2022   04   en   p.30-35 H.M. Mammadov, H.A. Shirinova, M.R. Hasanova, S.G. Nuriyeva, A.H. Karimova,
Amorphous silica-based nanocomposite - dependence on quenching condition


The decisive factor in obtaining high-performance nanocomposites is to determine the technological conditions that ensure their optimal structural properties. It is possible to manipulate the functional properties of nanocomposite by maintaining its composition and only by modifying the technological parameters applied during production. In this study, the influence of the temperature-time mode of crystallization on the structure and properties of amorphous nano-silica and polypropylene-based nanocomposite were investigated. XRD (Rigaku Mini Flex 600 spowder diffractometer) analysis of the structure of polymer nanocomposite shows that with the decreasing of the cooling speed, a more regular structure is formed in the morphology of the polymer matrix. Furthermore, it was found that the intensity of the photoluminescence (spectrofluorometer Varian Cary Eclips) spectrum of the nanocomposite increases with the decreasing cooling speed. This is explained by the relatively big contact area of the phases due to the formation more regular structure when the cooling time is longer, which in turn, leads to a higher intensity of the luminescence spectrum of the nanocomposite.

Keywords: amorphous nano-silica, quenching in liquid nitrogen, cooling rate, polymer nanocomposite, blue emission, X-ray microscopy.
PACS: 78.55.−m, 78.66.Jg, 61.43.Gt, 68.37.Yz, 78.70.En


Received: 03.11.2022


Baku State University Baku, Azerbaijan. Z. Khalilov 23. AZ1148
E-mail: metanet.hesenli.93@mail.ru

[1]   Amanda Dantas de Oliveira and Cesar Augusto Gonçalves Beatrice. (December 18th 2018). Polymer Nanocomposites with Different Types of Nanofiller, Nanocomposites-Recent Evolutions, Subbarayan Sivasankaran, IntechOpen, DOI: 10.5772/intechopen.81329. Available from: https://www.intechopen.com/chapters/64843.
[2]   C. Xu., K. Ohno, V. Ladmiral, R.J. Composto. Dispersion of polymer grafted magnetic nanoparticles in homopolymers and block copolymers., Polymer 2008, 49, pp.3568-3577.
[3]   Rohan Abraham, Ruyan Guo & Amar S. Bhalla. Modeling Permittivity and Tangent Loss in Dielectric Materials Using Finite Element Method and Monte Carlo Simulation, Ferroelectrics., 2005, 315:1, pp.1-15.
[4]   A.M. Maharramov et al. The influence of magnetite nanoparticles on dielectric properties of metaloxide- polymer based nanocomposite. J. Russian Physics, 2018, 60, pp.1572–1576.
[5]   A.A. Novruzova, M.A. Ramazanov, A. Chianese et al. A synthesis, structure and optical properties of PPþPbS/CdS hybrid nanocomposites. Chem Eng Trans., 2017, v.60, pp.61–66.
[6]   A.M. Magerramov, M.A. Ramazanov and F.V. Hajiyeva. Properties and structure formation of cadmium sulfide nanocomposites with polypropylene. J Optoelectron Adv Mater Rapid Commun., 2008, 2(11), pp.743–745.
[7]   Angel Mary Joseph, Baku Nagendra, Kuzhichalil, Peethambharan Surendran and Erathimmanna Bhoje Gowd. Syndiotactic Polystrene Silica Spheres of POSS Slioxane Composites Exhibiting Ultralow Dielectric Constant. ACS APPLIED Materilas and Interfaces.
[8]   R.G. Singh, Fouran Singh, V. Agarwal and R.M. Mehra. Photoluminescence studies of ZnO/ porous silicon nanocomposites. Journal of Physics D Applied Physics., 2007, 40(10), pp.3090.
[9]   M.A. Ramazanov and et.al. The Effect of the Temperature–Time Mode of Crystallization on the Morphology and Thermal Properties of Nanocomposites Based on Polypropylene and Magnetite (Fe3O4). Journal of Inorganic and Organometallic Polymers and Materials., 2018, 28, pp.1171-1177.
[10]  F.V. Hajiyeva and et al. Influence temperature time mode of crystallization on the structure and properties of nanocomposites based on polyvinylidene fluoride (PVDF) and zirconium oxide nanoparticles (ZrO2). Journal of Optoelectronics and Biomedical Materials., 2017, 9, pp.1-7.
[11]  E.N. Mochalova and et al. Influence of temperature of simultaneous polarization and hardening on electret characteristics of composites on DEI–331 epoxy oligomer by polyaminomide hardening L– 20/Vestnik, Technol. Univ. 2015, 18 (205), pp. 47–48.
[12]  M.A. Ramazanov & F.V. Hajiyeva. Influence of Crystallization Temperature–Time Technological Factors on Structure and Photoluminescent Properties of Polymer Nanocomposites on the Base of Isotactic Polypropylene (PP) and Lead Sulphide (PbS) Nanoparticles. Journal of Inorganic and Organometallic Polymers and Materials., 2019, pp.1-8.
[13]  A.J. Filipe, T.S.S. Simei, M.A.C. José, H.V.S. Victor. Effects of thermal treatment on the structure and luminescent properties of Eu3þ doped SiO2–PMMA hybrid nanocomposites prepared by a sol–gel process., 2015.
[14]  H. Fneich, N. Gaumer, S. Chaussedent, A. Mehdi, W. Blanc. The Effect of Size and Thermal Treatment on the Photoluminescent Properties of Europium-Doped SiO2 Nanoparticles Prepared in One Pot by Sol-Gel. Materials., 2021, 14, pp.1607.
[15]  Sherin Thomas A, V. Deepub, S. Umac, P. Mohananb, J. Philipc, M.T. Sebastiana. Preparation, characterization and properties of Sm2Si2O7 loaded polymer composites for microelectronic applications Materials Science and Engineering B.
[16]  Hong-Ping Ma and et al. Systematic Study of the SiOx Film with Different Stoichiometry by Plasma-Enhanced Atomic Layer Deposition and Its Application in SiOx/SiO2 Super-Lattice. Nanomaterials., 2019, 9, 55. doi:10.3390/nano9010055
[17]  D. Cavallo, L. Gardella, G.C. Alfonso and et al. Effect of cooling rate on the crystal/mesophase polymorphism of polyamide 6. Colloid Polym Sci., 2011, 289, pp.1073–1079. https://doi.org/10.1007/s00396-011-2428-6
[18]  M.A. Ramazanov, A.M. Maharramov, R.A. Ali-zada, H.A. Shirinova, F.V. Hajiyeva. Theoretical and experimental investigation of the particle size distribution and magnetic properties of the PP+FE3O4 nanocomposites. Journal of Thermoplastic Composite Materials., 2020, 33(1), pp.125-137. doi:10.1177/0892705718804578.
[19]  Ming-Champ Lin and et al. “Mediating polymer crystal orientation using nanotemplates from block copolymer microdomains and anodic aluminium oxide nanochannels.” Soft Matter., 2012, 8, pp. 7306-7322.
[20]  Claudio De Rosa, Anna Malafronte, Rocco Di Girolamo, Finizia Auriemma, Miriam Scoti, Odda Ruiz de Ballesteros and Geoffrey W. Coates. Morphology of Isotactic Polypropylene–Polyethylene Block Copolymers Driven by Controlled Crystallization. Macromolecules., 2020, 53 (22), pp.10234-10244. DOI: 10.1021/acs.macromol.0c01316
[21]  M. Ramazanov, H. Shirinova, S. Nuriyeva, M. Jafarov, M. Hasanova. Structure and optic properties of the nanocomposites based on polypropylene and amorphous silica nanoparticles. Journal of Thermoplastic Composite Materials. June 2021. doi:10.1177/08927057211028890
[22]  A.N. Trukhin and et al. Luminescence of polymorphous SiO2., Radiat. Meas., 2016, 90, 6e. DOI: 10.1016/j.radmeas.2015.12.002. 15.
[23]  A.V. Amosov and et al., Photoluminescence and low-threshold nonlinear optical properties of SiO2 nanoparticles, Physics Procedia., 2017, 86, 61. DOI: 10.1016/j.phpro.2017.01.021
[24]  M.A. Ramazanov, H.A. Shirinova, N.A. Huseynzade, M.R. Hasanova, M.A. Nuriyev, A.S. Huseynova. Enhancement of the PL Intensity of Silica Based Polymer Electret after Electro-Thermo-Polarization. Integrated Ferroelectrics., 2021, 213:1, pp.158-164.
[25]  Haque Nafisul and et al. “Morphology of Spherulites in Rapidly Solidified Ni3Ge Droplets”., 2017.
[26]  M.A. Ramazanov and et al. “Influence of thermal treatment on photoluminescent properties of PP/PbS/CdS nanocomposites.” International Journal of Modern Physics B 34 (2020): 2050038.
[27]  M.A. Ramazanov and et al. “Enhancement of the PL Intensity of Silica Based Polymer Electret after Electro-Thermo-Polarization.” Integrated Ferroelectrics., 2021, 213, pp.158 - 164.