ABSTRACT
A study was carried out of the possibility of the influence of substitution from 70% to 100% of yttrium by cadmium in Y0,3Cd0,7Ba2Cu3O7-d
polycrystals on the superconducting states of the synthesized materials. As a result, high-resistivity samples were obtained. In the normal phase they had semiconductor
passages. Of the Y0,3Cd0,7Ba2Cu3O7, Y0,1Cd0,9Ba2Cu3O7 and
CdBa2Cu3O7 samples, only the Y0,3Cd0,7Ba2Cu3O7-d sample made a superconducting
transition at 84K. For the sample Y0,3Cd0,7Ba2Cu3O7-δ HTSC material, the critical temperature in the mean field
approximation (Tcmf), the 3D-2D crossover temperature (T0), the coherence length of the Cooper pair were determined, the temperature Tc of the SC transition and
TG-temperature were determined Ginsburg.
Keywords: superconductivity, coherence lengths, 3D-2D temperature Crossover.
PACS: 74.25. Fy, 74.20.Mn, 74.72. ± h, 74.25. ± q, 74.25.Jb
DOI:-
Received: 17.01.2024
Internet publishing: 28.06.2024
AUTHORS & AFFILIATIONS
1. Institute of Physics Ministry of Science and Education Republic of Azerbaijan, AZ-1143, Baku, Azerbaijan, 131 H. Javid ave.
2. Azerbaijan Medical University, Baku, AZ 1022, 23, st. Bakikhanova,
3. Institute of National HP Ministry of Science and Education of Azerbaijan AZ 1025, Baku, 30, Khojaly Ave.
E-mail: v_aliev@bk.ru
Graphics and Images
Fig.1 Fig.2 Fig.3 Fig.4 Fig.5 Fig.6
|
REFERENCIES
[1] T. Suzuki, T. Yamazaki, and R. Sekine. J. Mat. Sci. Lett. 8, 381 1989.
[2] V.N. Narozhnyi and V.N. Kochetkov. Phys. Rev. B53, 5856, 1996.
[3] M. Murakami, N. Sakai, and T. Higuchi. Supercond. Sci.Technol. 12, 1015, 1996.
[4] A.L. Soloviev, V.M. Dmitriev. FNT 33, 32 2007. [LowTemp. Phys. 33, 23, 2007].
[5] R.V. Vovk, M.A. Obolensky, A.A. Zavgorodniy, A.V. Bondarenko, M.G. Revyakin. FNT, 33, 546, 2007.
[6] L.P. Kozeev, M.Yu. Kamenev, A.I. Romanenko, O.B. Anikeeva, V.E. Fedorov. Materials 6th International Conference “Crystals: growth, properties, real structure, application": Alexandrov, September 8–12, 2003, VNIISIMS Publishing House.
[7] E.V. Yakubovich, N.N. Oleynikov, V.A. Ketsko, I.V. Arkhangelsky. Dokl. RAS 386, 502, 2002.
[8] S. Kambe, G. Samukama, K. Yamaguchi, O. Ishu, I. Shime, T. Nomura, S. Ohshima, K. Okuyama, T. Itoh, H. Suematsu, and H. Yamauchi. Solid State Phys. 108, 283 (1998)
[9] V.M. Aliev, R.I. Selim-zade, J.A. Ragimov, L.V. Omelchenko, E.V. Petrenko. FNT, vol. 46, № 9, p. 1068–1077, 2020.
[10] V. M. Aliev, G.I. Isakov, J.A. Ragimov, R.I.Selim-zade, G.A.Alieva. Solid State Physics bodies, 65, no. 3, p. 404-410, 2023.
[11] V.M. Aliyev, G.I. Isakov, J.A. Rahimov, V.I. Eminova, S.Z. Damirova, G.A. Aliyeva. AJP FIZIKA, vol. X1X, № 1, 44-41, 2023.
[12] A.L. Soloviev, V.M. Dmitriev. FNT, vol. 35, № 3, pp. 227-264, 2009.
[13] P.G. De Gennes. Superconductivity of Metals and Alloys, W.A. Benjamin, INC., NewYork–Amsterdam, p. 280. 1966.
[14] L.G. Aslamazov and A.I. Larkin. Phys. Lett. A 26, 238 (1968).
[15] A. Kapitulnik, M.R. Beasley, C. Castellani, and C. Di Castro. Phys. Rev. B 37, 537 (1988).
[16] S. Hikami and A.I. Larkin. Mod. Phys. Lett. B 2, 693 (1988)
[17] Y.B. Xie. Phys. Rev. B 46, 13997 (1992).
[18] A.L. Solovyov, L.V.Omelchenko, R.V. Vovk, S.N. Kamchatnaya. FNT 43, 1050, 2017.
[19] A.L. Solovjov, L.V. Omelchenko, V.B. Stepanov, R.V. Vovk, H.-U. Habermeier, H. Lochmajer, P. Przyslupski, and K. Rogacki. Phys. Rev. B 94, 224505 (2016).
[20] W. Lang, G. Heine, W. Kula, and Roman Sobolewski. Phys. Rev. B 51, 9180 (1995).
[21] В.В. Флорентьев, А.В. Инющкин, А.И. Талденков и др., СФХТ, 3, 10, 2 (1990)
[22] Ya. Ponomarev, M. Mikheev, M. Sudakova, S. Tchesnokov, and S. Kuzmichev, Phys. Status Solidi C, 6, 2072 (2009).
|