ABSTRACT
The effect of posttreatment in aqueous solutions of HF, KOH, NaOH and Na2SeO3 on the photoluminescence spectra of stain etched porous silicon has been
investigated. It is shown that this posttreatment of as-prepared samples leads to a shift of the photoluminescence maximum from ~1.85 eV to 2.1 eV. Subsequent atmospheric
oxidation during 2÷3 min leads to the transformation of the spectra, and its maximum shifts back to 1.85 eV. The intensity of photoluminescence after posttreatment of porous
silicon depends on the composition of the etchant. In the HF solution, the photoluminescence intensity hardly changes, while in alkaline solutions it decreases. This is due
to the different etching rates of silicon and silicon oxide in different etchants. The role of oxygen bonds in the formation of local radiative recombination levels in the
band-gap, responsible for photoluminescence transformations, is discussed.
Keywords: porous silicon; stain etching; posttreatment; diluted HF; alkaline solutions; yellow PL; oxygen bonds
PACS: 81.40.−z; 78.67. Rb; 78.55.−m
DOI:-
Received: 10.04.2023
AUTHORS & AFFILIATIONS
Condensed Matter Physics Division, Institute for Physical Problems, Baku State University, Baku AZ 1148, Azerbaijan
E-mail: farhad.rustamov@bsu.edu.az
Graphics and Images
Fig.1-2
|
REFERENCIES
[1] L.T. Chanham. Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafer, Appl. Phys. Lett. 57 (1990) 1046-1048. https://doi.org/10.1063/1.103561
[2] V. Lehmann, U. Gosele. Porous silicon formation: A quantum wire effect, Appl. Phys. Lett. 58 (1991) 856-858. https://doi.org/10.1063/1.104512
[3] V. Lehmann. Electrochemistry of Silicon, Wiley VCH, New York, 2002.
[4] L.T. Chanham. Properties of porous silicon. EMIS Data Review Series № 18, London, 1997.
[5] C. Delerue, G. Allan, M. Lannoo. Theoretical aspects of the luminescence of porous silicon, Phys. Rev. B 48, 15 (1993) 11024-11036. https://doi.org/10.1103/PhysRevB.48.11024
[6] M.V. Wolkin, J. Jorne, P.M. Fauchet, G. Allan, C. Delerue. Electronic States and Luminescence in Porous Silicon Quantum Dots: Phys. Rev. Lett. 82, 1 (1999) 197-200. https://doi.org/10.1103/PhysRevLett.82.197
[7] F.A. Rustamov, N.H. Darvishov, M.Z. Mamedov, E.Y. Bobrova, H.O. Qafarova. Porous silicon bandgap broadening at natural oxidation. J. Lumin. 131, 10 (2011) 2078-2082. https://doi.org/10.1016/j.jlumin.2011.05.040
[8] Y.Q. Jia, L.Z. Zhang, J.S. Fu, B.R. Zhang, J.C. Mao. Characterization of stain etched porous Si with photoluminescence, electron paramagnetic resonance, and infrared absorption spectroscopy, J. Appl. Phys. 74 (12) (1993) 7615-7617. https://doi.org/10.1063/1.354940
[9] É. Vázsonyi, E. Szilágyi, P. Petrik, Z. Horvath, T. Lohner, M. Fried, G Jalsovszky. Porous silicon formation by stain etching, Thin Solid Films. 388 (2001) 295-302. https://doi.org/10.1016/S0040-6090(00)01816-2
[10] B. González-Díaz, R. Guerrero-Lemus, J. Méndez-Ramos, B. Díaz-Herreraa, V.D. Rodríguez. Gradual oxidation of stain etched porous silicon nanostructures applied to silicon-based solar cells. Sens. Actuators, A 150 (2009) 97–101 https://doi.org/10.1016/j.sna.2008.12.006
[11] F.A. Rustamov, N.H. Darvishov, V.E. Bagiev, M.Z. Mamedov, G.M. Eyvazova, E.Y. Bobrova, H.O. Qafarova. Reversible quenching of photoluminescence in stain etched porous silicon at HNO3 posttreatment and role of oxygen bonds. J.Lumin. 195 (2018) 49-53. https://doi.org/10.1016/j.jlumin.2017.11.011
[12] E. Kayahan, The role of surface oxidation on luminescence degradation of porous silicon, Appl. Surf. Sci. 257(9) (2011) 4311-4316. https://doi.org/10.1016/j.apsusc.2010.12.045
[13] N. Arad-Vosk, A. Sa’ar. Radiative and nonradiative relaxation phenomena in hydrogen- and oxygen-terminated porous silicon, Nanoscale Research Letters. 9, 47 (2014) 1-6. https://doi.org/10.1186/1556-276X-9-47
[14] E. Galeazzo, A. Beltran, F. J. Ramirez-Fernandez. Natural Oxidation of Porous Silicon, Brazilian Journal of Physics, 27/ A, 4, (1997) 170-172.
[15] K.-H. Li, C. Tsai, J. Sarathy, J.C. Campbell. Chemically induced shifts in the photoluminescence spectra of porous silicon. Appl. Phys. Lett. 62, 24 (1993) 3192-3194. https://doi.org/10.1063/1.109126
[16] K. Murakoshi, K. Uosaki. X-ray photoelectron spectroscopic studies of the chemical nature of as-prepared and NaOH-treated porous silicon layer. Appl. Phys. Lett. 62, 14 (1993) 1676-1678. https://doi.org/10.1063/1.109597
[17] Y. Fukuda, W. Zhou, K. Furuya, H. Suzuki. Photoluminescence change of as-prepared and aged porous silicon with NaOH treatment. J. Electrochem. Soc., 146, 7 (1999) 2697 – 2701. https://doi.org/10.1149/1.1391994
[18] Y. Mo, A. Ren, J. Mao, Z. Zhou, H. Yuan, J. Du, D. Xiao. Photoluminescence of oxidized porous silicon treated by sodium borohydride aqueous solution. Materials Letters75 (2012) 115 – 117. https://doi.org/10.1016/j.matlet.2012.01.130
[19] F.A. Rustamov, N.H. Darvishov, V.E. Bagiev, M.Z. Mamedov, E.Y. Bobrova, H.O. Qafarova, Influence of final treatment on the incubation period and antireflection properties of stain-etched porous silicon. Phys. Status Solidi. A 210, 10 (2013) 2174-2177. https://doi.org/10.1002/pssa.201329298
[20] F.A. Rustamov, N.H. Darvishov, M.Z. Mamedov, E.Y. Bobrova, H.O. Qafarova, Formation of lateral homogeneous stain etched porous silicon with acetic acid at oxidant insufficiency, Azerb. J. Physics. 18, 3 (2012) 44-49. http://inis.iaea.org/search/search.aspx?orig_q=RN:44023241
[21] G. Di Francia, A. Citarella. Kinetic of the growth of chemically etched porous silicon. J. Appl. Phys. 77 (7) (1995) 3549–3552. https://doi.org/10.1063/1.358585
[22] F.A. Rustamov, N.H. Darvishov, V.E. Bagiev, M.Z. Mamedov, E.Y. Bobrova, H.O. Qafarova. Determination of size and bandgap distributions of Si nanopaticles from photoluminescence excitation and emission spectra in n-type stain etched porous silicon, J. Lumin., 154 (2014) 2024-2028. https://doi.org/10.1016/j.jlumin.2014.04.037
[23] X. Wen, P. Zhang, T.A. Smith, R.J. Anthony, U.R. Kortshagen, P.Yu, Y. Feng, S. Shrestha, G. Coniber, S. Huang. Tunability limit of Photoluminescence in colloidal silicon nanocrystals. Sci. Rep. 5, (2015) 12469-12479. https://doi.org/10.1038/srep12469
[24] K. Dohnalova, A. Poddubny, A. Prokofiev, W. Boer, C. Umesh, J. Paulusse, H. Zuilhof, T. Gregorkiewicz. Surface brightens up Si quantum dots: direct bandgap-like size-tunable emission. Light Sci. Appl. 2, e47 (2013); 1-6. https://doi.org/10.1038/lsa.2013.3
|