2022   02   en   p.31-37 M.A. Nuriyev, A.A. Shukurova, A.Sh. Mammadova, A.I. Gasimova,
Electrophysical properties of gamma-irradiated polyethylene terephtalate (PETPh\CdS) nano-composits on the base of porous membranes
 pdf 

ABSTRACT

The electrophysical properties of initial and irradiated PETh/CdS nano-composites obtained on the base of industrial track membranes from PETPh with three and twenty of formation cycles are investigated in the present work. It is shown that the observable effects in frequency dependence of electrophysical properties of PETh/CdS composites are connected with polarization change in matrix interphase boundary with filler and CdS nano-particles in PETPh near-surface region and radiation processes in polymer matrix at influence of gamma radiation. The study of frequency dependence of resistivity of porous PETPh and composites on PETh/CdS base shows that the resistivity of porous PETPh decreases as a result of destruction after influence of gamma radiation and the taking place matching leads to the increase of physical interaction in boundary nano-particle – polymer, and resistivity of PETh/CdS composites relatively increases.

Keywords: Polyethylene terephthalate (PETPh), porous track membrane, dielectric constant, dielectric losses, resistivity, interphase boundary, layerwise chemisorption, irradiation dose.
PACS: 61.80Ed;72.80. Tm;72.80. Le

Received: 05.04.2022

AUTHORS & AFFILIATIONS

Institute of Radiational Problems of Azerbaijan NAS Az 1143, B. Vakhabzade, 9, Baku, Azerbaijan
E-mail:
REFERENCIES

[1]   J. Goldberger, He R., Y. Zhang. Single-crystal gallium nitride nanotubes., Nature, 2003, vol. 422, pp. 599-602.
[2]   J.C. Hulteen, C.R. Martin. A general template-based method for the preparation of nanomaterials., Journal of Materials Chemistry, 1997, vol.7, pp.1075-1087.
[3]   R.F. Khairutdinov. Chemistry of semiconductor nano-particles., Chemistry successes, 1998, vol. 67, № 2, pp. 125-139.
[4]   A.A. Rempel. The nano-technologies, properties and application of nano-structured materials., Chemistry successes, 2007, vol. 76, № 5, pp. 474-500.
[5]   B.P. Chandra, V.K. Chandra, P. Jha. Luminescence of II-VI Semiconductor Nanoparticles., Solid State Phenomena, 2015, vol. 222, pp.1-65.
[6]   D. Denzler, M. Olschewski, K. Sattler. Luminescence studies of localized gap states in colloidal ZnS nanocrystals., J. Appl. Phys., 1998, vol. 84, N 5, pp. 2841-2845.
[7]   R. Lozada-Morales, O. Zelaya-Angel, G. Torres-Delgado. Photoluminescence in cubic and hexagonal CdS films., Appl. Surface Sci. 2001. vol. 175–176. pp. 562-566.
[8]   M. Hayne, B. Bansal. High-field magneto-photoluminescence of semiconductor nanostructures, Luminescence. 2012. vol. 27. №3. pp. 179-196.
[9]   X. Sun, L. Xie, T. Wang, et. al. Optical fiber amplifiers based on PbS/CdS QDs modified by polymers., Optics Express, 2013. vol. 21. №7. pp. 8214-8219.
[10]  B. Li, X. Zhang, L. Li et. al. (2014). White luminescence from CdS nanocrystals under the blue light excitation. Journal of Solid State Chemistry, 2014. vol. 214. pp. 108–111.
[11]  E.V. Ushakova, T.K. Kormilina, M.A. Burkova et. al. The Influence of Ligand Type on Self-Organization and Optical Properties of Cadmium Selenide Quantum Dots, Optics and Spectroscopy, 2017, vol. 122, № 1, pp. 25–29.
[12]  I.A. Akimov, I.Yu. Denisuk, A.M. Meshkov. Nano-crystals of semiconductors in polymer matrix are new optical mediums., Optics and spectroscopy, 1992., vol. 72, № 4, pp. 1026-1032.
[13]  N.M. Ushakov, K.V. Zapsis, G.Yu. Yurkov et. al. Optical Properties of Cadmium Sulfide Nanoparticles on the Surface of Polytetrafluoroethylene Nanogranules., Optics and Spectroscopy, 2006, vol. 100, № 3, pp. 414–418.
[14]  M.A. Zvaigzne, I.L. Martynov, V.A. Krivenkov et. al. The Influence of the Quantum Dot/Polymethylmethacrylate Composite Preparation Method on the Stability of Its Optical Properties under Laser Radiation., Optics and Spectroscopy, 2017, vol. 122, № 1, pp. 69–73.
[15]  A.A. Mashenzeva, B.N. Aubakirov, M.B. Zdorovetz, A.B. Rusakova, A.T. Akilbekov. Some aspects of argenthum precipitation in channels of track membranes on PETPh base, Eurasia National University Buletin University named after L.N. Gumilyev, 2012, № 2, pp.84-92.
[16]  E.Yu. Kanyukov, E.E. Shumskaya, M.D. Kutuzov D.B. Borgekov, I.E. Kenjina, A.L.Kozlovskii, M.V. Zdorovetz. Ferromagnetic nano-tubes in pores of track membranes for the elements of flexible electronics., Devices and measurement techniques, 2017, vol. 8, № 3, pp. 214–221.
[17]  A.M. Magerramov, M.A. Nuriyev, A.A. Shukurova. Electret properties of nano-structured films of Teflon., Plastic masses, 2012, № 10, pp.7-9.
[18]  A.M. Magerramov, M.A. Nuriyev, A.A. Shukurova. On orientation of polyethylene irradiated films of low density and electric conduction of its compositions with nano-Cu2S, Perspective materials, 2015, № 5, pp.62-68.
[19]  M.A. Nuriev, A.M. Magerramov, A.A. Shukyurova. Electrical Conductivity of Nanocomposites Based on Low-Density Polyethylene and Cu2S Nanoparticles., Surface Engineering and Applied Electrochemistry, 2018, vol. 54, №1, pp. 32–37.
[20]  A.A. Shukurova, M.A. Nuriyev, A.I. Gasimova, I.M. Nuruyev, A.Sh. Mammadova. The nano-composites on the base of crystal polymers and cadmium sulfide., Transactions, ANAS, series of phys-tech and math sciences, physics and astronomic, № 5, 2021, pp.121-127.
[21]  http://www.newchemistry.ru/material.php?id=40
[22]  S.S. Federova. The modification of electro-physical properties of polyethylene terephthalate films by ion-plasma precipitation of nano-dimensional coverings on carbon base., PhD thesis, Moscow, 2005, p.153.
[23]  A.N. Georgibiani, M.K. Sheynkman. Physics of the A2B6 compounds., М.: Science, 1986, pp.42–44.
[24]  S.A. Sadikhov, D.K. Palchayev, J.Kh. Murliyeva, M.N. Alikhanov, M.Kh. Rabadanov, S.Kh. Gadjimagomedov, S.N. Kallayev. Ac-electric conduction of BiFeO3 ceramics obtained by the method of spark plasma baking of nano-powder., Solid-state Physics, 2017, vol. 59, № 9, pp.1747-1753.
[25]  Yu.M. Poplavko, L.P. Pereverzeva, I.P. Raevski. Physics of active dielectrics, Rostov-na Donu., 2009, pp162-164.
[26]  Shalini Kumari, N. Ortega, A. Kumar, S.P. Pavunny, J.W. Hubbard, C. Rinaldi, G. Srinivasan, J.F. Scott, and Ram S. Katiyar. Dielectric anomalies due to grain boundary conduction in chemically substituted BiFeO3, Journal of Applied Physics, 117, 114102, (2015), рp.1-13.