INFLUENCE OF BARRIER ELECTRIC GAS DISCHARGE ON DIELECTRIC RELAXATION AND ELECTRIC CONDUCTIVITY IN HDPE-BN COMPOSITE
T.D. Ibragimov, G.Kh. Huseynova, Z.A. Dadashov, A.F. Nuraliyev
2024   02   az   p.22-27

ABSTRACT

Dielectric properties and electrical conductivity of composites based on high-density polyethylene and boron nitride particles before and after modification by plasma barrier electrogas discharge have been studied. It was found that dielectric constant decreases in a frequency-dependent manner after modification of pure polymer and composites with BN addition under the influence of electro gas-discharge plasma. The volume fraction dependences of conductivity at different frequencies were also determined. From the graphs obtained, it can be seen that as the volume fraction increases at different frequencies, the conductivity after plasma increases and decreases according to a certain law and the conductivity before plasma becomes frequency complex.

Keywords: boron nitride, high density polyethylene, barrier electric gas discharge plasma.
PACS: 77.84.Lf, 77.65.-j

DOI:-

Received: 17.04.2024
Internet publishing: 27.06.2024

AUTHORS & AFFILIATIONS

1. Institute of Physics named after H.M.Abdullayev of the Ministry of Science and Education Republic of Azerbaijan AZ-1143, Baku, 131.H.Javid ave.
E-mail: tdibragimov @mail.ru

Graphics and Images

                   

Fig.1       Fig.2        Fig.3       Fig.4        Fig.5        Fig.6

REFERENCIES

[1]   J.M. Grace and L.J. Gerenser. Plasma treatment of polymers, J. Dispersion Sci. Technol. 24, 2003. 305-41.
[2]   S. Guimond and M.R. Wertheimer. Surface degradation and hydrophobic recovery of polyolefins treated by air corona and nitrogen atmospheric pressure glow discharge, J. Appl. Polym. Sci. 94 (3), 2004. 1291-1303.
[3]   M. Pascual, R. Sanchis, L. Sánchez, D. García, and R. Balart. Surface modification of low density polyethylene (LDPE) film using corona discharge plasma for technological applications, Journal of Adhesion Science and Technology 22, 2008. 1425–1442.
[4]   M.R. Sanchis, V. Blanes, M. Blanes, D. Garcia, R. Balart. Surface modification of low density polyethylene (LDPE) film by low pressure O2 plasma treatment, European Polymer Journal 42 (7), 2006. 1558-1568.
[5]   L. Paralı. The electret effects of crystallized polymer–ferropiezoelectric composite under electric discharge plasma, Journal of Electrostatics, 76, 2015. 89-94.
[6]   I. Novak, M. Steviar, A. Popelka, I. Chodak, J. Mosnacek, M. Spırkova, I. Janigova, A. Kleinova, J. Sedliacik, M. Slouf. Surface Modification of polyethylene by diffuse barrier discharge plasma. Polymer Engineering and Science. 2012. 1-8.
[7]   F. Arefi-Khonsaria, M. Tatouliana, F. Bretagnola, O. Bouloussab, F. Rondelez. Processing of polymers by plasma technologies. Surface & Coatings Technology 200, 2005. 14- 20.
[8]   W. Kun, L. Jian, R. Chunsheng, W. Dezhen, W.Younian. Surface modification of polyethylene (PE) films using dielectric barrier discharge plasma at atmospheric pressure. Plasma Science and Technology, 10 (4), 2008. 433-437.
[9]   L. Parali, M.A. Kurbanov, A.A. Bayramov, F.N. Tatardar, I.S. Ramazanova, G.X. Huseynova. Effects of electric discharge plasma treatment on the thermal conductivity of polymer–metal nitride/carbide composites. Journal of Electronic Materials 44 (11), 2015. 4322–4333.
[10]  I. Novák, G.K. Elyashevichb, I. Chodák, A.S. Olifirenko, M. Števiar, M. Špírková, N. Saprykina, E. Vlasova, A. Kleinová. Polymer matrix of polyethylene porous films functionalized by electrical discharge plasma, European Polymer Journal 44, 2008. 2702–2707.
[11]  M. Tahara, N.K. Cuong, Y. Nakashima. Improvement in adhesion of polyethylene by glow-discharge plasma. Surface and Coatings Technology, 174–175 (2003) 826-830.
[12]  R. Morent, N. De Geyter, T. Jacobs, S. Van Vlierberghe, P. Dubruel, C. Leys, E. Schacht. Plasma- polymerization of HMDSO using an atmospheric Pressure dielectric barrier discharge plasma process. Polym. 6, 2009, 537–542.
[13]  H. Biederman, D. Slavı́nská. Plasma polymer films and their future prospects. Surface and Coatings Technology. 125(1–3), 2000, 371-376.
[14]  M.A. Kurbanov, V.A. Gol’dade, S.V. Zotov, I.S. Ramazanova, A.F. Nuraliev, F.F. Yakhyaev, U.V. Yusifova, B.G. Khudayarov. Generation of crazeformation centers in polymer films under the action of electric discharge plasma. Technical Physics 63, 2018, 965–969.
[15]  A.I. Drachev, A.B. Gil’man. The synthesis of semiconducting polymers in a low-temperature plasma. Russian Journal of Physical Chemistry A, Focus on Chemistry 82, 2008, 1733–1741.
[16]  A. Akay, O. Durukan, Y. Göncü, A. T. Seyhan, N. Ay. Hexagonal boron nitride filled polymer nanofibers producing and characterization via electrospinning technique. Akay et al. Usak University Journal of Material Sciences, 1, 2012, 35 – 41.
[17]  L. Chen, H. Xu, Sh. He, Y Du. Thermal conductivity performance of polypropylene composites filled with polydopaminefunctionalized hexagonal boron nitride. journal.pone. 0170523 January 20, 2017, 1-16
[18]  Y. Yang, Y. Peng, M. F. Saleem. Hexagonal boron nitride on III–V compounds: A Review of the Synthesis and Applications. Materials, 15, 2022, 4396
[19]  F. Truica-Marasescu, M.R. Wertheimer. Nitrogen-rich plasma-polymer films for biomedical applications plasma process. Polym. 5, 2008, 44–57.
[20]  P.-L. Girard-Lauriault, P.Desjardins, Wolfgang E.S.Unger, A.Lippitz, M.R. Wertheimer. Chemical characterisation of nitrogen-rich plasma-polymer films deposited in dielectric barrier discharges at atmospheric pressure plasma process. Polym. 5, 2008, 631–644.
[21]  M.A. Kurbanov, I.S. Sultanakhmedova, É.A.Kerimov, Kh.S. Aliev, G.G. Aliev and G.M.Geіdarov. Plasma crystallization of polymer–ferroelectric/piezoelectric ceramic composites and their piezoelectric properties. Physics of the Solid State, 51 (6), 2009, 1223–1230.
[22]  Е.И. Доломанова, Г -А. Горбатов, Г.О. Пило-ян, А.Б. Успенская. Температура инверсии, ди¬электрическая проницаемость и другие свой¬ства кварца разного генезиса. Новые дан¬ные о минералах CCCP, 1981, Выпуск 29, стр. 44-53.
[23]  Л.В.Хоперскова. Оценка деформацион¬ной поляризации жидкого диэлектрика -ди(октафторпентилового) эфира. Меж¬ду-народный журнал прикладных и фундаментальных исследований № 4, 2017
[24]  Z.M. Cinan, T. Baskan, B. Erol, S. Mutlu. Thermal conductivity and phase change properties of boron nitride-lead oxide nanoparticles doped polymer nanocomposites. Research Squae. Turkey, 2022, 3-49.
[25]  Y. Kusano. Atmospheric pressure plasma processing for polymer adhesion: a review. The Journal of Adhesion, 90, 2014, 755–777.