2022   03   en   p.30-38 B.G. Salamova and T.G. Mammadovb,
Plasma etching of GaAs surface in a planar gas discharge system
 pdf 

ABSTRACT

This paper analyses the surface behaviour of etched a large-diameter GaAs plate realized by recording the spatial distribution of the gas discharge light emission (DLE) in a planar gas discharge system (PGDS) in ambient air and room temperature. The etching depth is measured by surface profilers as a function of a gap spacing and gas pressure. The analysis of the surface homogeneity is determined by fractal dimension of the gas DLE when a limiting current is passed through a discharge cell. The effect on the roughness of the GaAs surface through the plasmachemical processes at appropriate set of experimental parameters was established. The surface images of the etched GaAs are analysed using both the profile and spatial distribution DLE intensity data showing the surface inhomogeneity in the GaAs plate. It is quantitatively concluded that plasma etching at certain experimental condition can cause an improvement in surface structure of GaAs plate and spatial distribution DLE in a PGDS. The results obtained in this work suggest that a PGDS can be an efficient, alternative plasma source for general surface processing, because they can provide nonthermal discharges also near atmospheric pressures and thereby eliminate the need of costly vacuum systems.

Keywords: Plasma etching, GaAs plate, gas discharge system, surface processing, discharge light emission.
PACS: 61.50L -structure of bulk crystals, 81.40-treatment of materials and its effects on microstructure, nanostructure and properties

Received: 12.09.2022

AUTHORS & AFFILIATIONS

a. Physics Department, Faculty of Arts and Sciences, Gazi University, Beşevler 06500 Ankara, Turkey
b. Azerbaijan National Academy of Sciences, Institute of Physics, AZ-1143 Baku, Azerbaijan
E-mail:
REFERENCIES

[1]   V. Malhotra, C.W. Wilmsen. In: Holloway PH, McGuire GE, editors. Passivation of GaAs and InP in Handbook of Compound Semiconductors, Noyes Publications: New Jersey, 1995, pp.328-69.
[2]   P.B. Vigneron, F. Joint, N. Isac, R. Colombelli, E. Herth. Microelectronic Engineering. 2018, 202, 42.
[3]   V.R. Agarwal, D.S. Rawal and H.P. Vyas. J. Electrochem. 2005, Soc., 152, 567.
[4]   Y.W. Chen, B.S. Doi, G.I. Ng, K. Radhakrishnan and C.L Tan. J. Vac. Sci. Technol., 2000, B, 18, 2509.
[5]   M.A. Liebermann and A.J. Lichtenberg. Principles of Plasma Discharges and Materials Processing.,1994, Wiley, New York.
[6]   J. Rutkowski, W. Fourcault, F. Bertrand, U. Rossini, S. Gétin, S. Le Calvez, T. Jager, E. Herth, C. Gorecki, M. Le Prado, J.M. Léger, S. Morales. Sensors Actuators A Phys., 2014, 216, 386.
[7]   R. Schwarz and J.G. Salge. in Proceedings of the 11th International Symposium on Plasma Chemistry, edited by J. Harry., Loughborough, Le-icestershire, England, 1993.
[8]   M. Karlsson, F. Nikolajeff. 2002, Appl. Opt. 41, 902, 1539.
[9]   H. Willebrand, Y.A. Astrov, L. Portsel, S. Teperick, T. Gauselmann. Infrared Phys. & Technol.,1995, 36 (4), 809.
[10]  B.G. Salamov, A.Kh. Zeinally, N.N. Lebedeva and L.G. Paritskii., 1991, J. Photogr. Sci., 39, 114.
[11]  Y. Sadiq, K. Aktas, S. Acar and B.G. Salamov. Superlattices Microstruct., 2010, 47, 648.
[12]  F. Hasegawa, M. Onomura, C. Mogi and Y. Nannichi., Solid-State Electron, 1988, 31, 223
[13]  Ch. Radehaus, T. Dirksmeyer, H. Willebrand and H-G. Purwins. Phys. Lett. 1987, A 125 92
[14]  H. Willebrand, T. Hünteler, F. Niedernostheide, R. Dohmen and H-G. Purwins. Phys.Rev. 1992, A 45 8766
[15]  S. Ozturk Koç, S. Galioglu, B. Akata, E. Koç, B.G. Salamov. J. Electronic Materials., 2018, 47, (5), 2791.
[16]  H. (Yücel) Kurt, E. Kurt, B.G. Salamov. Imaging. Sci. J., 2001, 49, 205.
[17]  K. Germanova, V. Donchev, Ch. Chardalov and L. Nikolov. J.Phys.D, 1987, 20, 1507.
[18]  K. Koseoglu, B.G. Salamov. Plasma Process. Polym. 2016, 13, № 3, 355.
[19]  K. Koseoglu, M. Özer, B.G. Salamov. IEEE Transactions on Plasma Science., 2015, 43, № 10, 3576.
[20]  L.V. Belyakov, A.B. Mageramov and L.G. Paritskii. Sov. Phys. Semicond., 1978, 12, 6, 739.
[21]  K. Aktas, S. Acar, B.G. Salamov. Plasma Sources Sci. Technol. 2011, 20, 045010.
[22]  T. Ohmi, M. Miyashita and T. Imaoka. Proceeding of the Microcontamination Meeting, Canon Communications, San Jose, CA, 1991, pp.491.
[23]  M. Heyns, C. Hasenack, R. De Keersmaecker and R. Falster, J. Ruzyllo and R.E. Novak (eds.). Proc. of the 1st Int. Symp. on Cleaning Technology in Semiconductor Device Manufacturing, PV 90-9, Electrochemical Society, Pennington, NJ, 1990, p.293.
[24]  S.W. Robey. Phys. Rev. 2002, B, 65, 115
[25]  Z. Falkenstein and J. Cogan. J. Appl. Phys., 1997, 82 (12), 6273.
[26]  G. Xu, L. Li, N. Isac, Y. Halioua, A. Giles Davies, E.H. Linfield, R. Colombelli. Appl. Phys. Lett., 2014,104, 091112.
[27]  Y. Sadiq, M. Ozer, B.G. Salamov. J. Phys. D: Appl. Phys. 2008, 41, 045204.
[28]  Ma S. and McVittie J.P. J. Vac. Sci. Technol., 1996, B, 14, 566.
[29]  S. Fang and McVittie J.P. IEEE Trans. Electron Devices, 1994, 41, 1034.
[30]  Z. Synowiec. Vacuum, 2001, 63, 487.
[31]  Li X W, J.F. Tian, Y. Kang and Z.G. Wang. Scripta Metall. & Mater., 1995,33,5, 803.