2022   01   en   p.13-17 Shahmardan Sh. Amirov,
On the theory of parametrical interaction of laser pulses in metamaterial


A theory of parametric interaction of laser pulses in metamaterials has been developed. Analytic expression for the spectral density of a backward signal wave is obtained in the presence of group velocity mismatch and group velocity dispersion. The excited pulse was observed to be splitting out into several peaks at larger nonlinear lengths or when characteristic lengths corresponding to the group velocity mismatch as well as the group velocity dispersion are less than the nonlinear length. It is found that upon parametric interaction between forward (pump and idler) and backward waves, compensation of signal wave losses by the losses of direct waves has allowed the parametric amplification and generation of the backward wave.

Keywords: Parametric amplification, metamaterials, second order dispersion theory.
PACS: 78.67Pt;42.65k;4260,42.60Hk

Received: 27.12.2021


Faculty of Physics, Baku State University, 23 Z. Khalilov str., Az-1148, Baku, Azerbaijan
Department of Medical and Biological Physics, Azerbaijan Medical University 167 S.Vurgun str., Az-1022, Baku, Azerbaijan
Department of Physics and Electronics, Khazar University, 41 Mahsati str., Az- 1096, Baku, Azerbaijan
E-mail: phys_med@mail.ru

[1]   S.A. Akhmanov and R.V. Khokhlov. Ah. Eksp.Teor. Fiz. 1962, 43, 351. Sov. Phys. JETP 1963, 16, 252.
[2]   S.A. Akhmanov, V.A. Visloukh, A.S. Chirkin. UFN 1986, v. 149, issue 3, p. 449-509.
[3]   A.I. Maimistov, I.R. Gabitov and E.V. Kazantseva. Opt. Spectrosk. 2007, 102, p.99.
[4]   S. Zhang et al. Phys. Rev. Lett. 2005, 95.
[5]   W. Cai, V.M. Shalaev. Optical Metamaterials, Fundamentals and Applications, New York, Springer. 2010.
[6]   R.J. Kasumova, Z.H. Tagiev, Sh.Sh. Amirov, Sh.A. Shamilova and G.A. Safarova. Journal of Russian Laser Research, Vol. 38, № 4, p. 211-218.
[7]   Z.H. Tagiev, A.S. Chirkin. Sov.Phys. JETP. 1977, 46, 669. [ Zh. Eksp. Teor.Fiz. 1977, 73, 1271].
[8]   Z.H. Tagiev, R.J. Kasumova, R.A. Salmanova, N.V. Kerimova. J.Opt B. 2001, 3, 84.
[9]   V.G. Dmitriev, L.V. Tarasov. Prikladnayanelineynayaoptika (Applied Nonlinear Optics) (Moscow, Fizmatgiz, 2004, p.352.
[10]  R.J. Kasumova, Sh. Sh. Amirov, Sh. A. Shamilova. Quantum Electronics. 2017, 47 (7) p. 655-660
[11]  V.V. Slabco, A.K. Popov, C.A. Myslivets, E.V. Rasskazova, V.A. Tkachenko. Kvantovaya Electronika. 2015, 45, № 12 p. 1151-1152.
[12]  A.K. Popov, V.M. Shalaev. Appl.Phys. 2006, B, 84, 131.
[13]  M.I. Shalaev, S.A. Myslivets et al. Opt. Lett. 2011, 36, 3861.
[14]  I.V. Shadrirov, A.A. Zharov, Y.S. Kivshar. J.Opt.Soc.Am. 2006, B, 23, 529.
[15]  A. Piskarskas, A. Stabinis, A. Yankauskas. UFN 1986, v.150, issue 1, p. 127-143.
[16]  Z.A. Tagiev, Sh.Sh. Amirov. Sov. J. Quantum Electron. 1989, 11, p.1442-1445.
[17]  S.A. Akhmanov, V.A. Visloukh, A.S. Chirkin. UFN 1986, v. 149, issue 3, p.449-509.
[18]  Sh.Sh. Amirov, Z.A. Tagiev. Optika i Spektroskopiya. 1990, v. 69, issue 3, p. 678-683.