2022   03   az   p.25-33 Nazim A. Huseynov
Study of the Higgs boson production with a single top quark using thee artificial neural network technology
 pdf 

ABSTRACT

The Large Hadron Collider has so far observed the production of the Higgs boson in four different channels. However, the production of the Higgs boson together with a single top quark has not yet been discovered. The study of this channel will make it possible for the first time to determine the complex phase of the interaction constant of the top quark with the Higgs boson. Using the “multivariate analysis method”, this paper shows the possibility of studying the production of the Higgs boson together with a single top quark and shows the advantages over the standard method. It has been established that the accumulated statistics of the Large Hadron Collider makes it possible to detect or exclude a model in which the constant of interaction of the top quark with the Higgs boson has the opposite sign compared to the prediction of the Standard Model.

Keywords: Creation of Higgs boson, large hadron accelerator, Yukawa interaction constant, Monte Carlo method, Neural networks.
PACS: 12.60.-i

DOI:-

Received: 18.07.2022

AUTHORS & AFFILIATIONS

Institute of Physics of Azerbaijan National Academy of Sciences, 131 H. Javid ave, Baku, AZ-1143
E-mail: nazim.huseynov@cern.ch
REFERENCIES

[1]   ATLAS Collab., Phys. Lett. B, 2012, 716.
[2]   CMS Collab., Phys. Lett. 2012, B 716, 30.
[3]   S. Weinberg. Phys. Rev. Lett. 1967, 19, 1264.
[4]   A.M. Sirunyan et al. (CMS Collab.), Phys. Rev. Lett. 2018, 120, 231801.
[5]   ATLAS Collab., Phys. Lett. 2019, B 784, 173.
[6]   F.Maltoni, K.Paul, T.Stelzer and S.Willenbrock. Phys. Rev. D. 2001. 64, 094023.
[7]   S. Biswas, E. Gabrielli, and B.Mele. JHEP, 2013, 1301, 088.
[8]   M. Farina, C. Grojean, F. Maltoni, E. Salvioni and A. Thamm. JHEP , 2013, 1305, 022.
[9]   P. Agrawal, S. Mitra and A. Shivaji. JHEP, 2013, 1312, 077.
[10]  S. Biswas, E. Gabrielli, F. Margaroli and B. Mele. JHEP, 2013, 1307, 073.
[11]  LHC Hiqqs Cross Section Working Group, Handbook of LHC Hiqqs Cross Sections: 4. Deciphering the Nature of the Hiqqs Sector (CERN, Geneva, Switzerland, 2016.
[12]  M. Aaboud et al. (ATLAS Collab.), Phys. Rev. Lett.2016, 117, 182002.
[13]  CMS Collab., JHEP, 2018, 1807, 161.
[14]  CMS Collab., JHEP, 2011, 1103, 90.
[15]  ATLAS Collab., Eur. Phys. J. C, 2011, 71, 1846.
[16]  ATLAS Collab., JHEP, 2019, 1904, 046.
[17]  A.M. Sirunyan et al. (CMS Collab.), Eur. Phys. J. C. 2019, 79, 368.
[18]  ATLAS Collab., Phys. Lett. B, 2018, 780, 557.
[19]  A.M. Sirunyan et al. (CMS Collab.), Phys. Rev. Lett. 2019, 122, 132003.
[20]  CMS Collab., JHEP, 2016, 1606, 177.
[21]  A.M. Sirunyan et al. (CMS Collab.), Phys. Rev. D 99, 2019, 092005.
[22]  A.D.A.M. Spallicci, J.A. Helayël-Neto, M. López-Corredoira and S. Capozziello. Eur. Phys. J. C, 2021, 81, 4.
[23]  G. Aad et al. (ATLAS Collab.), Phys. Rev. Lett. 2020, 125, 061802.
[24]  J. Alwall, R. Frederix, S. Frixione, V.Hirschi, F. Maltoni, O. Mattelaer, H.-S. Shao, T. Stelzer, P. Torrielli and M. Zaro. arXiv: 1405.0301.
[25]  M. Guzzi, P. Nadolsky, E. Berger, H.L. Lai, F. Olness and C.-P. Yuan. arXiv: 1101.0561v1.
[26]  T. Sjöstrand, S. Mrenna, and P. Skands. JHEP 0605, 026, 2006; Comput. Phys. Commun. 178, 852, 2008.
[27]  M. Cacciari, G. P. Salam, and G. Soyez. arXiv: 0802.1189v2.
[28]  ATLAS Collab., Eur. Phys. J. C, 2020, 80, 1104.
[29]  V. Khachatryan et al. (CMS Collab.), JINST 12, 2017, P02014.
[30]  P.A. Zyla et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2020, 083C01.
[31]  CMS Collab., Eur. Phys. J. 2017, C 77, 354.
[32]  ATLAS Collab., Eur. Phys. J. 2020, C 80, 47.
[33]  CMS Collab., JINST, 2017, 12, P01020.
[34]  ATLAS Collab., Eur. Phys. J. , 2018, C 78, 903.
[35]  CMS Collab., JINST 10, P02006, 2015.
[36]  ATLAS Collab., JINST 11, 2016, P04008.
[37]  A.M. Sirunyan et al. (CMS Collab.), JINST 13, 2018, P05011.