.12Te1.84 (CFT) obtained by the directional crystallization was experimentally studied in the temperature range 2–306K. On the temperature dependence of the Cp/T, a sharp maximum was revealed with TG=55K, associated with the contribution of the spin-glass state, and the blurred anomaly was revealed near TN=65K, due to the phase transition of the antiferromagnetary paramagnetic. The experimental results obtained are explained within the framework of a well-known model. From the experimental temperature dependence of the heat capacity of Cp(T) CFT (copper of iron television), the debye temperature is calculated ƟD=176.9 K, as well as the anisotropy coefficient η=0.309 and the two-dimensional temperature of the debt Ɵ2=122.2K.

Keywords: heat capacity, quasi-humid, spin-glass, antiferromagnetik.
PACS: 74.25Ha, 75,50Pp

Received: 20.12.2021

AUTHORS & AFFILIATIONS

Institute of Physics of Azerbaijan NAS 131, H. Javid ave., Baku, AZ-1143
E-mail: ayd. jabb @ list.ru
REFERENCIES

[1]   A.M. Abdullayev, M.A. Aljanov, M.J. Nanzafzade, G.D. Sultanov, M.K. Khadyarova, A.I. Nanzafov, M.N. Aliyev. 2019 № 3 (17), pp. 470-479. ISSN 2221-8688.
[2]   A.A. Vapolin, V.D. Prochah, Yu.V. Rodin, V.E. Skorükin. Semiconductor properties of CuFeTe2, inorganic materials. 1984, v.20, p. 578-581.
[3]   A.I. Djabbarov, S.K. Oruzhov, G. Guseynov, N.F. Gahramanov. Crystallography, 2004, v.49, p.1136-1139.
[4]   S.K. Orudejov, G. Guseynov, A.I. Jabbarov, A.I. Nanzafov, M.M. Ahmedov. Physıcs and Astronomy, 2004, XXXIV № 2, p. 104-107.
[5]   F.N. Abdullayev, T.G. Kerimova, D. Sultanov and N.A. Abdullayev. FTT, 2006, vol. 48, 22, p. 1744-1747.
[6]   A.M. Lamarche, J.C. Woolley, G. Lamarche, I.P. Swainson, T.M. Holden. Structure and magnetic properties of the ternary compound Copper Iron Telluride, J. Magn. Magn. Mater., 1998, 186, p. 121-128.
[7]   F. Gonzalez-Jimenez, E. Jaimes, A. Rivas, L.D. Onofrio, J. Gonzales, M. Quintero. New Spindensity Waves Systems: Cu and Fe Selenides and Tellurides, Physica, B 259-261, 1999, p. 987-989.
[8]   A.I. Jabbarov. Magnetic Interaction of AJP Fizika, 2020, vol. XXVI № 2, p.33-37, Section: EN.
[9]   P.N. Valdivia, M.G. Kim, Th.R. Forrest, Z. Xu, M. Wang, Wu, L.W. Harringer, E.D. Bourret-Courchesne and R. J. Birgeneau1. Copper-Substituted Iron Telluride: A Phase Diagram, Physical Review B, 2015, 91, 224424.
[10]  J. Wen, Z. Xu, G. Xu et al. Magnetic Order Tuned by Cu Substitution in Fe1.1 –Zcuzte. http://arxiv.org/abs/1205.5069v2.
[11]  I.M. Lifshitz. On the thermal properties of chain and layered structures at low temperatures. Zhetf, 1952, vol. 22, p. 475-486.
[12]  A.M. Sosvich. Basics of the crystal lattice. M.: Science, 1973, p.122.
[13]  E. E. Anders, B. Ya. Sukharevsky, L. S. Shestachenko. On the heat capacity of layered structures. Flt, 1979, vol. 5, № 7, p. 783-793.
[14]  V.L. Berezinsky, A.Ya. Blank. Thermodynamics of layered isotropic magnets in the low-temperature region. Zhetf, 1973, vol. 64, p. 725 - 740.
[15]  V.K. Semenchenko. Superheated liquids and phase transitions. Sat. Articles - Sverdlovsk: OCS of the USSR Academy of Sciences, 1979, p. 3-36.
[16]   A.Z. Patashinsky, V.L. Pokrovsky. Fluctuation theory of phase transitions. M.: Science, 1975, p. 155 -157.
[17]  L.G. Mamsurov, N.G. Troweevich, S.Yu. Gavrilkin, I.V. Mamsurov, L.I. Trachtenberg. JETP, 2019, volume 155, Isk.4, p. 721-729.