2023   02   az   p.24-28 S.I. Mekhtiyeva, R.I. Alekberov, S.M. Mammadov, L.A. Aliyeva, A.Ch. Mammadova, S.U. Atayeva, N.N. Eminova,
Investigation of Raman scattering in As40Se60 binary chalcogenide glassy system by method the radial distribution of pair-partial correlation functions
 pdf 

ABSTRACT

The dependences of the structure factor (S(Q)) on the scattering vector (Q) and intensity on the frequency were studied by neutron diffraction and Raman scattering methods in the As40Se60 binary chalcogenide glass system. The frequencies (νAsSe3/2=226±0.5 cm-1 and νAs-Se-As=172±0.5 cm-1) of the oscillation modes of the pyramidal structure elements (AsSe3/2) and bridge connections between them (As-Se-As), which form the local structure of the studied substance was determined by applying reverse Monte-Carlo modeling (RCM) to the results of neutron diffraction scattering.

Keywords: chalcogenide glass, amorphous, medium order, close order.
PACS: 81.05. Gc

DOI:-

Received: 25.04.2023

AUTHORS & AFFILIATIONS

Institute of Physics Ministry of Science and Education Republic of Azerbaijan, 131 H.Javid ave, Baku, AZ-1143, Azerbaijan
E-mail: Rahim-14@mail.ru
REFERENCIES

[1]   Zongwei Xu, Zhongdu He, Ying Song, Xiu Fu, Mathias Rommel, Xichun Luo, Alexander Hartmaier, Junjie Zhang and F. Fengzhou. Micromachines 2018, 9, 361, Topic Review: Application of Raman Spectroscopy Characterization in Micro/Nano-machining
[2]   A.H. Goldan, C.Li, S.J. Pennycook et al. Journal Applied of Physics, 2016, 120, p. 135101-135110.
[3]   E. Sváb, Gy. Mészáros, F. Deák. Neutron powder diffractometer at the Budapest research reactor. Mater. Sci. Forum, 1996, 228, p.247-252. https://doi.org/10.4028/www.scientific.net/MSF.228-231.247
[4]   R.L.McGreevy, L.Pusztai. Reverse Monte Carlo simulation: a new technique for the determination of disordered structures, Mol. Simul. 1, 1988, 359–367.
[5]   M. Bauchy, M. Micoulaut. J. Non-Crystalline Solids, 2013, 377, p.34-38.
[6]   J. Li, D.A. Drabold. Phys. Rev. B, 2001, 64(10), p.104206-104208.
[7]   S. Hosokawa, Y. Wang, W.C. Pilgrim et al. J. Non-Crystalline Solids, 2006, 352(9-20), p.1517-1519.
[8]   S.R. Elliott. Meium range structural order in covalent amorphous solids. Nature, vol.354, p.445-452.
[9]   G. Lucovsky. Physical Review B, vol.6, N4, p.1480-1489.
[10]  Walter Gordy. The Journal of Chemical Physics 14, 305, 1946; doi: 10.1063/1.1724138
[11]  G. Herzberg. Infrared and Raman Spectra of Polyatomic MolecNEes (Van Nostrand-Reinhold, New York, 1945)
[12]  E.I. Kamitsos, J.A. Kapoutsis, I.P. Culeac, M. S. Iovu. J. Phys. Chem. B 1997, 101, 11061-11067
[13]  Linus Pauling. The Nature of the Chemical Bond, Cornell University Press, Ithica, N.Y., 1948.
[14]  G.Lucovsky, R.M.Martin. J.Non-Cryst. Solids, 1972, 8–10, p.185–190.
[15]  K.Tanaka. Amorphous Chalcogenide Semiconductors and Related Materials. K.Tanaka, K. Shimakawa. Springer Nature Switzerland AG, 2021, 310 p.
[16]  X. Hana, H. Taoa, R. Panb et al. Structure and vibrational modes of As-S-Se glasses: Raman scattering and ab initio calculations. Physics Procedia, 2013, 48, p. 59-64.
[17]  K. Jackson, A. Briley, S. Grossman. Phys. Rev. B, 1999, 60(22), p. R14985-R149.
[18]  R.I. Alekberov, S. I. Mekhtiyeva, A.I. Isayev, M.Fabian. J. Non - Crystalline Solids, 2017, 470(15), p.152-159.