2023   03   en   p.13-18 M.A. Jafarov2, V.M. Salmanov2, A.G. Guseinov1,2, G.B. Ibragimov1,2, R.M. Mamedov2,
T.A. Mamedova2, F.Sh. Akhmedova2,
A new method for synthesis of CdTe nanoparticles by laser radiation
 pdf 

ABSTRACT

The synthesis of CdTe nanoparticles using CdCl2 and TeO2 solutions under the action of laser radiation was experimentally studied. The radiation source was a pulsed Nd:YAG laser with built-in generators of the 2nd and 3rd harmonics, designed to generate radiation with a wavelength of 1064, 532, and 335 nm. The laser pulse duration was 10 ns with an energy of 135 mJ per pulse. In a colloidal solution, the formation of nanoparticles with a diameter of 10 to 50 nm was observed. X-ray diffraction analysis established that the crystal structure of the nanoparticles is the same as that of the bulk material (hexagonal). It is shown that the photoluminescence emission of the obtained nanoparticles has a green color (~510 nm) and is associated with the radiative recombination of free excitons.

Keywords: CdTe nanoparticles, laser ablation, photoluminescence.
PACS: 78.20.−e; 78.40.−q

DOI:-

Received: 10.07.2023

AUTHORS & AFFILIATIONS

1. Institute of Physics, Ministry of Science and Education of the Republic of Azerbaijan 131 G. Javid Avenue, Baku, AZ 1143, Azerbaijan
2. Baku State University, Baku, AZ 1148, Azerbaijan
E-mail: vagif_salmanov@yahoo.com

Graphics and Images

      

Fig.1-2-3-4-5-6

REFERENCIES

[1]   N.G. Semaltianos, S. Logothetidis, W. Perrie, S. Romani, R.J. Potter, M. Sharp, G. Dearden and K.G. Watkins. CdTe nanoparticles synthesized by laser ablation. Applied physics letters. 95, 2009, 033301-033306.
[2]   M. Gao, S. Kirstein, H. Möhwald, A.L. Rogach, A. Kornowski, A. Eychmüller, and H. Weller. Strongly photoluminescent CdTe nanocrystals by proper surface modification. J. Phys. Chem. B 102, 1998, 8360.
[3]   L. Rogach. Nanocrystalline CdTe and CdTe(S) particles: Wet chemical preparation, size-dependent optical properties and perspectives of optoelectronic applications. Mater. Sci. Eng., B 69, 2000, 435.
[4]   А.V. Bulqakov, А.B. Yevtushenko, Yu.Q. Shukhov, I. Ozerov, V. Marin. «Quantum electronics», 40, № 11, 2010, 1021-1033.
[5]   Y. Luo, T. Tan, S. Wang, R. Pang, L. Jiang, D. Li, J. Feng, H. Zhang, S. Zhang, Ch. Li. Ligand-Induced Nucleation Growth Kinetics of CdTe QDs: Implications for White-Light-Emitting Diodes. ACS Applied Nano Materials. 5 (1), 2022, 401.
[6]   H. Haug, S.W. Koch. Quantum Theory of the Optical and Electronic Properties of Semiconductors. Singapore: World Scientific Publishing, 1994.
[7]   A. Morales-Acevado. Thin film CdS/CdTe solar cells: research perspectives. Solar Energy, 80, 2006, 675.
[8]   K. Zweibel. Engineering. The impact of tellurium supply on cadmium telluride photovoltaics. Science, 328, 2010, 699.
[9]   R.L. Johnston. Atomic and Molecular Clusters. London: CRC Press, 2002. 256.
[10]  B.М. Smirnov. Generation of cluster beams. Advances in the physical sciences, 173, 2003,609.
[11]  Q.N. Makarov. Extremal processes in clusters in collision with a solid surface. Advances in the physical sciences, 176, 2006,121.
[12]  C.B. Murray, D.J. Norris, and M.G. Bawendi. Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites. J. Am. Chem. Soc. 115, 1993, 8706.
[13]  L. Rogach, L. Katsikas, A. Kornowski, D. Su, A. Eychmüller, and H. Weller, Ber. Bunsenges. Synthesis, morphology and optical properties of thiol‐stabilized CdTe nanoclusters in aqueous solution. Phys. Chem. 101, 1997, 1668.
[14]  Z.A. Peng and X. Peng. Formation of High-Quality CdTe, CdSe, and CdS Nanocrystals Using CdO as Precursor. J. Am. Chem. Soc. 123, 2001, 183.
[15]  G. Dance, A. Choy, and M.L. Scudder. Syntheses, properties, and molecular and crystal structures of (Me4N)4[E4M10(SPh)16] (E = sulfur or selenium;
M = zinc or cadmium): molecular supertetrahedral fragments of the cubic metal chalcogenide lattice. J. Am. Chem. Soc. 106, 1984, 6285.
[16]  M. Marc-Oliver Piepenbrock, Tom Stirner, Mary O'Neill and Stephen M. Kelly. Growth dynamics of CdTe nanoparticles in liquid and crystalline phases. J. Am. Chem. Soc. 129, 24, 2007, 7674.
[17]  Martin Sharp. CdTe nanoparticles synthesized by laser ablation. Applied Physics Letters. 95, 2009, 033302.
[18]  A.R. Albert, A.Y. John. Colloids and Surfaces A: Physicochemical and Engineering Aspects . 279, 1-3, 2006, 121.
[19]  L. Patrone, D. Nelson, V.I. Safarov, M. Sentis, W.J. Marine. Photoluminescence of silicon nanoclusters with reduced size dispersion produced by laser ablation. Appl. Phys., 87, 2000, 3829.
[20]  T. Seto, T. Orii, M. Hirasawa, N. Aya. Fabrication of silicon nanostructured films by deposition of size-selected nanoparticles generated by pulsed laser ablation. Thin Solid Films, 437, 2003, 230.
[21]  B. Lukyanchuk, W. Marine. On the delay time in photoluminescence of Si-nanoclusters, produced by laser ablation. Appl. Surf. Sci., 314, 2000, 154.
[22]  S.I. Anisimov, B.S. Lukyanchuk. Selected problems of the theory of laser ablation. Advances in the physical sciences, 172, 2002, 301.
[23]  A.V. Bulgakov, I. Ozerov, W. Marine. Silicon clusters produced by femtosecond laser ablation: non-thermal emission and gas-phase condensation. Appl. Phys. A, 79, 2004, 1591.
[24]  S. Xu, J. Ziegler, T.J. Nann. Rapid synthesis of highly luminescent InP and InP/ZnS nanocrystals. Mater. Chem., 18, 2008, 2653.
[25]  I. Ozerov, D. Nelson, A.V. Bulgakov, W. Marine, M. Sentis. Synthesis and laser processing of ZnO nanocrystalline thin films. Appl. Surf. Sci., 349, 2003, 212.
[26]  S. Neretina, P. Mascher, R.A. Hughes, N. Braidy, W.H. Gong, J.F. Britten, J.S. Preston, N.V. Sochinskii, P. Dippo. Evolution of wurtzite CdTe through the formation of cluster assembled films. Appl. Phys. Lett., 89, 2006, 133101.
[27]  J. Bonse, M. Munz, H.J. Sturm. Structure formation on the surface of indium phosphide irradiated by femtosecond laser pulses. Appl. Phys., 97, 2005, 013538.
[28]  JCPDS, International Centre for Diffraction Data, USA, Card Number 15-0770.S. Samuel. Nanolasers: lasing from nanoscale quantum wires Int. J. of Nanotechnology 1, 2004, 42-85.