2024   01   en   p.26-30 T.D. Ibrahimov, H.S. Ibrahimova,
Electret properties of ZrO2 nanoparticles – polypropylene composites


Polypropylene samples with the additive of ZrO2 nanoparticles at concentration of 3 vol.%, at which the highest electret properties are observed, have been studied by the thermally stimulated depolarization (TSD) current method at different intensities (5·106 V/m, 107 V/m and 1.5·107 V/m) of pre-applied electrostatic field. The measurement of TSD currents revealed the presence of two main peaks in the spectra of the nanocomposite at 25-35°C and 120 -140°C. They appear as a result of destruction of one or another category of traps of injected charges. Calculations have shown that there is a monomolecular mechanism of charge recombination in these nanocomposites. It is shown that increasing the applied electric field leads to an increase in the intensity of the termograms, reaching a maximum at 107 V/m and then decreasing at 1.5-107 V/m. The activation energy, the total accumulated charge and the relaxation time behave similarly.

Keywords: polypropylene; zirconium dioxide; nanocomposite; charge recombination; thermally stimulated depolarization curren; monomolecular and bimolecular mechanism
PACS: 61.46.w,82.35:Np.71.38.k


Received: 15.03.2024
Internet publishing: 27.06.2024


Institute of Physics, Ministry of Science and Education of Azerbaijan, Baku, Azerbaijan, G.Javid ave. 131, AZ1143
E-mail: Hicran90@rambler.ru

Graphics and Images


Fig.1       Fig.2        Fig.3       Fig.4


[1]   Xiang Xi, D.D.L. Chung. Electret behavior of carbon fiber structural composites with carbon and polymer matrices, and its application in self-sensing and self-powering Carbon 160, 2020, 361e389. https://doi.org/10.1016/j.carbon.2020.01.035
[2]   D.D.L. Chung. A review of multifunctional polymer-matrix structural composites Composites Part B 160, 2019, 644–660.
https://doi.org/10.1016/j.compositesb.2018.12. 117
[3]   G.A. Kontos, A.L. Soulintzis, P.K. Karahaliou, G.C. Psarras, S.N. Georga, C.A. Krontiras, M.N. Pisanias. Electrical relaxation dynamics in TiO2 – polymer matrix composites EXPRESS Polymer Letters Vol.1, № 12, 2007, 781–789. DOI: 10.3144/expresspolymlett.2007.108
[4]   N. Vidakis, M. Petousis, E. Velidakis, L. Tzounis, N. Mountakis, A. Korlos, P.E. Fischer-Griffiths and S. Grammatikos. On the Mechanical Response of Silicon Dioxide Nanofiller Concentration on Fused Filament Fabrication 3D Printed Isotactic Polypropylene Nanocomposites) Polymers 2021, 13, 2029.
https:// doi.org/10.3390/polym13122029
[5]   M.M. El-Desoky, I. Morad, M.H, Wasfy & A.F. Mansour. Synthesis, structural and electrical properties of PVA/TiO2 nanocomposite films with different TiO2 phases prepared by sol–gel technique. Journal of Materials Science: Materials in lectronics2020. doi:10.1007/s10854-020-04313-7
[6]   A.T.Ponomarenko, A.R.Tameev, V.G. Shevchenko. Synthesis of polymers and modification of polymeric materials in electromagnetic fields Russian Chemical Reviews, 2018, 87 (10), 923–949 DOI: https://doi.org/10.1070/RCR4790
[7]   D.N. Sadovnichii, A.P. Tyutnev, Yu.M. Milekhin. Electrical effects in polymers and composite materials under electron beam irradiation, Russ Chem Bull, 2020, Vol. 69, Iss. 9, P. 1607, DOI: 10.1007/s11172-020-2944-y.
[8]   U. Mescheder, B. Muller, S. Baborie and P. Urbanovic. Properties of SiO2 electret films charged by ion implantation for MEMS-based energy harvesting systems JOURNAL OF MICROMECHANICS AND MICROENGINEERING 19, 2009. 094003DOI:10.1088/0960-1317/19/9/094003
[9]   O. Gradov, M. Gradova, S.N. Kholuiskaya, A.A. Olkhov. Electron Plasma Charging Effects on the Biocompatible Electrospun Dielectric Fibers 2022, IEEE Transactions on Plasma Science 50(1):176-186 DOI:10.1109/TPS.2021.3130854
[10]  M.A. Ramazanov, H.S. Ibrahimova, H.A. Shirinova. Influence of temperature-time crystallization conditions on PP+ZrO2 charge state and electret properties Ferroelectrics 577 (1), 153-160/ https://doi.org/10.1080/00150193.2021.1916358
[11]  M.Karmakar. On the Initial Rise Method for Kinetic Analysis in Thermally Stimulated Luminescence. Indian Journal of Science and Technology, 5(11), 2012, 3674-3677.
[12]  Bin Dang, Jinliang He, Jun Hu and Yao Zhou. Large improvement in trap level and space charge distribution of polypropylene by enhancing the crystalline − amorphous interface effect in blends Polym Int 2016; 65: 371–379 DOI 10.1002/pi.5063
[13]  M. Szuwarzyński, K. Wolski, T. Kruk, S. Zapotocznyb. Macromolecular strategies for transporting electrons and excitation energy in ordered polymer layers Progress in Polymer Science 121:101433 DOI:10.1016/j.progpolymsci.2021.101433
[14]  E.G. Asadov, F.A. Kazimova, T.Sh. Ibragimova, K.O. Tagiev. Thermostimulated luminescenceof Ca(AlxGa1–)2S4Eu2+crystals Technical Physics Letters Volume 43, pages 201–204, 2017. https://doi.org/10.1134/S1063785017020158
[15]  V.A. Goldade, S.V. Zotov, V.M. Shapovalov, V.E. Yudin. 2019 Electret effect in polymer nanocomposites (review). Polymer Materials and Technologies, 5, 6-18. DOI: 10.32864/polymmattech-2019-5-2-6-18
[16]  Z. Jelcic. Thermally Stimulated Depolarization of Polymers. Polimeri, 8, 1987, 265-268.