2022   01   en   p.52-58 V.A. Tanriverdiyev,
Dynamics of three-walled mixed-spin (1/2, 1 and 3/2) ising nanotube
 pdf 

ABSTRACT

Mean-field approximation and Glauber-type stochastic dynamic approach has been employed to study of three-walled mixed-spin Ising nanotube with an inner hexagonal vacancy. The effects of different exchange couplings, single-ion anisotropies, and temperature on the dynamic behavior of mixed spin (1/2,1, 3/2) Ising system under a time dependent oscillating external magnetic field are attentively discussed. Some different fundamental phases and mixed phases have been observed in the system, which according to the certain values of Hamiltonian parameters. The results are illustrated numerically for a particular choice of parameters.

Keywords: Mixed spin (1/2,1, 3/2) Ising system, Mean-field approximation, Glauber-type stochastic dynamic, Dynamic phase transitions.
PACS: 75.70. Ak

Received: 15.02.2022

AUTHORS & AFFILIATIONS

Institute of Physics of the National Academy of Sciences of Azerbaijan Azerbaijan 131, H. Javid ave., Baku, АZ 1143
E-mail: vahid_tanriverdi @yahoo.com
REFERENCIES

[1]   M. Karimou, R.A. Yessoufou, T.D. Oke, A.Kpadonou, F. Hontinfinde. Bethe approach study of the mixed spin-1/2 and spin-5/2 Ising system in the presence of an applied magnetic field Condensed Matter Physics. 2016, Vol. 19, № 3, 33003, p. 1–15.
[2]   O. Rojas, J. Strecka, O. Derzhko, S.M. de Souza. Peculiarities in pseudo-transitions of a mixed spin-(1/2, 1) Ising-Heisenberg double-tetrahedral chain in an external magnetic field Phys. Condens. 2020, Matter 32, 035804.
[3]   J.R.V. Pereira T.M. Tunes A.S. de Arruda, M.Godoy. Thermal properties of the mixed spin-1 and spin-3/2 Ising ferrimagnetic system with two different random single-ion anisotropies Physica A: Statistical Mechanics and its Applications. 15 June 2018, Volume 500, p.265-272.
[4]   V. Stubna, M. Jascur. Mixed spin-1/2 and 3/2 Ising model with multi-spin interactions on a decorated square lattice. J. Magn. Magn. Mater. 2017, 442, p. 364.
[5]   J. Kple, E. Albayrak and F. Hontinfinde. The thermal properties of the mixed spin-1/2, 1, 3/2 Ising model on the Bethe lattice Modern Physics Letters. 2021, BVol. 35, № 04, 2150079.
[6]   B. Nmaila, K. Htoutou, L.B. Drissi, R. Ahl Laamara. The magnetic properties and hysteresis loops of mixed spin-(3/2,2) hexagonal Ising nanowire system with alternate layers Solid State Communication. 2021, 336, 114418.
[7]   I.J.Souza, P.H.Z.de Arruda, M.Godoy, L.Craco, A.S. de Arruda. Random crystal-field effects in a mixed spin-1 and spin-3/2 ferrimagnetic Ising system. Physica 2016, A 589, 444.
[8]   M. Boughrara, M. Kerouad, A. Zaim. The phase diagrams and the magnetic properties of a ferrimagnetic mixed spin 1/2 and spin 1 Ising nanowire Journal of magnetism and magnetic materials. 2014, 360, 222-228
[9]   H. Magoussi, A. Zaim, M. Kerouad. Magnetic properties of a nanoscaled ferrimagnetic thin film: Monte Carlo and effective field treatments Superlattices and Microstructures. 2016, 89, p.188-203.
[10]  S. Sabri, M.E.L. Falaki, M.E.L. Yadari, A.Benyoussef, A. Kenza. EL: Phase Transitions of Ising mixed spin 1 and 3/2 with random crystal field distribution. Physica. 2016, A 460, 210.
[11]  Y. Benhouria, I. Essaoudi, A. Ainane, R. Ahuja, F. Dujardin. Hysteresis loops and dielectric properties of a mixed spin Blume–Capel Ising ferroelectric nanowire. Physica. 2018, A 499, 506.
[12]  Y. Nakamura. Existence of a compensation temperature of a mixed spin-2 and spin-5/2 Ising ferrimagnetic system on a layered honeycomb lattice. Physical Review. 2000, B.62, p.11742-11746.
[13]  B. Nmaila, K. Htoutou, L.B. Drissi, R. Ahl Laamara. The magnetic properties and hysteresis loops of mixed spin-(3/2,2) hexagonal Ising nanowire system with alternate layers Solid State Communication. 2021, 336, 114418.
[14]  W. Wang, Lv D, F Zhang, Bi J-L and J-N. Chen. Monte Carlo simulation of magnetic properties of a mixed spin-2 and spin-5/2 ferrimagnetic Ising system in a longitudinal magnetic field. J. Magn. Magn. Mater., 2015, vol.385, pp.16-26.
[15]  S. Oliveira, J.P. Santos. Magnetic properties in the hybrid model of Ising spin-1/2: A Mean-Field theory approach in the kagome lattice Physics Letters. 2021, 30 September, A Vol. 411, 127551.
[16]  J. Strecka, K. Karlová, O. Krupnitska. On the failure of effective-field theory in predicting a spurious spontaneous ordering and phase transition of Ising nanoparticles, nanoislands, nanotubes and nanowires Phys. E: LowDimens. Syst. Nanostructures 133, 2021,114805.
[17]  J. Strecka. Anomalous Thermodynamic Response in the Vicinity of a Pseudo-Transition of a Spin-1/2 Ising Diamond Chain Acta Phys. 2020, Pol. A 137, 610.
[18]  O. Rojas, J. Torrico, L. M. Veríssimo, M.S.Pereira, S.M. de Souza and M.L. Lyra. Low-temperature pseudo-phase-transition in an extended Hubbard diamond chain Phys. Rev. 2021, E 103, 042123.
[19]  A. Bobak and J. Dely. “Phase Transitions and Multicriti cal Points in the Mixed Spin-3/2 and Spin-2 Ising System with a Single-Ion Anisotropy,” Journal of Magnetism and Magnetic Materials. 2007, vol. 310, № 2, p.1419-1421.
[20]  D. Sabi Takou, M. Karimou, F. Hontinfinde, E.Albayrak. Anisotropic Heisenberg model for the mixed spin-3/2 and spin-1/2 under random crystal field Condensed Matter Physics. 2021, vol. 24, № 1, 13704, p.1–13.
[21]  E. Albayrak. Triple mixed-spin Ising model International Journal of Modern Physics B, 2020, vol. 34, № 13, 2050129.
[22]  R.G.B. Mendes, F.C. Sá Barreto, J.P. Santos. Magnetic properties of the mixed hexagonal nanowire system with half and integer spins: Monte Carlo simulation and mean field approximation study J. Magn. Magn. Mater. 2020, 513, 167150.
[23]  C. Bran, J.A. Fernandez-Roldan, R.P. del Real, A. Asenjo, O. Chubykalo-Fesenko and M. Vazquez. Magnetic Configurations in Modulated Cylindrical Nanowires Nanomaterials. 2021, 11, 600.
[24]  A. Iorio, M. Rocci, L. Bours, M. Carrega, V. Zannier, L. Sorba, S. Roddaro, F. Giazotto, and E. Strambini. Vectorial Control of the Spin–Orbit Interaction in Suspended InAs Nanowires Nano Lett. 2019, 19, 652.
[25]  M.U. Torres, A. Sitek, S.I. Erlingsson, G. Thorgilsson, V. Gudmundsson and A. Manolescu. Conductance features of core-shell nanowires determined by their internal geometry Phys. Rev. 2018, B 98, 085419.
[26]  J. Holanda. Analyzing the magnetic interactions in nanostructures that are candidates for applications in spintronics J. Phys. D: Appl. Phys. 2021, 54, 245004.
[27]  N. Hachem, I.A. Badrour, A.El Antari, A.Lafhal, M. Madani, M. El Bouziani. Phase diagrams of a mixed-spin hexagonal Ising nanotube with core-shell structure Chin. J. Phys. 2021, 71, 12.
[28]  F. Tackın, O. Canko, A. Erdinc, A.F. Yıldırım. Thermal and magnetic properties of a nanotube with spin-1/2 core and spin-3/2 shell structure Physica. 2014, A 407, 287.
[29]  X.F. Han, S. Shamaila, R. Sharif, J.Y.Chen, H.R.Liu, D.P. Liu. Structural and magnetic properties of various ferromagnetic nanotubes. Adv. Mater. 2009, 21, p. 4619–4624.
[30]  T.M. Nguyen, M.G. Cottam. Spin-wave excitations in ferromagnetic nanotubes, Surface Science. 2006, 600, p. 4151-4154.