2022   02   az   p.29-33 A.R. Imamaliyev,
Size effect study of submicron barium titanate particles on their thermal and dielectric properties
 pdf 

ABSTRACT

In this work, the dielectric properties and phase transitions of ferroelectric barium titanate (BaTiO3) particles with sizes of 100, 200, and 400 nm are experimentally studied. It has been shown that with a decrease in the BaTiO3 particle size, the cubic - tetragonal phase transition point shifts downward. For particles with a size of 100 nm, this shift is anomalously large and is about 60°C. The phase transition enthalpy for these particles is also is higher by an order compared to other sizes. The peak corresponding to the tetragonal - orthorhombic transition is not found in the DSC thermogramm in the case of of 200 nm sized particles. These particles are also distinguished by a significantly high value of the dielectric constant. The interpretation of the obtained results on the basis of existing models is given.

Keywords: magnetoelectricity, nanoparticles, differential scanning calorimetry, phase transitions, dielectric constant
PACS: 42.70.Df; 51.70.+; 52.25Mg; 64.70.mj, 65.90.+i; 77.22Gm; 77.84.-s

DOI:-

Received: 13.06.2022

AUTHORS & AFFILIATIONS

Institute of Physics of Azerbaijan National Academy of Sciences, 131 H. Javid ave, Baku, AZ-1143, Azerbaijan
E-mail:
REFERENCIES

[1]   K. Rabe, C. H. Ahn, J.-M. Triscone (Eds.). Physics of Ferroelectrics: A Modern Perspective, Topics Appl. Physics, 2007, 105, 1–30.
[2]   J. Scott Ferroelectric Materials for Energy Applications, 2018 Wiley-VCH Verlag GmbH & Co. KGaA, 376 p
[3]   K. Uchino. Ferroelectric devices, CRC Press, 2011, 361 p.
[4]   B. Ertuğ, Overview of Electrical Properties of Barium Titanate, American Journal of Engineering Research (AJER), 2013, v.02, 08, 01-07.
[5]   A.K. Sharma, B.G. Priyadarshini, B.R. Mehta, D.Kumar. Amorphous Barium Titanate thin Film improves the Light Trapping in Si solar cells RSC Advances, 2015, 2-18.
[6]   Yu. Garbovskiy, O. Zribi, A. Glushchenko. Emerging Applications of Ferroelectric Nanopar¬ticles in Materials Technologies. Biology and Medicine. http://dx/doi/org/10.5772/52616
[7]   Markys G. Cain. Characterisation of Ferroelectric Bulk Materials and Thin Films, Springer, 2014, 283p.
[8]   K.P. Jayadevan, T.Y.Tseng. Composite and multilayer ferroelectric thin films: processing, pro¬per¬ties and applications, Journal of material science: materials of electronics, 2002, 1, 3439-459.
[9]   S. Salemzadeh, A. Mellinger, G. Caruntu, Ferroelectric Barium Titanate Nanocubes as Capacitive Building Blocks for Energy Storage Applications, ACS Applied Materials, 2014. http://dx/doi.org/10.1021/am502547h
[10]  P.N. Nikolarakis, I.A. Asimakopoulos, L.Zoumpoulakis. Design and Construction of Capacitors with the Use of Nano-Barium Titanate’s (BaTiO3) Composite Materials, Journal of Nanomaterials Volume 2018, Article ID 7023437, 11 p. https://doi.org/10.1155/2018/7023437
[11]  A. Glushchenko, Ch. Cohen, J. West, F. Li, E. Büyüktanır, Y. Reznikov. Ferroelectric Particles in Liquid Crystals: Recent Frontiers, Mol. Cryst. Liq. Cryst., 2006, 453, 227–237.
[12]  Y. Reznikov. Ferroelectric Colloids in Liquid Crystals, Liquid Crystals beyond Displays: Chemistry, Physics, and Applications edited by Quan Li, John Wiley & Sons. Inc., Hoboken, New Jersey, 2012, 573 p.
[13]  Y. Reznikov, A. Glushchenko and Y. Garbovskiy. Ferromagnetic and Ferroelectric Nanoparticles in Liquid Crystals, “Liquid Crystals with Nano and Microparticles”, Ed. by J. Lagerwall and G. Scalia, World Scientific Publishing, 2016, 657-695.
[14]  H.H. Liang, J.Y. Lee. Enhanced Electro-Optical Properties of Liquid Crystals Devices by Doping with Ferroelectric Nanoparticles, “Ferroelectrics – Material aspects” ed. By M.Lallart, Intech Web.org, Croariya, 2011, 193-210.
[15]  T.D. Ibragimov, A.R. Imamaliyev, G.M. Bayramov. Electrooptic Properties of BaTiO3-Liquid Lrystal 5CВ Colloid, Optk, 2016, 127, 1217-1220.
[16]  T.D. Ibragimov, A.R. Imamaliyev, G.M. Bayramov. Formation of Local Electric Fields in Ferroelectric BaTiO3 Particles-Liquid Crystal Colloids, Ferroelectrics 2016, 495, 60–68.
[17]  A.R. Imamaliyev, Sh.A. Humbatov, M.A. Ramazanov. Effect of Ferroelectric BaTiO3 Particles on Threshold Voltage of a Smectic A Lliquid Crystal, Beilstein Journal of Nanotechnology. 2018, 9, 824–828.
[18]  R. Basu. Soft Memory in Ferroelectric Nanoparticle Doped Liquid Crystal, Phys. Rev. E, 2014, 89, 022508, 022508-1 022508-5
[19]  M. Anliker, H. R. Brugger and W. Kanzig. Behavior of Colloidal Ferroelectrics Barium Titanate (BaTiO3). Helv. Phys. Acta. 1954, 27, 99–124
[20]  K. Uchino, E. Sadanaga, and T. Hirose. Dependence of the Crystal Structure on Particle Size in Barium Titanate. J. Am. Ceram. Soc., 1989, 72, 1555–1558.
[21]  M. Tanaka and Y. Makino. Finite Size Effects in Submicron Barium Titanate Particles. Ferroelectrics Lett., 1998, 24, 13–23.
[22]  P. Sedykh, D. Michel, E. Charnaya, J. Haase. Size Effects in Fine Barium Titanate Particles, Ferroelectrics, 2010, 400, 135–143
[23]  K. Binder. Finite Size Effects on Phase-Transitions. Ferroelectrics, 1987, 73, 43–67.
[24]  J. Yu, J. Chu. Nanocrystalline Barium Titanate, Encyclopedia of Nanoscience and Nanotech¬no¬logy (Ed. by H. S. Nalwa), 6, 389-416.
[25]  S. Wada, T. Hoshina, H. Yasuno, S.M. Nam, H. Kakameto, H. Tsurumi, M. Yashima. Size Dependence of Dielectric Properties of nm-sized Barium Titanate Crystallites and Its Origin, Journal of Korean Physical Sosiety, 2005, 46(1), 303-307